新生期母婴分离对幼鼠内脏痛觉敏感性影响及脊髓Fos异常表达在其形成中作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:采用行为学和电生理学评价方法,探讨新生期母婴分离(MS)对幼鼠内脏痛觉敏感性影响;比较内脏高敏感性幼鼠和对照组幼鼠腰骶段脊髓背角Fos蛋白表达,探讨脊髓背角Fos蛋白异常表达在幼鼠内脏痛觉高敏形成中作用。
     方法:[1]20只SD新生大鼠随机分成MS组和对照组,每组10只;MS组新生大鼠予出生后第2~14天每天与母鼠分离3小时(8:00-11:00am),连续13天,对照组不予任何处理,与母鼠同笼。常规饲养到幼鼠期(6周龄),通过观察大鼠在不同压力结直肠扩张(CRD)刺激后的腹壁撤退反射(AWR)评分、内脏痛阈和腹外斜肌(EOMA)放电测量进行内脏痛觉敏感性评价,选取降结肠进行病理学检查。[2]32只SD新生大鼠按析因设计分成4组,每组8只,A组为MS组,6周龄未给予CRD, B组为MS组并在6周龄时接受CRD,C组为对照组并在6周龄接受CRD,D组为对照组,6周龄未给予CRD。B、C组幼鼠接受CRD刺激后2小时和A、D组幼鼠留取L6至S2脊髓,应用免疫组织化学染色及计算机图像分析系统进行脊髓Fos蛋白免疫阳性(FLI)细胞数和灰度积分值半定量分析。采用SPSS11.0软件包进行统计分析,α=0.05为显著性检验标准。
     结果:[1]随CRD增加,幼鼠AWR评分增加;AWR评分受新生期接受MS及性别影响(F值分别为26.53、9.24,p<0.001),雌性幼鼠AWR评分明显高于雄性,MS组明显高于对照组,性别与MS之间无明显交互作用;MS组与对照组AWR评分在CRD20mmHg、40mmHg、60mmHg时差异明显,CRD80mmHg时无显著差异。MS组和对照组幼鼠痛阈值(?x±s )为17.67±8.2mmHg、33.83±4.3mmHg(F=30.415,p<0.01)。[2]随CRD增加,幼鼠腹外斜肌放电波幅增加;腹外斜肌放电波幅受MS及性别影响(F值分别为18.83、7.62,p<0.05);雌性幼鼠腹外斜肌放电波幅明显高于雄性,MS组明显高于对照组,MS组与对照组腹外斜肌放电幅值在CRD15mmHg、30mmHg、45mmHg时有明显差异,CRD60mmHg、75mmHg时无显著差异。两组幼鼠降结肠未见明显病理组织损伤。[3]新生期MS和幼鼠6周龄时CRD均可使幼鼠腰骶段脊髓背角FLI细胞数显著升高,FLI细胞灰度积分值显著降低,差别均有统计学意义;MS和CRD对脊髓背角FLI细胞数及灰度积分值影响无交互作用。
     结论:新生期持续MS可导致幼鼠脊髓初级中枢敏化,接受伤害性CRD刺激后能显著引起脊髓神经元Fos蛋白高表达,造成大鼠痛阈下降,出现慢性内脏痛觉高敏感性,并且这种高敏感性能持续到幼年期,同时没有明显的组织病理学改变。
Objective: To explore the effect of maternal separation (MS) stimulation in neonatal period on visceral sensitivity of pain in developing rats by the method of behavior and electrophysiology research. Compareing Fos expression at dorsalhorn of lumbarsacral spinal cord of visceral hypersensibility in developing rats with control rats, in order to investigate the role of Fos abnormal expression in dorsal horn of spinal cord of visceral hyperalgesia in developing rats.
