新生期母婴分离对幼鼠内脏高敏感性及室旁核和前皮质扣带回Fos蛋白表达影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:采用行为学和电生理学评价方法,观察不同新生期母婴分离(NMS)时间对幼鼠内脏痛觉敏感性影响,探讨采用NMS建立幼年动物内脏高敏感模型所需的NMS适宜时间,对进一步认识NMS远期危害,指导临床防治具有重要指导意义。
     方法: 50只SD新生大鼠随机分成NMS39、NMS60、NMS78、NMS120组和对照组(C组),每组10只;NMS39组出生后第2~14d每天与母鼠分离3h(8:00-11:00am),连续13d,NMS60组出生后第2~21d每天与母鼠分离3h(8:00-11:00am),连续20d,NMS78组生后第2~14d(每天上午、下午分别与母鼠分离3h(8:00-11:00am;14:00-17:00pm),连续13d,NMS120组生后2~21d每天上午、下午分别与母鼠分离3h(8:00-11:00am;14:00-17:00pm),连续20d,对照组不予任何处理,与母鼠同笼。常规饲养到6周龄,通过不同压力结直肠扩张(CRD)刺激后的腹壁撤退反射评分(AWR)、痛阈测定和腹外斜肌放电波幅值测量进行幼鼠肠道痛觉敏感性评价,测定幼鼠排便粪点数和玻璃小球排出时间评估幼鼠结肠动力,处死幼鼠,留取降结肠进行病理学检查。采用SPSS11.0软件进行统计分析,α=0.05为显著性检验标准。
     结果:随CRD压力增加,5组幼鼠AWR评分和腹外斜肌放电波幅值均逐渐增加;当CRD为20mmHg、40mmHg、60mmHg时,NMS39组、NMS60组、NMS78组、NMS120组幼鼠AWR评分明显高于C组,CRD为80mmHg时,5组幼鼠AWR评分差异无显著意义;当CRD为15mmHg、30mmHg、45 mmHg、60mmHg时,NMS39组、NMS60组、NMS78组、NMS120组幼鼠腹外斜肌放电波幅值明显高于C组;CRD为75mmHg时,5组幼鼠腹外斜肌放电波幅值差异无显著意义;NMS39组、NMS60组、NMS78组、NMS120组及C组幼鼠痛阈值分别为15.83±5.05mmHg、16.50±8.40mmHg、13.50±2.88 mmHg、16.00±5.28 mmHg、33.83±4.31mmHg;NMS39组、NMS60组、NMS78组、NMS120组幼鼠间AWR评分、腹外斜肌放电波幅值及痛阈差异均无显著性意义;5组幼鼠玻璃小球排出时间及粪点数差异无统计学意义;各组降结肠均未见明显病理组织损伤。
     结论:长时间不同新生期母婴分离均能造成大鼠痛阈下降,出现内脏高敏感性;并且这种高敏感性能持续到幼年期,但幼鼠没有肠道动力改变,也没有排便习惯改变及大便性状改变,同时没有明显的组织病理学改变。采用新生大鼠在出生后第2~14d给予每天母婴分离3h可建立一种理想的幼鼠内脏痛高敏感模型。
     目的:采用新生期母婴分离(NMS)建立幼鼠内脏高敏感性模型,观察内脏高敏感性模型幼鼠下丘脑室旁核(PVN)及前皮质扣带回(ACC)内Fos蛋白表达变化,探讨其在参与幼鼠内脏痛高敏感形成的机制,为临床上防治NMS所引起的危害及疾病提供理论依据。
     方法:32只SD新生大鼠按析因设计分成4组,每组8只。A1B1组为NMS组并在6周龄时接受CRD,A1B2组为NMS组,6周龄未给予CRD,A2B1组未给予NMS并在6周龄接受CRD,A2B2组未给予NMS,6周龄未给予CRD。A1B1、A2B1组幼鼠CRD接受刺激后2h和A1B2、A2B2组幼鼠留取PVN和ACC,应用免疫组织化学染色及计算机图像分析系统进行PVN和ACC内Fos蛋白免疫阳性(FLI)细胞数半定量分析。采用SPSS11.0软件包进行统计分析,α=0.05为显著性检验标准。
     结果:A1B1组、A1B2组、A2B1组及A2B2组幼鼠PVN内FLI细胞数分别为50.61±11.68、31.25±7.28、43.67±16.03和18.13±3.41,ACC内FLI细胞数分别为53.48±15.45、38.42±11.67、35.02±9.80和20.13±2.08。NMS和幼鼠6周龄时CRD均可使幼鼠PVN和ACC内FLI细胞数显著升高,差别均有统计学意义;NMS引起幼鼠PVN和ACC内FLI细胞数增加的主效应分别为10.03个、18.38个,幼鼠6周龄时CRD引起幼鼠PVN和ACC内FLI细胞数增加的主效应分别为22.45个、14.98个;NMS和CRD对PVN和ACC内FLI细胞数影响无交互作用。
     结论:新生期持续NMS可导致幼鼠中枢神经系统发育异常和敏化,接受伤害性CRD刺激后能显著引起PVN和ACC内神经元Fos蛋白高表达,出现内脏痛觉高敏感性;PVN和ACC是幼鼠大脑中枢内脏伤害性刺激信号传导处理过程和感知觉的重要区域,其激活和致敏在NMS诱导的幼鼠内脏痛高敏性中起到至关重要作用。
Objective: Observe the effect of various neonatal maternal separations (NMS) stimulation on visceral sensibility of pain in developing rats by the method of behavior and electrophysiology research. Explore the best time of the visceral hyperalgesia model in developing rats by NMS. This study can deeply help understanding the future dangers of NMS and providing guidance for prevention and cure in clinic.
