早期雷莫司琼干预对内脏痛高敏感幼鼠脊髓背角Fos蛋白和P物质表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
早期雷莫司琼干预对内脏痛高敏感幼鼠脊髓背角Fos蛋白和P物质表达的影响
     目的:利用新生期反复结直肠刺激(Colorectal Irritation, CI)建立幼鼠内脏痛觉敏化模型,探讨早期应用5-HT3受体拮抗剂雷莫司琼干预对幼鼠内脏痛敏化模型的内脏痛觉敏感性、脊髓背角Fos蛋白和P物质(Substance P, SP)表达影响,为儿童腹痛相关的功能性胃肠病的防治提供理论依据。
     方法:32只SD新生大鼠按2×2析因设计分成4组,每组8只,A1B1组:新生期反复CI建立幼鼠内脏痛觉敏化模型,15-21d腹腔注射雷莫司琼;A1B2组:新生期反复CI建立幼鼠内脏痛觉敏化模型,15-21d腹腔注射生理盐水;A2B1组:新生期未接受CI,15-21d腹腔注射雷莫司琼;A2B2组:新生期未接受CI,15-21d腹腔注射生理盐水。常规饲养到幼鼠期(6周龄),通过观察大鼠在不同压力结直肠扩张(Abdonminal Withdrawal Reflex, CRD)刺激后的腹壁撤退反射(Abdonminal Withdrawal Reflex, AWR)评分、内脏痛阈和腹外斜肌放电进行内脏痛觉敏感性评价;留取降结肠进行常规病理学检查;留取各组幼鼠L6-S2脊髓,进行Fos蛋白和SP免疫组织化学染色,应用计算机图像分析系统对各组幼鼠脊髓背角Fos蛋白和SP表达进行积分光密度值(Integrated Optical Density, IOD)半定量分析。采用SPSS13.0软件包进行统计分析,α=0.05为显著性检验标准。
     结果:[1]幼鼠痛阈受建立内脏痛敏化模型和早期雷莫司琼干预两因素影响,建立内脏痛敏化模型可使幼鼠痛阈降低11.56mmHg,早期雷莫司琼干预则使幼鼠痛阈提高9.06mmHg,两者存在有交互作用(F=33.41,P<0.001)。随CRD增加,各组幼鼠AWR评分、腹外斜肌放电幅值逐渐增加。相同CRD压力下,与A2B1、A2B2组相比,A1B2组AWR评分、腹外斜肌放电幅值明显升高,A1B1组幼鼠AWR评分、腹外斜肌放电幅值下降,与A2B1、A2B2组相近,且降结肠未见明显病理组织损伤。[2]A1B2组幼鼠脊髓背角出现密集深褐色免疫阳性产物,Fos免疫阳性(Fos-Like Immunoreactivity, FLI)细胞多;A1B1、A2B1及A2B2组幼鼠脊髓背角内仅有少量FLI细胞,免疫阳性产物着色浅淡。建立幼鼠内脏痛觉敏化模型使幼鼠腰骶段FLI细胞的IOD值明显增高,早期雷莫司琼干预使幼鼠腰骶段脊髓背角FLI细胞的IOD值明显减低,差别均有统计学意义(F值分别为84.52、50.40,P均<0.001)。两者间存在交互作用(F=71.44,P<0.001)。[3]A1B2组幼鼠脊髓背角出现密集棕黄色免疫阳性产物,SP阳性细胞多;A1B1、A2B1及A2B2组幼鼠脊髓背角内仅有少量SP阳性细胞,免疫阳性产物着色浅淡。幼鼠脊髓背角SP的IOD值受到建立幼鼠内脏痛觉敏化模型和早期雷莫司琼干预两因素影响,建立幼鼠内脏痛觉敏化模型使幼鼠腰骼段脊髓背角SP的IOD值明显增高,早期雷莫司琼干预使幼鼠腰骸段脊髓背角SP的IOD明显减低,差别均有统计学意义(F值分别为97.290、%.295,尸均<0.001)。两者间存在交互作用(F=122.751,P<0.001)。
     结论:新生期(8一14d)反复给予CI,会造成幼鼠痛阂下降,从而建立幼鼠内脏痛觉敏化模型,并引起脊髓背角痛觉传递的神经递质FOS蛋白及SP表达明显增加,且没有明确的组织病理学改变,但早期(巧一21d)应用5一HT3受体拮抗剂雷莫司琼干预则使内脏痛觉敏化幼鼠脊髓背角Fos蛋白及SP表达下降,并抑制内脏机械刺激引起的内脏运动反射和腹外斜肌放电,从而降低幼鼠内脏痛觉高敏感性。
Objective: Establish the model of visceral hyperalgesia in developing rats by detrimental colorectal irritation (CI) stimulation in neonatal period. To explore the effect of ramosetron early used on visceral hypersensitivity developing rats' spinal substance P and Fos expression, provide the theoretical basis for taking the preventive measures to functional gastrointestinal disorders in children.