     Method: [1]20 SD neonatal rats were divided randomly into MS group (n=10) and control group (n=10). Rats in MS group were separated from the dam for 3h/d (8:00-11:00am) on postnatal days 2~14 for 13 consecutive days, rats in control group were not treated and remained in the home cage with the dam. Conventionally breeding to the young period (6-week age), observing the score of abdominal withdrawal reflex (AWR)、visceral pain threshold and measurement of electrical discharge of external oblique muscle of abdomen (EOMA) under different pressures of colorectal distension (CRD) irritation to evaluate visceral algesthesia in rats. Select descending colon to do patholigical examination. [2]According to the factorial design, 32 SD rats were divided into four groups with each 8, Group A was MS group and not imposed on CRD at 6-week age, yet Group B was imposed on CRD as MS group. Group C was imposed on CRD at 6-week age while Group D without treatment both as control group. On the 6th week, after the rats of Group B and C were imposed on CRD for 2 hours while rats of Group A and D not imposed on CRD were sampled the spinal cord from L6 to S2, the semi-quantity analysis of staining density and the cell numbers of Fos-Like Immunoreactivity (FLI) of spinal cord were made through immunohisrochemical coloration and computer image analyzing system. SPSS 11.0 software for Windows was used in all statistical tests.α=0.05 was considered significant.
     Result: [1]The AWR scores increased gradually with the rising of the CRD pressure in developing rats; neonatal MS and gender had effect on the AWR scores (F was 26.53、9.24 respectively, p<0.001), The AWR scores were obviously higher in female than male rats, and the AWR scores were obviously higher in MS than control rats, there was no interaction between MS and gender on affecting the AWR scores (F =0.97, p=0.339); When the CRD pressures were20mmHg、40mmHg、60mmHg, the AWR scores were higher in MS than control rats signigficantly. But when pressure reached 80 mmHg, there was no significant difference of the AWR scores between two gruops. The Pain Thresholds of MS and control rats(?x±s ) were 17.67±8.2mmHg、33.83±4.3mmHg respectively (F=30.415, p<0.01). [2] With the CRD pressure increased, The amplitudes of spike of EOMA increased too; neonatal MS and gender had effect on the spikes of EOMA (F was 18.83、7.62 respectively, p<0.05 ), the spikes of EOMA were obviously higher in female than male rats, and the spikes of EOMA were higher in MS than control rats, When the CRD pressures were 15mmHg、30mmHg and 45mmHg, the spikes of EOMA were higher in MS than control rats signigficantly. But when pressures were 60mmHg、75mmHg, the differences were no statistical significance. There were no significant differences of weight between two groups and there were no obvious histopatholigical changes in descending colon in MS and control rats. [3]Rats accepted MS in neonatal period and CRD at 6-week age both could make the number of FLI increase and staining density of FLI decrease significantly in lumbosacral spinal dorsal horn, the differences had statistical significance. There was not interaction between MS and CRD on affecting the number and staining density of FLI.
     Conclusion: The persistent MS in neonatal phase can cause primary central sensitization of spinal cord in developing rats. Accepting detrimental CRD can significantly cause the high expression of Fos in spinal cord and result in decreasing of pain threshold in rats, emerging chronic visceral hyperalgesia. This hyperalgesia can continue to juvenile stage and there is no histological change found in colorectal tissues.
引文
[1]卓玲,吴斌.新生期母婴分离对大鼠的远期影响.国际儿科学杂志,2008,35(2):130-134.
    [2]陈洁.儿童功能性胃肠病的罗马Ⅲ诊断标准.中国实用儿科杂志,2007,22(1):1-3.
    [3]王茂贵.关注儿童功能性胃肠病的临床研究.临床儿科杂志,2004,22(10):654-646.
    [4]许春娣.重视对小儿胃肠功能与动力性疾病的研究.中华儿科杂志,2005,43(1): 3-4.
    [5]邹多武.内脏高敏感在胃肠功能性疾病中的作用.中华消化杂志,2006,26(6):427-428.