     Method: 50 SD neonatal rats were divided randomly into NMS39、NMS60、NMS78、NMS120 group (n=10) and control group (n=10). Rats in the NMS39 group were separated from the dam for 3h/d (8:00-11:00am) on postnatal days 2~14 for 13 consecutive days, NMS60 group were separated on postnatal days 2~21 for 20 consecutive days;NMS78 group were separated from the dam for 3h/d (8:00-11:00am) and 3h/d (14:00-17:00pm) on postnatal days 2~14 for 13 consecutive days, NMS120 group were separated on postnatal days 2~21 for 20 consecutive days; and the control C group were not treated and remained in the home cage with the dam. Conventionally breeding to the young period (6-week age), observing the score of Abdominal Withdrawal Reflex (AWR)、visceral pain threshold and measurement of electrical discharge of external oblique muscle of abdomen (EOMA) under different pressures of colorectal distension irritation (CRD) to evaluate visceral algesthesia in rats. Measure the amount of fecal pellets and the time of glass pellets output in rats to evaluate colon motility. Kill the rats and select descending colon to do pathological examination. SPSS 11.0 software for Windows was used in all statistical tests.α=0.05 was considered significant.
     Result: The AWR score and the amplitudes of spike of EOMA increased gradually with the rising of the CRD pressure in 5 groups of developing rats. When the CRD pressure were 20mmHg,40mmHg,60mmHg, the AWR score in NMS39 group ,NMS60 group ,NMS78 group and NMS120 group were higher than the control C group. When pressure reached 80mmHg, there were no significant differences of AWR score among five groups. When the CRD pressure were 15mmHg, 30mmHg, 45mmHg, 60mmHg the amplitudes of spike of EOMA score in NMS39 group ,NMS60 group ,NMS78 group and NMS120 group was higher than the control C group. When pressure reached 75mmHg, there were no significant differences of the amplitudes of spike of EOMA score among five groups. The Pain thresholds of the group NMS39, NMS60, NMS78, NMS120 and group C were (15.83±5.05) mmHg, (16.50±8.40) mmHg, (13.50±2.88) mmHg, (16.00±5.28) mmHg, (33.83±4.31) mmHg, but the differences among the group NMS39, NMS60, NMS78 and NMS120 were no statistical significances. There were no significant differences of fecal pellets and the time of glass pellets output among the five groups. There were no obvious histopatholigical changes in descending colon among the five groups.
     Conclusion: The persistent NMS can result in decreasing of pain threshold in rats, emerging chronic visceral hypersensibility. This hyperalgesia can continue to juvenile stage and there is no altered intestinal motility, no altered bowel function and properties, and no histological change found in colorectal tissues. The visceral hyperalgesia model of developing rat established by maternal separation for 3h/d on postnatal days 2~14 for 13 consecutive days.
     Objective: Establish the model of visceral hyperalgesia in developing rats by Neonatal maternal separation (NMS). Detect FOS expression in hypothalamus paraventricular nucleus and anterior cingulated cortex of developing rats with visceral hyperalgesia. Explorer the mechanism of visceral hyperalgesia in developing rats, to provide the theoretical basis for prevents and cures the disease of NMS in clinic.
     Method: According to the factorial design, 32 SD rats were divided into four groups with each 8, Group A1B1 was NMS group and imposed on CRD at 6-week age, yet Group A1B2 was not imposed on CRD as NMS group. Group A2B1 was imposed on CRD at 6-week age while Group A2B2 without treatment both as the control groups. On the 6th week, after the rats of Group A1B1 and A2B1 were imposed on CRD for 2 hours while rats of Group A1B2 and A2B2 not imposed on CRD were sampled hypothalamus paraventricular nucleus and anterior cingulated cortex, the semi-quantity analysis of the cell numbers of Fos-Like Immunoreactivity (FLI) of these sites were made through immunohisrochemical coloration and computer image analyzing system. SPSS 11.0 software for Windows was used in all statistical tests.α=0.05 was considered significant.