     Method: 32 neonatal rats were divided into four groups by factorial design with each 8. Group A]Bi were imposed on CI at neonatal period and imposed on ramosetron intraperitoneal injection in 15"~21days; Group AiB2:were imposed on CI at neonatal period but not imposed on ramosetron intraperitoneal injection in 15—21 days; Group A2Bi:were not imposed on CI at neonatal period but imposed on ramosetron intraperitoneal injection in 15~ 21 days; Group A2B2:were not imposed on CI at neonatal period and not imposed on ramosetron intraperitoneal injection in 15~21days. Then, conventionally breeding till the young period (6-week age), the following study was implemented: by the method of abdonminal withdrawal reflex (AWR), pain thresholds and electrophysiological study on external oblique to evaluate visceral algesthesia of intestinal tract. To select descending colon to do Datholieical examination. Sampled the L_6 ~ S-2 of 32 SD rats' smnal cord, the semi-quantity analysis of integrated optical density(IOD) of the spinal substance P and Fos expression were made through immunohisrochemical coloration and computer image analyzing system. SPSS 13.0 software for Windows was used in all statistical tests. The value of a=0.05 was considered significant.
     Result:[1]The pain thresholds in developing rats were affected by CI at neonatal period and using ramosetron in 15~21days. In group A1B2 which imposed on CI at neonatal period for building visceral hypersensitivity model, the pain thresholds decreased 11.56mmHg. Using of 5-HT3 receptor antagonist ramosetron in developing rat while CI was imposed at neonatal period, the pain thresholds increased 9.06mmHg. Future more, there are interaction effects between the two factors(F=33.41,P<0.001). The AWR scores and the amplitudes of spike external oblique muscle of abdomen(EOMA) increased gradually with the rising of the CRD pressures in developing rats. At the same CRD pressure, compare with groups A2B1andA2B2, the AWR scores and the amplitudes of spike EOMA of group A2B1 were higher significantly. There were no obvious histopatholigical changes in descending colon in all rats. [2]Group A1B2, the spinal dorsal appears intensive dark-brown immunoreactive positive products, the Fos-Like Immunoreactivity(FLI) positive cells are most; Group A1B1, A2B1andA2B2, the spinal dorsal appears small amounts of FLI-positive cells, the coloring of immunoreactive positive products is light. The visceral hyperalgesia model group the integral optical density(IOD) values of FLI-positive cells in spinal dorsal were higher significantly; the group that using ramosetron in 15~21days the IOD values of FLI-positive cells were lower significantly(F=84.52,50.40, P< 0.001). And there are interaction effects, too(F=71.44, P<0.001). [3]Group A1B2, the spinal dorsal appears intensive brown-yellow immunoreactive positive products, the SP-positive cells are most; Group A1B1, A2B1andA2B2, the spinal dorsal appears small amounts of SP-positive cells, the coloring of immunoreactive positive products is light. The IOD values of SP in spinal dorsal were affected by CI at neonatal period and using ramosetron in 15~21days. The visceral hyperalgesia model group the IOD values of SP in spinal dorsal were higher significantly; the group that using ramosetron in 15~21days the IOD values of SP in spinal dorsal were lower significantly(F=97.290、96.295, P<0.001). And there are interaction effects, too(F=122.751, P<0.001).
     Conclusion:The persistent CI in neonatal period can result in low pain threshold and increase the expression of Fos and SP in spinal dorsal. Thus, It can establish the model of visceral hyperalgesia in developing rats. But, using ramosetron in 15~21days can decrease the expression of Fos and SP in spinal dorsal. It also inhibit visceromotor reflex and EOMA. Accordingly, reduce visceral hyperalgesia.
引文
[1]Rasquin A, Di Lorenzo C, Forbes D, et al. Childhood functional gastrointestinal disorders/adolescent. Gastroenterology,2006,130(5):1527-1537.
    [2]Miele E, Simeone D, Marino A, et al. Functional gastrointestinal disorders in children:an Italian prospective survey. Pediatrics,2004,114(1):73-78.
    [3]李定国,刘栋,许小幸.青少年儿童肠易激综合征的流行病学调查.中华消化杂志,2005,25(5):266-269.