    [6]Welting Q, Van Den Wijinqaard RM, De Jonqe WJ, et al. Assessment of visceral sensitivity using radio telemetry in a rat model of maternal separation. Neurogastroenterol Motil, 2005,17(6):838-845.
    [7]Vanhatalo S, van Nieuwenhuizen O. Fetal pain? Brain Dev, 2000,22(3):145-150.
    [8]Anand KJ, Coskun V, Thrivikraman KV, et al. Long-term behavioral effects of repetitive pain in neonatal rat pups. Physiol Behav,1999,66(4):627-637.
    [9]Huot RL, Gonzalez ME, Ladd CO, et al. Foster litters prevent hypothalamic-pituitary- adrenal axis sensitization mediated by neonatal maternal separation. Psychoneuro- endocrinology, 2004,29(2):279-289.
    [10]Soderholm JD, Yates DA, Gareau MG, et al. Neonatal maternal separation predisposes adult rats to colonic barrier dysfunction in response to mild stress. Am J Physiol Gastrointest Liver Physiol, 2002, 283(6):G1257-G1263.
    [11]Barreau F, Ferrier L, Fioramonti J, et al. Neonatal maternal deprivation triggers long term alterations in colonic epithelial barrier and mucosal immunity in rats. Gut,2004,53(4):501-506.
    [12]Huot RL, Plotsky PM, Lenox RH, et al. Neonatal maternal separation reduces hippocampal mossy fiber density in adult Long Evans rats. Brain Research, 2002,950(1-2):52-63.
    [13]Zhang M, Cai JX. Effect of neonatal tactile stimulation and maternal separation on the anxiety and the emotional memory in adult female rats. Zoological Research, 2006,27(4): 344-350.
    [14]Coutinho SV, Plotsky PM, Sablad M, et al. Neonatal maternal separation alters stress-ind- uced responses to viscerosomatic nociceptive stimuli in rat. Am J Physiol Gastrointest Live Ph- ysiol, 2002,282(2):G307-G316.
    [15]Ren TH, Wu J, Yew D, et al. Effects of neonatal maternal separation on neurochemical andsensory response to colonic distension in a rat model of irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol, 2007,292(3):G849-G856.
    [16]Grundy D. What activates visceral afferents? Gut,2004,53(Suppl2):ii5-ii8.
    [17]M?nnikes H, Tebbe JJ, Hildebrandt M, et al. Role of stress in functional gastrointestinal di- sorders. Evidence for stress induced alterations in gastrointestinal motility and sensitivity.Dig Dis, 2001,19(13):201-211.
    [18]Al-Chaer ED, Kawasaki M, Pasricha PJ. A new model of chronic visceral hypersensitivity in adu1t rats induces by colon irritation during postnata1 development. Gastroenterology, 2000,119(5):1276-1285.
    [19]Ji Y, Murphy AZ, Traub RJ. Estrogen modulates the visceromotor reflex and responses of spinal dorsal horn neurons to colorectal stimulation in the rat. J Neurosci, 2003,23(9):3908- 3915.
    [20]张青, 梁列新, 钱伟, 等. 性别及动情周期对大鼠内脏感觉影响的研究. 中华消化杂志, 2005,25(1):49-50.
    [21]Boucher T, Jennings E, Fitzgerald M. The onset of diffuse noxious inhibitory controls in postnatal rat pups: a C-Fos study. Neurosci Lett,1998,257(1):9-12.
    [22]Fitzgerald M, Koltzenburg M. The functional development of descending inhibitory pathways in the dorsolateral funiculus of the newborn rat spinal cord. Brain Res,1986,389(1-2): 261-270.
    [23]Fitzgerald M, Beggs S. The neurobiology of pain: developmental aspects. Neuroscientist, 2001,7(3):246-257.
    [24]Lidow MS, Song ZM. Ren K. Long-term effects of short-lasting early local inflammatory insult. Neuroreport, 2001,12(2):399-403.