     Result: The number of FLI in PVN in group A1B1、A1B2、A2B1、A2B2 were (50.61±11.68), (31.25±7.28), (43.67±16.03), (18.13±3.41), and (53.48±15.45)、(38.42±11.67)、(35.02±9.80)、(20.13±2.08) in ACC, respectively, NMS and CRD at 6-week age both can make it increase significantly. The main effect of the number of FLI in PVN and ACC caused by NMS were 10.03 and 18.38, while 22.45 and 14.98 by CRD at 6-week age. There was no interaction between NMS and CRD on affecting the number of FLI in PVN and ACC.
     Conclusion: The persistent stimulation of MS in neonatal period may cause rat’s central nervous system abnormalities and sensitization. Accepting detrimental CRD can significantly cause the high expression of FOS in PVN and ACC, and result in emerging visceral hyperalgesia. PVN and ACC were the important domains which transmit the visceral detrimental stimulation and sense signal in developing rats’central nervous system. The activation and hyperalgesia of PVN and ACC play an important role in developing rats’visceral hyperalgesia induced by NMS.
引文
[1]周熙惠,刘小红.早期环境经验和应激对动物脑发育影响的研究.国外医学儿科学分册, 2004,31(2):65-67.
    [2]卓玲,吴斌.新生期母婴分离对大鼠的远期影响.国际儿科学杂志,2008,35(2):130-134.
    [3]杨燕珍,吴斌.新生期母婴分离对幼鼠认知的影响.中国妇幼健康研究,2008;19(5):479- 481.
    [4]Hofer MA. The psychobiology of early attachment. Clin Neurosci Res 2005;4: 291-300.
    [5]American Academy of Pediatrics and Canadian Paediatric Society. Prevention and management of pain and stress in the neonate. Pediatrics, 2000,105:454-461.
    [6]American Academy of Pediatrics and North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition. Chronic abdominal pain in children. Pediatrics, 2005, 115:370-381.
    [7]Rasquin A, Dilorenzo C, Forbes D, et al. Childhood Functional Gastrointestinal Disorders: Child/Adolescent. Gastroentero 2006,130:1527-1537.
    [8]Duarte MA, Goulart EMA, Penna FJ. Pressure pain threshold in children with recurrent abdominal pain. JPGN,2000,31:280-285.
    [9]许春娣.重视对小儿胃肠功能与动力性疾病的研究.中华儿科杂志, 2005,43(1):3-4.
    [10]Di Lorenzo C, Youssef NN, Sigurdsson L, et al. Visceral hyperalgesia in children with functional abdominal pain. J Pediatr,2001,139(6):838–843.
    [11]邹多武.内脏高敏感在胃肠功能性疾病中的作用.中华消化杂志,2006,26(6):427-428.
    [12]Coutinho SV, Plotsky PM, Sablad M, et al. Neonatal maternal separation alters stress- induced responses to viscerosomatic nociceptive stimuli in rat. Am J Physiol Gastrointest Liver Physiol , 2002, 282: G307-16.
    [13]Welting Q, Vandenwijingaard RM, Dejonge WJ, et al. Assessment of visceral sensitivity using radio telemetryin a rat model of maternal separation. Neurogastroenterol Motil, 2005,17: 838-845.
    [14]Barreau F, Ferrier L, Fioramonti J, et al. Neonatal maternal deprivation triggers long term alterations in colonic epithelial barrier and mucosal immunity in rats. Gut,2004,53: 501- 506.
    [15]Huot RL, Gonzalez ME, Ladd CO, et al . Foster litters prevent hypothalamic- pituitary- adrenal axis sensitization mediated by neonatal maternal separation. Psychoneuronendocrinology, 2004, 29:279-89.
    [16]Ladd CO, Huot RL, Thrivikraman KV, et al. Long-Term adaptations in glucocorticoid receptor and mineralocorticoid receptor mRNA and negative feedback on the hypo- thalamo- pituitary-adrenal axis following neonatal maternal separation. Biol Psychiatry 2004,55:367-375.
    [17]Lee JH, Kim HJ, Kim JG, et al. Depressive behaviors and decreased expression of serotonin reuptake transporter in rats that experienced neonatal maternal separation. Neuroscience Research, 2007,58:32-39.
    [18]Ren TH, Wu J, Yew D, et al. Effects of neonatal maternal separation on neurochemical and sensory response to colonic distension in a rat model of irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol ,2007, 292(3):G849-56.
    [19]Soderholm JD, Yates DA, Gareau MG, etal. Neonatal maternal separation predisposes adult rats to colonic barrier dysfunction in response to mild stress. Am J Physiol Gastrointest Liver Physiol, 2002, 283: G1257-G1263.
    [20]Aisa B, Tordera R, Lasheras B, et al. Cognitive impairment associated to HPA axis hyper- activity after maternal separation in rats. Psychonuroendorinology,2007,32:256~266.
    [21]Kosten TA, Karanian DA, Yeh J, et al. Memory impairments and hippocampal modify- cations in adult rats with neonatal isolation stress experience. Neurobiology of Learning and Memory,2007,88:167-176.