    [4]姚敏,陈燕萍,周惠清等.我国南方青少年肠易激综合征流行病学调查.临床儿科杂志,2007,25(10):835-839.
    [5]Fishpein M, Bernaral B, Ehrlich C. The Primary Care Physician's Approach to Functional Abdominal Pain in Childhood. J Chin Gastroenterol,2006,40:498-503.
    [6]Varni JW, Lane MM, Burwinkle TM, et al. Health-related quality of life in pediatric patients with irritable bowel syndrome:a comparative analysis. J Dev Behav Pediatr,2006,27 (6):451-458.
    [7]Bremner AR, Sandhu BK. Recurrent abdominal pain in childhood:the functional element. Indian Pediatr,2009,46(5):375-379.
    [8]Huertas-Ceballos A, Logan S, Bennett C, et al. Pharmacological interventions for recurrent abdominal pain (RAP) and irritable bowel syndrome (IBS) in childhood. Cochrane Database Syst Rev,2008,23;(1):CD003017.
    [9]Vanderah TW. Pathophysiology of Pain. Med Clin N Am,2007,91:1-12.
    [10]章菲菲,莫剑忠.降钙素基因相关肽在内脏敏感性改变机制中的作用.胃肠病学和肝病学杂志,2005,14(2):200-202.
    [11]Cervero F, Laird JM. Understanding the signaling and transmission of visceral noci-ceptive events. J Neurobiol,2004,61(1):45-54.
    [12]Al-chaer ED, Kawasaki M, Pasricha PJ. A new model of chronic visceral hypersensitivity in adult rats induces by colon irritation during postnatal development. Gastroentero,2000, 119(5):1276-1285.
    [13]张睿,吴斌,林国威,等.新生期结肠刺激及性别对幼鼠内脏痛敏感性的影响.中国疼痛医学杂志,2008;14(3):167-171.
    [14]Hirata T, Keto Y, Nakata M, et al. Effects of serotonin 5-HT3 receptor antagonists on stress-induced colonic hyperalgesia and diarrhoea in rats:a comparative study with opioid receptor agonists, a muscarinic receptor antagonist and a synthetic polymer. Neurogastro-enterol Motil,2008,20(5):557-565.
    [15]Vanhatalo S, van Nieuwenhuizan OF. et al. pain? Brain and development,2000,22:145-50.
    [16]Anand KS, Coskun V, Thrivikraman KV, et al. Long-term behavioral effects of repetitive pain in neonatal rat pups. Physiol Behav,1999,66:627-637.
    [17]杨燕珍,吴斌,张睿,等.腹外斜肌放电测量在幼鼠内脏痛觉高敏感模型评价中的应用.中国当代儿科杂志,2008;10(5):637-641.
    [18]李枫.图像分析中光密度参数物理意义的正确理解和使用.解剖学杂志,2009,32(2):271-274.
    [19]American Academy of Pediatrics and Canadian Paediatric Society. Prevention and management of pain and stress in the neonate. Pediatrics,2000,105:454-461.
    [20]American Academy of Pediatrics and North American Society for Pediatric Gastro-enterology, Hepatology, and Nutrition. Chronic abdominal pain in children. Pediatrics,2005, 115:370-381.
    [21]Bueno L, Fioramonti J, Garcia-Villar R. Pathobiology of Visceral Pain:Molecular Me-chanisms and Therapeutic Implications Ⅲ. Visceral afferent pathways:a source of new therapeutic targets for abdominal pain. Am J Physiol Gastrointest Liver Physiol,2000,278: 670-676.
    [22]Vanderah TW. Pathophysiology of Pain. Med Clin N Am,2007,91:1-12.
    [23]Marchands S. The physiology of pain mechanisms:from the periphery to the brain. Rheum Dis Clin N Am,2008,34:285-309.
    [24]张莉华,方步武.脑-肠轴及其在胃肠疾病发病机制中的作用.中国中西医结合外科杂志,2007,13(2):199-201.
    [25]Coffin B, Bouhassira D, Sabate JM, et al. Alteration of the spinal modulation of noci-ceptive processing in patients with irritable bowel syndrome. Gut,2004,53(10):1465-1470.
    [26]Anand KJ, Coskun V, Thrivikraman KV, et al. Long-term behavioral effects of repetitive pain in neonatal rat pups. Physiol Behav,1999,66:627-637.