    [25]Ruda MA, Ling QD, Hohmann AG, et al. Altered nociceptive neuronal circuits after neonatal peripheral inflammation. Science,2000,289(5479):628-631
    [26]Rosenfeld P, Gutierrez YA, Martin AM, et al. Maternal regulation of the adrenocortical response in preweanling rats. Physiol Behav,1991,50(4):661-671.
    [27]Rosenfeld P, Suchecki D, Levine S. Multifactorial regulation of the hypothalamic- pituitary-adrenal axis during development. Neurosci Biohehav Rev,1992,16(4):553-568.
    [28]Sapolsky RM, Meaney MJ. Maturation of the adrenocortical stress response: neuron-endocrine control mechanisms and the stress hyporesponsive period. Brain Res Rev,1986, 396(1):64-76.
    [29]Meyer JS. Biochemical effects of corticosteroids on neural tissues. Physiol Rev, 1985, 65(4):946-1021.
    [30]Cirulli F, Santucci D, Laviola G, et al. Behavioral and hormonal responses to stress in the newborn mouse: effects of maternal deprivation and chlordiazepoxide. Dev Psychobiol, 1994, 27(5):301-316.
    [31]Sucheki D, Nelson DY, Van Oers H, et al. Activation and inhibition of the hypothalamic- pituitary-adrenal axis of the neonatal rat: effects of maternal deprivation. Psychoneuro- endocrinology,1995,20(2):169-182.
    [32]Pacha J. Development of intestinal transport function in mammals. Physiol Rev, 2000;80(4):1633-1667.
    [33]Arquie C, Leroux P, Bodenant C, et al. Glucocorticoid treatment in an ischaemic-like excitotoxic model of periventricular leucomalacia in mice. BJOG, 2002,109(9):989-996.
    [34]Lidow MS. Long-term effects of neonatal pain on nociceptive systems. Pain,2002,99(3): 377-383.
    [35]Feldman R, Weller A, Sirota L, et al. Skin-to-skin contact (Kangaroo Care) promotes self- regulation in premature infants: Sleep-wake cyclicity, arousal modulation, and sustained explo- ration. Dev Psychol, 2002,38(2):194-207.
    [36]Levin A. Humane neonatal care initiative. Acta Paediatr, 1999,88(4):353-355.
    [37]Azpiroz F. Hypersensitivity in functional gastrointestinal disorders.Gut, 2002,51(Suppl1): i25-i28.
    [38]Murray CD, Flvnn J, Ratcliffe L, et al. Effect of acute physical and psychological stress on Gut autonomic innervation in irritable bowel syndrome. Gastroenterology, 2004,127(6):1695-1 703.
    [39]Posserud I, Agerforz P, Ekman R, et al. Altered visceral perceptual and neuroendocrine response in patients with irritable bowel syndrome during mental stress.Gut, 2004,53(8):1102-1108.
    [40]Moskowitz MA. Neurogenic versus vascular mechanisms of sumatriptan and ergot alkaloids in migraine.Trends Pharmacol Sci,1992,13(8):307-311.
    [41]Bullitt E. Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J Comp Neurol,1990,296(4):517-530.
    [42]Nakagawa T, Katsuya A, Tanimoto S, et al. Differential patterns of c-fos mRNA expression in the amygdaloid nuclei induced by chemical somatic and visceral noxious stimuli in rats. Neurosci Lett, 2003,344(3):197-200.
    [43]曹芝君,莫剑忠.中枢神经系统异常在肠易激综合征内脏高敏感性形成中的作用.胃肠病学,2006,11(3):187-189.
    [44]刘雁冰,袁耀宗.功能性肠紊乱内脏痛及内脏高敏感性发生机制研究.国外医学(消化系疾病分册),2006,22(2):84-87.
    [45]Yakovlev AG, Faden AI. Sequential expression of c-fos protooncogene, TNF-alpha, and dynorphin genes in spinal cord following experimental traumatic injury. Mol Chem Neuropathol,1994,23(2-3):179-190.