    [22]Zhang M, Cai JX. Effect of neonatal tactile stimulation and maternal separation on the anxiety and the emotional memory in adult female rats. Zoological Research,2006,27(4):344- 350.
    [23]Zhang LX, Levine S, Dent G, et al. Maternal deprivation increases cell death in the infant rat brain. Developmental Brain Research,2002,133:1-11.
    [24]Fabricius K, Wortwein G, Bente P. The impact of maternal separation on adult mouse behaviour and on the total neuron number in the mouse hippocampus. Brain Struct Funct, 2008,212(5):403-416.
    [25]Jaworska N, Dwyer SM, Rusak B, et al. Repeated neonatal separation results in different neurochemical and behavioral changes in adult male and female mongolian gerbils. Pharmacol Biochem Behav,2007,58(1):32-39.
    [26]Al-chaer ED, Kawasaki M, Pasricha PJ. A new model of chronic visceral hypersensitivity in adu1t rats induces by colon irritation during postnata1 development. Gastroentero, 2000, 119(5):1276-1285.
    [27]Vanhatalo S, van Nieuwenhuizan OF. et al.pain? Brain and development, 2000,22:145-150.
    [28]张睿,吴斌,林国威,等.新生期结直肠扩张对发育期大鼠内脏痛觉敏感性影响.中国新生儿科杂志,2007;22(4):221-224.
    [29]Anand KS, Coskun V, Thrivikraman KV, etal. Long-term behavioral effects of repetitive pain in neonatal rat pups. Physiol Behav,1999,66:627-637.
    [30]卓玲,吴斌,张睿,等.幼鼠内脏痛觉高敏感性模型的建立及电生理学评价.实用儿科临床杂志,2009,24(19):1487-1489.
    [31]杨燕珍,吴斌,张睿,等.腹外斜肌放电测量在幼鼠内脏痛觉高敏感模型评价中的应用.中国当代儿科杂志,2008;10(5):637-641.
    [32]吕红,王伟岸,钱家鸣.传统束缚应激动物模型内脏感觉的新评价.胃肠病学和肝病学杂志,2005,14(2):111-113.
    [33]Feldman R, Weller A, Sirota L, et al. Skin-to-skin contact (Kangaroo Care) promotes self- regulation in premature infants: Sleep-wake cyclicity, arousal modulation, and sustained explo- ration. Dev Psychol, 2002,38(2):194-207.
    [34]Levin A. Humane neonatal care initiative. Acta Paediatr, 1999,88(4):353-355.
    [35]Lidow MS, Song ZM. Ren K. Long-term effects of short-lasting early local inflammatory insult. Neuroreport, 2001,12(2):399-403
    [36]任天华,胡品津,胡志达,等.新生期母婴分离对大鼠成年后结直肠扩张后5-羟色胺表达的影响.中山大学学报(医学科学版),2004;25(3):234-236.
    [37]Kosten TA, Lee HJ, Kim JJ. Neonatal handling alters learning in adult male and female rats in a task-specific manner. Brain research,2007,1154:144-153.
    [38]Beane ML, Cole MA, Robert L. Neonatal handling enhances contextual fear conditioning and alters corticosterone stress responses in young rats. Hormones and Behavior 2002,41:33-40.
    [39]Rosenfeld P, Gutierrez YA, Martin AM, et al. Maternal regulation of the adrenocortical response in preweanling rats. Physiol Behav,1991,50(4):661-671.
    [40]Rosenfeld P, Suchecki D, Levine S. Multifactorial regulation of the hypothalamic- pituitary- adrenal axis during development. Neurosci Biohehav Rev,1992,16(4):553-568.
    [41]Sapolsky RM, Meaney MJ. Maturation of the adrenocortical stress response: neuron- endocrine control mechanisms and the stress hyporesponsive period. Brain Res Rev,1986,396(1): 64-76.
    [42]Meyer JS. Biochemical effects of corticosteroids on neural tissues. Physiol Rev,1985, 65(4):946-1021.
    [43]Cirulli F, Santucci D, Laviola G, et al. Behavioral and hormonal responses to stress in the newborn mouse: effects of maternal deprivation and chlordiazepoxide. Dev Psychobiol,1994,27 (5):301-316.
    [44]Sucheki D, Nelson DY, Van Oers H, et al. Activation and inhibition of the hypothalamic- pituitary-adrenal axis of the neonatal rat: effects of maternal deprivation. Psychoneuro- endocrinology,1995,20(2):169-182.
    [45]Rosztoczy A, Fioramonti J, Jarmay K, et al. Influence of sex and experimental protocol on the effect of maternal deprivation on rectal sensitivity to distension in the adult rat. Neurogastro- enterol Motil 2003,15:679-686.
    [46]Schwetz I, McRoberts JA, Coutinho SV, et al. Cortico-tropin-releasing factor receptor 1 mediates acute and delayed stress-induced visceral hyperalgesia in maternally separated Long- Evans rats. Am J Physiol Gastrointest Liver Physiol,2005,289:6704-6712.