    [27]Virgo L, Dekkers J, Mentis GZ, et al. Changes in expression of NMD A receptor subunits in the rat lumbar spinal cord following neonatal nerve injury. Neuropathol Appl Neurobiol, 2000,26,:258-272.
    [28]Ren K, Anseloni V, Zou SP, et al. Characterization of basal and reinflammation-associated long-term alteration in pain responsivity following short-lasting neonatal local inflammatory insult. Pain,2004,110:588-596.
    [29]Lidow MS, Song ZM, Ren K. Long-term effects of short-lasting early local inflammatory insult. Neuroreport,2001,12:399-403.
    [30]Adrian M, Shachar P, Reza S, et al. Neonatal nociceptive somatic stimulation differentially modifies the activity of spinal neurons in rats and results in altered somatic and visceral sensation. J Physiol,2006,572(3):775-87.
    [31]Hunt SP, Pini A, Evan G. Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature,1987,328(13):632.
    [32]Nakagawa T, Katsuya A, Tanimoto S, et al. Differential patterns of c-fos mRNA expression in the amygdaloid nuclei induced by chemical somatic and visceral noxious stimuli in rats. Neurosci Lett,2003,344 (3):197-200.
    [33]Berrneal YA, Pearse DD, Andrade CM, et al. Increased spinal c-Fos expression with noxious and non-noxious peripheral stimulation after severe spinal contusion. Neurosci Lett,2007,413(1):58-62.
    [34]程洁,吴江.吗啡对电刺激大鼠脊髓神经细胞c-fos表达的影响.中国医学研究与临床,2008,6(2):4-7.
    [35]Matsueda K, Harasawa S, Hongo M, et al. A phase Ⅱ trial of the novel serotonin type 3 receptor antagonist ramosetron in japanese male and female patients with diarrhea-predominant irritable bowel syndrome. Digestion,2008,77:225-235.
    [36]Doi-Saika M, Tokunaga A, Senba E. Intradermal 5-HT induces fos expression in rat dorsal horn neurons not via 5-HT3 but via 5-HT2A receptors. NeurosciRes,1997,29(2):143-9.
    [37]Euler US, Gaddum JH. An unidentified depressor substance in certain tissue extracts. Journal of Physiology,1931,72:74-87.
    [38]Pernow B. Substance P. Pharmacol Rev,1983,35(2):85-41.
    [39]Velazquez RA, McCarson KE, Cai Y, et al. Upregulation of neurokinin-1 receptor expression in rat spinal cord by an N-terminal metabolite of substance P. Eur J Neurosci, 2002,16:229-241.
    [40]武俊芳,韩金珠,郭志坤,等.慢性神经痛大鼠脊髓背角P物质、降钙素基因相关肽的表达.郑州大学学报(医学版),2008,43(4):699-701.
    [41]张瑞,王清秀,郭慧琴,等.坐骨神经慢性压迫损伤性疼痛与脊髓背角P物质关系研究.中国实用医药,2008,3(34):5-7.
    [42]Kanai Y, Nakazato E, Fujiuchi A, et al. Involvement of an increased spinal TRPV1 sensitization through its up-regulation in mechanical allodynia of CCI rats. Neuropharma-cology,2005,49(7):977-984.
    [43]Ballet S, Aubel B, Mauborgne A, et al. The novel analgesic, cizolirtine, inhibits the spinal release of substance P and CGRP in Rats. Neuropharmacology,2001,40(4):5782-5891.
    [44]范隆,王国林,于泳浩.电针与丁丙诺啡合用对慢性炎性痛大鼠脊髓背角P物质、降钙素基因相关肽的影响.中华麻醉学杂,2007,27(4):368-371.
    [45]Lagraize SC, Guo W, Yang K, et al. Spinal cord mechanisms mediating behavioral hyper-algesia induced by neurokinin-1 tachykinin receptor activation in the rostral ventromedial medulla. Neuroscience,2010,171:1341 - 1356.
    [46]李天津,余保平.5-羟色胺3、4受体与胃肠运动及临床意义.国外医学.消化系疾病分册,2004,24(6):354-357.
    [47]Hirata T, Keto Y, Nakata M, et al. Effects of serotonin 5-HT3 receptor antagonists on stress-induced colonic hyperalgesia and diarrhoea in rats:a comparative study with opioid receptor agonists, a muscarinic receptor antagonist and a synthetic polymer. Neurogastro-enterol Motil,2008,20(5):557-565.
    [1]杨成.郭红延.人脑源性神经营养因子序列的获得及鉴定.2007,18(11):840-842.