    [46]Szekely AM, Barbacein ML, Alho H, et al. In primary culture of cerebellar granule cells the activation of N-methyl-D-aspatate-sensitive glutamate receptors induces c-fos mRNA expression. Mol Pharmacol, 1989,35(4):401-408.
    [47]Strassman AM, Vos BP, Mineta Y, et al. Fos-like immunoreactivity in the superficial medullary dorsal horn induced by noxious and innocuous thermal stimulation of facial skin in the rat. J Neurophysiol,1993,70(5):1811-1821.
    [48]Walther D, Takemura M, Uhl G. Fos family member changes in nucleus caudalis neurons after primary afferent stimulation: enhancement of fos B and c-fos. Brain Res Mol Brain Res,1993,17(1-2):155-159.
    [49]Davison JS. Clarke GD. Mechanical properties and sensitivity to CCK of vagal gastric slowly adapting mechanoreceptors. Am J Physiol,1988,255(1 Pt 1):G55-G61.
    [50]郑伟, 汪宝军, 叶立民. 灰度值、光学密度值与免疫组化片阳性表达强弱的关系. 临床与实验病理学杂志,2003,19(1):566-567[0].
    [51]Traub RJ, Pechman P, Iadarola MJ, et al. Fos-like proteins in the lumbosacral spinal cord following noxious and non-noxious colorectal distention in the rat. Pain,1992,49(3):393-403.
    [52]Traub RJ, Zhai Q, Ji Y, et al. NMDA receptor antagonists attenuate noxious and nonnoxious colorectal distention-induced Fos expression in the spinal cord and the visceromotor reflex. Neuroscience,2002,113(1):205-211.
    [53]Sarkar S, Hobson AR, Furlong PL, et al. Central neural mechanisms mediating human visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol, 2001,281(5):G1196-G1202.
    [54]Hunt SP, Pini A, Evan G. Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature,1987,328(6131):632-634.
    [1]Liqqins GC. Adrenocortical-related maturational events in the fetus[J]. Am J Obstet Gynecol, 1976,126(7):931-941.
    [2]Meaney MJ, Diorio J, Francis D, et al. Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress[J]. Dev Neurosci, 1996,18(1-2):49-72.
    [3]Weinstock M. Does prenatal stress impair coping and regulation of hypothalamic-pituitary- adrenal axis? [J]. Neurosci Biobehav Rev,1997,21(1):1-10.
    [4]Tskahashi LK, Kalin NH. Early developmental and temporal characteristics of stress-induc- ed secretion of pituitary-adrenal hormones in prenatally stressed rat pups[J]. Brain Res,1991, 558(1):75-78.
    [5]Weinstock M, Matlina A, Maor GI, et al. Prenatal stress selectively alters the reactivity of the hypothalamic-pituitary adrenal system in the female rat[J]. Brain Res,1992,595(2):195-200.
    [6]Koehl M, Damaudery M, Dulluc J, et al. Prenatal stress alters circadian activity of hypothalamo-pituitary-adrenal axis and hippocampal corticosteroid receptors in adult rats of both gender[J]. J Neurobiol,1999,40(3):302-315.
    [7]Weinstock M.Does prenatal stress impair coping and regulation of hypothalamic-pituitary-a- Drenal axis?[J]. Neurosci Biobehav Rev, 1997,21(1):1-10.
    [9]Huot RL, Gonzalez ME, Ladd CO, et al. Foster litters prevent hypothalamic- pituitary-adr- enal axis sensitization mediated by neonatal maternal separation[J]. Psychoneuroendocrinology, 2004,29(2):279-289.
    [10]Rosenfeld P, Gutierrez YA, Martin AM, et al. Maternal regulation of the adrenocortical response in preweanling rats[J]. Physiol Behav,1991,50(4):661-671.
    [11]Rosenfeld P, Suchecki D, Levine S. Multifactorial regulation of the hypothalamic- pituitary-adrenal axis during development[J]. Neurosci Biohehav Rev,1992,16(4):553-568.