    [47]李俊霞,刘新光,谢鹏雁,等.钙离子在大鼠结肠平滑肌运动中作用机制的研究.中华内科杂志,2000,39(9):588-591.
    [48]李天津,余保平,董卫国,等.去卵巢应激大鼠结肠组织5-羟色胺受体3表达及意义的探讨.第四军医大学学报,2004,25(1):19-22.
    [1]Rasquin A,Dilorenzo C,Forbes D,et al. Childhood Functional Gastrointestinal Disorders: Child/Adolescent. Gastroentero 2006,130:1527-1537.
    [2]陈洁.儿童功能性胃肠病的罗马III诊断标准.中国实用儿科杂志,2007,22(1):1-3.
    [3]许春娣.重视对小儿胃肠功能与动力性疾病的研究.中华儿科杂志,2005,43(1):3-4.
    [4]邹多武.内脏高敏感在胃肠功能性疾病中的作用.中华消化杂志,2006,26(6):427-428.
    [5]Marchands S. The physiology of pain mechanisms: from the periphery to the brain. Rheum Dis Clin N Am,2008,34:285一309.
    [6]Fishpein M, Bernaral B, Ehrlich C. The Primary Care Physician's Approach to Functional Abdominal Pain inChildhood. J Clin Gastroenterol, 2006, 40:497~503.
    [7]Anand P, Aziz Q, Willert R, et al.Peripheral and central mechanisms of visceral sensitization in man. Neurogastroenterol Motil, 2007,19(1Supp1):29-46.
    [8]Sarkar S, Hobson AR, Furlong PL, et al. Central neural mechanisms mediating human visceral hypersensitivity. Am J Physiol Gastmintest Liver Physio1,2001,281:G1196-61202.
    [9]Vanderah TW. Pathophysiology of Pain. Med Clin N Am, 2007,91:1-12.
    [10]Bueno L, Fioramonti J, Garcia-Villar R. Pathobiology of Visceral Pain: Molecular Mech- anisms and Therapeutic Implications III. Visceral afferent pathways: a source of new therapeutic targets for abdominal pain. Am J Physiol Gastrointest Liver Physio,2000,278:670- 676.
    [11]章菲菲,莫剑忠.降钙素基因相关肤在内脏敏感性改变机制中的作用.胃肠病学和肝病学杂志,2005,14(2):200-202.
    [12]Cervero F, Laird JM. Understanding the signaling and transmission of visceral nociceptive events. J Neurobiol, 2004,61(1):45-54.
    [13]Paxinos G, Watson C. The Rat Brain in Stererotaxic Coordinates. 4th edition. San Diego: Academic Press,1999: chat 21.
    [14]Almeida TF, Roizenblatt S, Tufik S. Afferent pain pathways: a neuroanatomical review. Brain Research, 2004,1000(1):40-56.
    [15]Owens MJ, Nemeroff CB. The role of corticotropin-releasing factor in the pathophysiology of affective and anxiety disorders: laboratory and clinical studies. Ciba Found Symp, 1993, 172:296-308.
    [16]张睿,吴斌,林国威,等.新生期结直肠扩张对发育期大鼠内脏痛觉敏感性影响.中国新生儿科杂志,2007;22(4):221-224.
    [17]杨燕珍,吴斌,张睿,等.腹外斜肌放电测量在幼鼠内脏痛觉高敏感模型评价中的应用.中国当代儿科杂志,2008;10(5):637-641.
    [18]吴斌,林滨榕,卓玲,等.新生期母婴分离对幼鼠腹外斜肌放电及脊髓Fos蛋白表达的影响.中国儿童保健杂志,2010,18(2):127-131.
    [19]韩济生.神经科学纲要[M].北京:北京医科大学,中国协和医科大学联合出版社1993:274~278
    [20]姜泊,张亚历,周殿元.分子生物学常用实验方法[M].北京:人民军医出版社.1996:128~137
    [21]Darlington CL, Flohr H, Smith PF. Molecular mechanisms of brainstem plasticity. The vestibular compensation model [J].Neurobiol, 1991, 5 (1):355~368
    [22]Curran T. In: Reddy EP,et al. Eds. The oncogene handbook. 1st ed. Amsterdam: Elsevier Press,1988: 307-325.
    [23]Morgan JI, Cohen DR, Hempstead JL, et al. Mapping patterns of c-fos expression in the central nervous system after seizure. Science,1987,237:192-197.
    [24]韩济生主编.神经科学纲要.北京:北京医科大学中国协和医科大学联合出版社.第一版.1993: 273-282.
    [25]Muskens LJJ. The central connexions of the vestibular nuclei with the corpus striatum, and their significance for oculor movements and for locomotion [J]. Brain,1929,45(4):421-451.
    [26]Di Giorgio AM. Effetti di lesioni unilaterali della corteccia cerebrale sui fenomeni di compenso da emislabirintazione [S]. Atti Accad Fisioc Fad Med Siena, Ser. XI2, 382-384.