    [2]Bruce GJ. Adhanet HK. Wim JJMS. Plasticity in the melanotrope neuroendocrine interface of xenopus laevis. Neuroendocrinology.2007.85:177-185.
    [3]Lommatzsch M, Braun A, Mannsfeldt A, et al. Abundant production of brain-derived neurotrophic factor by adult neurotrophic functions. Am J Pathol,1999,155(4):1183-1193.
    [4]Kondyli M, Varakis J, Assimakopoulou M, et al. Expression of p75NTR and Trk neurotrophin receotors in the enteric nervous system of human adults. Anat Sci Int,2005,80 (4):223-228.
    [5]Phillips HS, Hans J M, Laramee GR. Widespread expression of BDNF but not NT-3 by target areas of basal forebrain cholinergic neurons. Science,1990,250(4978):290-294.
    [6]Ostergaard K, Jones SA, Hyman C, et al. Effects of donor age and brain-derived neurotrophic factor on the survival of dopaminergic neurons. Neuro Clin,1996,142(2):340-350.
    [7]Yan Q, ElIiott J, Snider WD. Brain-derived neurotrophic factor rescues spinal motor neurons from axotomy induced cell death. Nature,1992,360(6406):753-755.
    [8]Kawamura K, Kawamura N, Mulders SM, et al. Ovarian brainderived neurotrophic factor(BDNF) promotes the development of oocytes into preimplantation embryos. Proc Natl Aead Sci USA,2005,103(26):9206-9211.
    [9]Manni L, Nikolova D, et al. Reduced plasml levels of NGF and BDNF in patients with acute coronary syndromes. Int J Cadiol,2005,102(1):169-171.
    [10]Chu-Hsin Shieh, Chen-Jee Hong, Yn-Ho Huang, et al. Potential antidepressant properties of cysteamine on hippocampal BDNF levels and behavioral despair in mice. Progress in Neuro-Psychopharmacology & Biological Psychiatry,2008,32:1590-1594.
    [11]Esteban I, Hannestad J, Levanti B, et al. Neurotrophin receotor proteins immunoreactivity in human gastrointestinal endocrine cells. Brain Res Bull,1995,38(6):539-543.
    [12]Delafoy L, Gelot A, Ardid D, et al. Interactive involvement of brain derived neurotrophic factor, nerve growth factor, and calcitonin gene related peptide in colonic hypersensitivity in the rat. Gut,2006,55(7):940-945.
    [13]Zhou XF, Deng YS, Xian CJ, et al. Neurotrophins from dorsal root ganglia trigger allodynia after spinal nerve injury in rats. Eur J Neurosci,2000,12:100-105.
    [14]Delafoy L, Raymond F, Doherty AM, et al. Role of nerve growth factor in the trinitrobenzene sulfonic acid-induced colonic hypersensitivity. Pain,2003,105:489-497.
    [15]Oddiah D, Anand P, McMahon SB, et al.Rapid increase of NGF, BDNF and NT-3mRNA in inflamed bladder. Neuroreport,1998,9(7):1455-1458.
    [16]Torrents D, Torres R, De Mora F, et al. Antinerve growth factor treatment prevents intestinal dysmotility in Trichinella spiralis-infected rats. J Pharmacol Exp Ther,2002,302: 659-665.
    [17]Skaper SD, Pollock M, Facci L. Mast cells differentially express and release active high molecular weight neurotrophins. Brain Res Mol Brain Res,2001,97:177-185.
    [18]赖华梅,诸琦,王静,等.脑源性神经营养因子在乳鼠结肠扩张刺激诱导的慢性内脏高敏感和肠道动力异常中的作用.胃肠病学,2008,13(4):223-227.
    [19]Zhu ZW, Friess H, Wang L, et al. Brain-derived neurotrophic factor (BDNF) is upregulated and associated with pain in chronic pancreatitis. Dig Dis Sci,2001,46:1633-1639.
    [20]Takaki M, Nakayama S, Misawa H, et al. In vitro formation of enteric neural network structure in a gut-like organ differentiated from mouse embryonic stem cells. Stem Cells, 2006,24(6):1414-1422.
    [21]ElShamy WM, Ernfors P. Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4 complement and cooperate witll each other sequentially during visceral neuron development. J Neurosci,1997,17(22):8667-8675.
    [22]Guo W, Robbins MT, Wei F, et al. Supraspinal brain-derived neurotrophic factor signaling:a novel mechanism for descending pain facilitation.J Neurosci,2006,26(1):126-137.
    [23]Obata K, Noguchi K. BDNF in sensory neurons and chronic pain.Neurosci Res,2006,55(1):1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700