    [12]Sapolsky RM, Meaney MJ. Maturation of the adrenocortical stress response: neuro- endocrine control mechanisms and the stress hyporesponsive period[J]. Brain Res,1986, 396(1):656-657.
    [13]Meyer JS. Biochemical effects of corticosteroids on neural tissues[J]. Physiol Rev, 1985, 65(4):946-1021.
    [14]Cirulli F, Santucci D, Laviola G, et al. Behavioral and hormonal responses to stress in the newborn mouse: effects of maternal deprivation and chlordiazepoxide[J]. Dev Psychobiol, 1994,27(5):301-316.
    [15]Kalinichev M, Easterling KW, Holtzman SG. Periodic postpartum separathion from the offspring results in long-lasting changes in anxiety-related behaviors and sensitivity to morphine in long-Evans mother rats[J]. Psychopharmacology, 2000,152(4):431-439.
    [16]Sucheki D, Nelson DY, Van Oer H, et al. Activition and inhibition of the hypothalamic-ad- Renal axis of the neonatal rat: Effects of maternal deprivation[J].Psychoneuroendocrinology,19 95,20(2):169-182.
    [17]Denenberg VH, Otinger DR, Stephens MW. Effects of maternal factor upon growth and behavior of the rat[J]. Child Dev,1962,33:65-71.
    [18]Denenberg VH. Commentary: Is maternal stimulation the mediator of the handling effect in infancy?[J]. Developmental Psychobiology,1999,34(1):1-3.
    [19]Grundy D. What activates visceral afferents? [J].Gut, 2004,53(Suppl2):ii5-ii8.
    [20]Mayer EA,Collins SM. Evolving pathophysiologic models of functional gastrointestinal disorders[J]. Gastroenterology, 2002,122(7):2032-2048.
    [21]Coutinho SV, Plotsky PM, Sablad M, et al. Neonatal maternal separation alters stress- induced responses to viscerosomatic nociceptive stimuli in rat[J]. Am J Physiol Gastrointest Liver Physiol, 2002,282(2):G307-G316.
    [22]Mayer EA, Naliboff BD, Chang L, et al. Stress and irritable bowel syndrome[J].Am J Physiol Gastrointest Liver Physiol, 2001,280(4):G519-G524.
    [23]Welting Q, Van Den Wijinqaard RM, De Jonqe WJ, et al. Assessment of visceral sensitivity using radio telemetry in a rat model of maternal separation[J]. Neurogastroenterol Motil, 2005,17(6):838-845.
    [24]Ren TH, Wu J, Yew D, et al. Effects of neonatal maternal separation on neurochemical and sensory response to colonic distension in a rat model of irritable bowel syndrome[J].Am J Physiol Gastrointest Liver Physiol ,2007,292(3):G849-G856.
    [25]Million M, Grigoriadis DE, Sullivan S, et al. A novel water-soluble selective CRF1 receptor antagonist, NBI 35965, blunts stress-induced visceral hyperalgesia and colonic motor function in rats[J]. Brain Res, 2003,985(1):32-42.
    [26]Tache Y, Martinez V, Million M, et al. Stress and the gastrointestinal tract III. Stress-related alterations of gut motor function: role of brain corticotrophin-releasing factor receptors[J]. Am J Physiol Gastrointest Liver Physiol, 2001,280(2):G173-G177.
    [27]Habib KE, Weld KP, Rice KC, et al. Oral administration of a corticotropin-releasing hormone receptor antagonist significantly attenuates behavioral,neuroendocrine, and autonomic responses to stress in primates[J]. Proc Natl Acad Sci USA, 2000,97(11):6079-6084.
    [28]Lejeune F, Millan MJ. The CRF1 receptor antagonist, DMP695, abolishes activation of locus coeruleus noradrenergic neurones by CRF in anesthetized rats[J]. Eur J Pharmacol,2003, 464(2-3):127-133.