    [27]Furuya N, Yabe T. Neurotransmitters in the vestibular commisural system of cat [M]. Ann N Y Acad Sci. 1992:594-601.
    [28]Aronin N,Sagar SM,Sharp FR. Light regulates expression of a FOS-related protein in rat suprachias matic nuclei [C]. Proc Natl Acad Sci USA 87,1990:5959-5962.
    [29]Pompeiano O. Neuronal mechanisms underlying compensation of otolith fuction after vestibular lesion [M]. In:Keller EL, Zee DS. eds. Adaptive processes in visual and oculomotor systems. Advances in Bioscience:Oxford, Pergamon Press (1986).
    [30]Sharp FR,Gonzalez MF,Sharp JW.C-FOS expression and (14C)2-deoxyglucose uptake in the caudal cerebellum of the rat during motor/sensory cortex stimulation [J]. J Comp Neuro1,1989: 284(11),621-636
    [31]Kaufman GD, Anderson JH, Beitz AJ. Brainstem Fos expression following acute unilateral labyrinthectomy in the rat [J]. Neuro,1992:3,829-832.
    [32]Strassman AM, Vos BP, Mineta Y, et al. Fos-like immunoreactivity in the superficial medullary dorsal horn induced by noxious and innocuous thermal stimulation of facial skin in the rat. J Neurophysiol,1993,70(5):1811-1821.
    [33]Walther D, Takemura M, Uhl G. Fos family member changes in nucleus caudalis neurons after primary afferent stimulation: enhancement of fos B and c-fos. 1993,17(1-2):155-159.
    [34]Traub RJ, Sengupta JN, Gebhart GF. Differential c-fos expression in the nucleus of the solitary tract and spinal cord following noxious gastric distention in the rat. Neuroscience, 1996,74:873-884.
    [35]Michl T, Jocic M, Heinemann A, et al. Vagal afferent signaling of a gastricmucosal acid insult to medullary, pontine, thalamic, hypothalamic and limbic, but not cortical, nuclei of the rat brain. Pain,2001,92:19-27.
    [36]章菲菲,莫剑忠,陈晓宇,等.胃扩张对大鼠脑、脊髓和肌间神经丛Fos蛋白和降钙素基因相关肽表达的影响.胃肠病学,2005;10:70-74.
    [37]王亚峰,张励才,曾因明.乙状结肠痛诱导大鼠远位触液神经元Fos蛋白的表达.中国疼痛医学杂志,2007,13(2):102-105.
    [38]Han F, Zhang YF, Li YQ. Fos expression in tyrosine hydroxylase-containing neurons in rat brain-stem after visceral noxious stimulation: an immunohistochemical study. World J Gastro-entero1,2003,9:1045-1050.
    [39]周秀芳,许建阳,董湘玉.电针对心理应激大鼠C-fos蛋白和白介素-2调节作用的影响.医学信息,2009,(4):106-107.
    [40]宿长军,段丽,饶志仁,等.大鼠束缚后脑内Fos蛋白的表达.解剖学报,2005,36(2):123- 126.
    [41]杨敏,李兆申,房殿春,等.食管酸灌注对内脏高敏感模型大鼠中枢神经系统表达的影响.中华消化杂志,2006,26(7):448-452.
    [42]Brian J S, Alan Anticevic. Maternal Separation Enhances Neuronal Activation and Cardio- vascular Responses to Acute Stress in Borderline Hypertensive Rats. Behav Brain Res,2007,183 (1):25–30.
    [43]王迎春,杨桂姣,张安民.不同游泳运动后大鼠下丘脑视上核、室旁核内Fos蛋白表达的变化.中国运动医学杂志,2008,27(5):563-567.
    [44]Gao J, Wu XY, Owyang C, et al. Enhanced responses of the anterior cingulate cortex neurons to colonic distension in viscerally hypersensitive rats. J Physiol, 2006,570(Ptl):169-183.
    [45]孙刚,杨云生,彭丽华,等.肠易激综合征大鼠内脏敏感性异常与结肠及中枢神经系统5-HT和c-fos表达的关系.胃肠病学和肝病学杂志,2008,17(4):313-317.
    [46]Chung EKY, Zhanga XJ, Lia Z, et al. Neonatal maternal separation enhances central sensitivity to noxious colorectal distention in rat. Brain Res,2007,1153:68-77.
    [47]邝满元,邓鹏程,徐松.母爱剥夺对子代鼠前额叶皮质C-fos蛋白表达的影响.解剖科学进展,2009,15(2):199-201.
    [48]王曦,王百忍,段晓莉,等.正常生活状态下的大鼠脑中Fos的基础表达.神经解剖学杂志,2000,16(4):353-356.
    [1]卓玲,吴斌.新生期母婴分离对大鼠的远期影响.国际儿科学杂志,2008,35(2): 130-134.
    [2]Ikonomidou C, Bosch F, Miksa M, et al. Blockade of NMDA receptors and apoptotic eurodegeneration in the developing brain. Science,1999,283:70-74.
    [3]Sapolsky RM. Why st ress is bad for your brain. Science,1996,273:749-750.
    [4]Lemaire V, Koehl M, Le Molal M, et al. Prenatal stress produces learning deficits assoeiated with in hibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA,2000:97,11032- 11037.
    [5]Lordi B, Protais P, Mellier D, et al. Acute stress in pregnant rats: effeets on growth rate, learning and memory capabilities of the off spring. Physiol Behav,1997:62,1087-1092.
    [6]McEwen BS. Effects of adverse experiences for brain strueture and function. Biol Psychiatry, 2000:48:721-731.
    [7]Quervain DJF, Roozendaal B, McGaugh JL. Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature,1998:394:787-790.
    [8]Gould E, Gross CG.. Neurogenesis in adult mammals: some progress and problems. J Neurosci,2002:22:619-623.
    [9]Fordec DE, Wehner JM. Physical activity enhances spatial learning performance with an associated alteration in hippocampal protein kinase aetivity in C57B/6 and DBA/2 mice. Brain Res,1993,619,111-119.
    [10]马虹,田苏平,陈启盛,等.不同应激强度对小鼠衰老进程影响差异的研究.中国行为医学科学,1998,7(1):11-13.
    [11]孙秀兰,田苏平,陈启盛,等.适宜应激延缓衰老的机制的研究.中国行为医学科学, 2001,10(2):81-83.
    [12]Quervain DJ, Roozendaal B, Megaugh JL. Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature,1998,394(6695):787-790.
    [13]Lehmann J, Pryce CR, Jongen-Relo AL, et al. Comparison of maternal separation and early handling in terms of their neurobehaviora effects in aged rats. Neurobiol Aging,2002,23(3):457- 466.
    [14]Uysal N, Ozdemir D, Dayi A, et al. Effects of maternal deprivation on melatonin production and cognition in adolescent male and female rats. Neuro Endocrinol Lett,2005,26(5):555-560.
    [15]Aisa B, Tordera R, Lasheras B, et al. Cognitive impairment associated to HPA axis hyperactivity after maternal separation in rats. Psychonuroendorinology,2007,32:256~266.
    [16]Kosten TA, Karanian DA, Yeh J, et al. Memory impairments and hippocampal modify- cations in adult rats with neonatal isolation stress experience. Neurobiology of Learning and Memory,2007,88:167-176.
    [17]Korte SM, Koolhaas JM, et al. The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neurosci Biobehav Rev, 2005,29 (1):30 -38.
    [18]Fabricius K, Gitta W, Bente P. The inpact of maternal separation on adult mouse behaviour and on the talneuron number in the mouse hippocampus. Brain Struct funet 2008.212(5):403-416.
    [19]Lee JH, Kim HJ, Kim JG, et al. Depressive behaviors and decreased expression of serotonin reuptake transporter in rats that experienced of neonatal maternal separation. Neuroscience Research,2007,58(1):32-39.
    [20]Agid O, Shapira B, Zislin J, et al. Environment and vulnerability to major psyehiatric illness: a ease control study of early parental loss in major depression, bipolar disorder and schizophrenia. Molecular Psychiatry,1999,4:163-172.
    [21]李鹤展,张亚林.儿童期虐待与成人抑郁症.国外医学精神病学分册,2004,31:100-103.
    [22]Roy A. Early parental separation and adult depression. Arehives of General Psyehiatry,1985, 42:987.
    [23]Gilmer WS, McKinney WT. Early experience and depressive disorders: human and non- human primate studies. J Affeetive Disorders,2003,75:97-113.
    [24]Tenant C. Parental loss in childhood relationship to adult psychiatric impairment and contact with psychiatric services. Archives of General Psychiatry,1981,38:309.
    [25]Francis DD, Szegda K, Campbell G, et al. Epigenetic sources of behavioural Differences in mice. Nature Neuroscience,2003,6:445-446.
    [26]Weller A, Leguisamo AC, Towns L, et al. Maternal effects in infant and adult Phenotypes of 5-HT1A and 5-HT1B receptor knockout mice. Developmental Psychobiology,2003:42:194-205.
    [27]Innis SM. Perinatal biochemistry and physiology of long-chain polyunsaturated fatty acids. J Pediatr,2003,143(4Suppl):1-8.
    [28]Ooylan LM, Hart S, Porter KB, et al. Vitarnin B6 content of breast milk and neonatal behavioral functioning. J Am Diet Assoc,2002,102(10):1433-1438.
    [29]周晓彬,衣明纪,张健.母乳喂养对4-5岁儿童行为问题的影响.中国实用儿科杂志, 2005,20(9):559-560.
    [30]Hart S, Boylam LM, Garroll S, et a1. Brief report: breast-fed one-week-olds demonstrate superior neurobehavioral organization. J Pediatr Psychol,2003,28(8):529-534.