    [29]Chung EK, Zhang X, Li Z, et al. Neonatal maternal separation enhances central sensitivity to noxious colorectal distention in rat[J]. Brain Res, 2007,1153:68-77.
    [30]Van Den Wijinqaard RM, Welting O, van der Coelen D, et al. Delayed visceral hypersensitivity in maternal separation depends on mast cell degranulation and is mediated byNGF and the nociceptor TRPV-1[J]. European Journal of Gastroenterology & Hepatology, 2006,18(1):A7.
    [31]Levenstein S, Prantera C, Varvo V, et al. Stress and exacerbation in ulcerative colitis: a pr- ospective study of patients enrolled in remission[J]. Am J Gastroenterol,2001,95(5):1213-1220.
    [32]Mayer EA, Naliboff BD, Chang L, et al. Stress and irritable bowel syndrome[J]. Am J Physiol Gastrointest Liver Physiol, 2001,280(4):G519-G524.
    [33]Collins SM. Stress and the Gastrointestinal Tract IV. Modulation of intestinal inflammation by stress: basic mechanisms and clinical relevance[J]. Am J Physiol Gastrointest Liver Physiol, 2001,280(3):G315-G318.
    [34]Gue M, Bonbonne C, Fioramonti J, et al. Stress-induced enhancement of colitis in rats: CRF and arginine vasopressin are not involved[J]. Am J Physiol, 1997, 272(1 Pt 1):G84-G91.
    [35]Soderholm JD, Yates DA, Gareau MG, et al. Neonatal maternal separation predisposes adult rats to colonic barrier dysfunction in response to mild stress[J]. Am J Physiol Gastrointest Liver Physiol, 2002,283(6):G1257-G1263.
    [36]Barreau F, Ferrier L, Fioramonti J, et al. Neonatal maternal deprivation triggers long term alterations in colonic epithelial barrier and mucosal immunity in rats[J].Gut,2004,53(4): 501-506.
    [37]Udall JN, Pang K, Fritze L, et al. Development of gastrointestinal mucosal barrier.I.The effect of age on intestinal permeability to macromolecules[J]. Pediatr Res, 1981,15(3):241-244.
    [38]Sanderson IR, Walker WA. Uptake and transport of macromolecules by the intestine: possible role in clinical disorders (an update) [J]. Gastroenterology, 1993,104(2):622-639.
    [39]Castagliuolo I, Wershil BK, Karalis K, et al. Colonic mucin release in response to immobilization stress is mast cell dependent[J]. Am J Physiol, 1998,274(6 Pt 1):G1094-G1100.
    [40]Bailey MT, Coe CL. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys[J]. Dev Psychobiol,1999,35(2):146-155.
    [41]Berg RD. Bacterial translocation from the gastrointestinal tract[J].Adv Exp Med Biol,1999, 473:11-30.
    [42]McKay DM, Baird AW. Cytokine regulation of epithelial permeability and ion transport[J]. Gut,1999,44(2):283-289.
    [43]Perdue MH. Mucosal immunity and inflammation.III. The mucosal antigen barrier crosstalk with mucosal cytokines[J]. Am J Physiol, 1999,277(1 Pt 1):G1-G5.
    [44]Berin MC, Yang PC, Ciok L, et al. Role for IL-4 in macromolecular transport across human intestinal epithelium[J]. Am J Physiol, 1999,276:1046-1052.
    [45]Saunders PR, Hanssen NP, and Perdue MH. Cholinergic nerves mediate stress-induced intestinal transport abnormalities in Wistar-Kyoto rats[J]. Am J Physiol Gastrointest Liver Physiol, 1997,273(2 Pt 1):G486-G490.
    [46]Maillot C, Million M, Wei JY, et al. Peripheral corticotropin-releasing factor and stress-stimulated colonic motor activity involve type 1 receptor in rats[J]. Gastroenterology, 2000,119(6):1569-1579.