    [31]Levenstein S, Prantera C, Varvo V, et al. Stress and exacerbation in ulcerative colitis: a prospective study of patients enrolled in remission. Am J Gastroentero1,2001,95(5):1213- 1220.
    [32]Mayer EA, Naliboff BD, Chang L, et al. Stress and irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol, 2001,280(4):G519-G524.
    [33]Collins SM. Stress and the Gastrointestinal Tract IV. Modulation of intestinal inflammation by stress: basic mechanisms and clinical relevance. Am J Physiol Gastrointest Liver Physiol, 2001,280(3):G315-G318.
    [34]Gue M, Bonbonne C, Fioramonti J, et al. Stress-induced enhancement of colitis in rats: CRF and arginine vasopressin are not involved. Am J Physiol,1997,272(1 Pt 1):G84-G91.
    [35]Coutinho S, Plotsky PM, Sablad M, et al. Neonatal maternal separation alters stress-induced response to viscerosomatic nociceptive stimuli in rats. Am J Physiol Gstrointest Liver Physiol, 2002,282:307-316.
    [36]Soderholm JD, Yates DA, Gareau MG, et al. Neonatal maternal separation predisposes adult rats to colonic barrier dysfunction in response to mild stress. Am J Physiol Gastrointest Liver Physiol,2002,283(6):G1257-G1263.
    [37]Barreau F, Ferrier L, Fioramonti J, et al. Neonatal maternal deprivation triggers long term alterations in colonic epithelial barrier and mucosal immunity in rats. Gut,2004,53(4):501-506.
    [38]金汉珍,黄德珉,官希吉.实用新生儿学,第3版.北京:人民卫出版社,2003.155,158.
    [39]杨朝红.母婴同室对母婴的益处.中国煤炭工业医学杂志,2000,3(6):566-567.
    [40]姜梅.出生后立即与母亲皮肤接触有利于新生儿保温.中华护理杂志,2006, 41(2):140-141.
    [41]张秀平,穆傲霜,陶秀英.产后立即母婴皮肤接触与新生儿保温的探讨.中国误诊学杂志,2009,9(16):3835.
    [42]刘荣军.产妇态度与母婴接触时机对早期新生儿体温影响.护理实践与研究.2007,4(5):1- 3.
    [43]马改凤,马凤英.实施母婴同室后对婴儿的益处.山西职工医学院学报,1998,8(2):54-55.
    [44]Cattaneo A, Daveazo R, Uxa F, et al. Recommandations for the implementation of kangaroo mother care for low birth weight infants. Acta Pediatr,1998,87:440-445.
    [45]Department of Reproductive Health and Research, World Health Organization. Kangaroo mother care: A practical guide. Geneva:WHO,2003:1.
    [46]Charpak N, Ruiz-Pelaez JG, Figueroa de CZ, et al. Kangaroo mother versus traditional care for newborn infants≤2000 grams: A randomized, controlled trial. Pediatrics,1997,100:682- 688.
    [47]Ludington-Hoe SM, Hadeed AJ, Anderson GC. Physiologic responses to skin-to-skin contact in hospitalized premature infants. J Perinatol,1991,11:19-24.
    [48]Whitelaw A, Heisterkamp G, Sleath K, et al. Skin-to-skin contact for very low birth weight infants and their mothers. Arch Dis Child,1988,63:1377-1381.
    [49]Sloan NL, Leon Camacho LW, Pinto Rojas E, et al. Kangaroo mother method: Randomized controlled trial of an alternative method of care for stabilized low birth-weight infants. Lancet, 1994,344:782-785.
    [50]Charpak N, Ruiz-Pelaez JG, Charpak Y. et al. Kangaroo mother care program: An alternative way of caring for low birth weight infants? One year mortality in two cohort studies. Pediatrics, 1994,94:804-810.
    [51]Bauer K, Pyper A, Sperling P, et al. Effects of gestational and postnatal age on body temperature, oxygen consumption and activity during early skin-to-skin contact between preterm infants of 25-30 week gestation and their mothers. Pediatr Res,1998,44:247-251.
    [52]Bauer J, Southeimer D, Fischer C, et al. Metabolic rate and energy balance in very low birth weight infants during kangaroo holding by their mothers and fathers. J Pediatr,1996,129:608- 611.
    [53]Gomez PA, Baiges Nogues MT, Batiste Femandez MT, et al. Kangaroo method in delivery room for full-term babies. An Esp Pediatr,1998,48:631-633.
    [54]Tessier R, Cristo M, Velez S, et al. Kangaroo mother care and thebonding hypothesis.Pediatrics,1998,102:e17.
    [55]Tessier R, Cristo M, Nadeau L, et al. Kangaroo mother care: A method for protecting high- risk low birth weight and premature infants against developmental delay. Infant Behav Develop, 2003,26:384-397.
    [56]Ludington-Hoe SM, Ferreira CN, Goldstein MR. Kangaroo care with a ventilated preterm infant. Acta Paediatr,1998,87:711-713.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700