    [47]Anisman H, Zaharia MD, Meaney MJ, et al. Do early-life events permanently alter behavioral and hormonal responses to stressors[J]. Int J Dev Neurosci,1998,16(3-4):149-164.
    [48]Fernandez-Teruel A, Gimenez-Llort L, Escorihuela RM, et al. Early life handling stimulation and environmental enrichment are some of their effects mediated by similar neural mechanisms[J]. Pharmacology Biochemistry and Behavior, 2002,73(1):233-245.
    [49]Huot RL, Plotsky PM, Lenox RH, et al. Neonatal maternal separation reduces hippocampal mossy fiber density in adult Long Evans rats[J]. Brain Res, 2002,950(1-2):52-63.
    [50]Kaufman J, Plotsky PM, Nemeroff CB, et al. Effects of early adverse experiences on brain structure and function: clinical implications[J]. Biol Psychiatry, 2000,48(8):778-790.
    [51]Amaral DG, Dent JA. Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions[J]. J Comp Neurol, 1981, 195(1):51-86.
    [52]Sapolsky RM, Meaney MJ. Maturation of the adrenocortical stress response: neuroendocrine control mechanisms and the stress hyporesponsive period[J]. Brain Res,1986, 396(1):64-76.
    [53]Cameron HA, Tanapat P, Gould E. Adrenal steroids and N-methyl-D-aspartate receptor activation regulate neurogenesis in the dentate gyrus of adult rats through a common pathway[J].Neuroscience,1998,82(2):349-354.
    [54]Gould E. The effects of adrenal steroids and excitatory input on neuronal birth and survival[J]. Ann NY Acad Sci,1994,743:73-79.
    [55]Gould E, Cameron HA. Early NMDA receptor blockade impairs defensive behavior andincreases cell proliferation in the dentate gyrus of developing rat[J]. Behav Neurosci,1997, 111(1):49-56.
    [56]McEwen BS. Possible mechanisms for atrophy of the human hippocampus[J]. Mol Psychiatry, 1997,2(3):255-262.
    [57]De Kloet ER, Vreuqdenhil E, Oitzl MS, et al. Brain corticosteroid receptor balance in health and disease[J]. Endocr Rev, 1998,19(3):269-301.
    [58]Lupien SJ, McEwen BS. The acute effects of corticosteroids on cognition: integration of animal and human model studies[J]. Brain Res,1997,24(1):1-27.
    [59]Zhang M, Cai JX. Effect of neonatal tactile stimulation and maternal separation on the anxiety and the emotional memory in adult female rats[J]. Zoological Research,2006,27(4): 344-350.
    [60]Zimmerberg B, Shartrand AM. Temperature-dependent effects of maternal separation on growth, activity, and amphetamine sensitivity in the rat[J]. Dev Psychobiol,1992,25(3): 213-226.
    [61]Ellenbroek BA, Cool AR. Maternal separation reduces latent inhibition in the conditioned taste aversion paradigm[J]. Neurosci Res Comm,1995,17:27-33.
    [62]Ellenbroek BA, Cool AR. Early maternal deprivation and prepulse inhibition: the role of the postdeprivation environment[J]. Pharmacol Biochem Behav, 2002,73(1):177-184.
    [63]Feldman R, Weller A, Sirota L, et al. Skin-to-skin contact (Kangaroo Care) promotes self- regulation in premature infants:Sleep-wake cyclicity,arousal modulation, and sustained explor- ation[J]. Dev Psychol, 2002,38(2):194-207.
    [64]Levin A. Humane neonatal care initiative[J]. Acta Paediatr,1999,88(4):353-355.
    [65]Als H, Lawhon G, Brown E, et al. Individualized behavioral and environment care for the very low birth weight preterm infant at high risk for bronchopulmonary dysplasia: neonatal intensive care unit and developmental outcome[J]. Pediatrics,1986,78(6):1123-1132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700