体神经—内脏神经吻合术修复神经源性肛肠功能障碍的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:应用神经电生理学和神经形态学技术,研究大鼠体神经-内脏神经(L4VR-L6VR)吻合术后,新形成的脊髓-盆神经节-直肠、脊髓-肛门外括约肌(EAS)神经反射通路的相关生理学功能,探讨体神经-内脏神经吻合术支配肛管直肠功能的可能性。
     方法:成年雄性SD大鼠20只,通过端端显微神经吻合技术,人工建立腰4前根(L4VR)-腰6前根(L6VR)异类神经前根。手术12周后存活12只,将模型大鼠随机分为2组(n1=8,n2=4)。取1组8只模型大鼠进行电生理学研究:电刺激L4VR-L6VR异类神经根的吻合口近端,记录再生盆神经节前、节后纤维的诱发电位、直肠压力的变化及肛门外括约肌肌电活动(EMG)变化;电刺激大鼠自身右侧(健侧)L4VR和L6VR作为对照。取2组4只模型大鼠进行神经形态学研究:于左侧盆神经节(MPG)注射荧光金(FG),逆行追踪检测L4VR-L6VR端端吻合术后,异类神经前根的形成及物质转运情况;另取4只正常大鼠作为对照。
     结果:1、于模型大鼠左侧盆神经节注射荧光金(FG)后,在脊髓L4节段区域可见FG标记神经元,而L6节段未见阳性神经元;正常鼠左侧盆神经节注射FG后,仅在脊髓L6节段可见到FG阳性神经元。2、电刺激L4VR-L6VR神经吻合口近端,于盆神经节前及盆神经节后神经纤维均可记录到诱发电位,并可记录到直肠收缩活动(16.89±9.86mmHg)和肛门外括约肌肌电活动(127.91±28.73 u V)。3、吻合术后再生的传出神经(35.43m/s±12.25m/s)较对照侧(12.33m/s±1.77 m/s)有更快的传导速度(P<0.05)。
     结论:体神经-内脏神经吻合术后,体神经(L4VR)可以再生长入内脏躯体躯体运动混合神经,再生的L4VR-L6VR异类神经前根能够传递诱发电位而且具有相对独特的电生理特性;再生的轴突具有物质转运功能,支配直肠节前神经元节段及形态发生了改变。从功能学和形态学上证实吻合后神经有功能,可以支配相应的盆腔靶器官—直肠和肛门外括约肌。
     目的:应用肛肠动力学和神经形态学技术,研究体神经--内脏神经吻合术后,在脊髓损伤(SCI)大鼠的所形成的再生异类神经通路对肛管直肠的支配功能及直肠平滑肌-肛门外括约肌的协同的情况,并阐明其潜在机理。
     方法:在成年雄性SD大鼠(250-300g)的L4-L6椎管内,将左侧腰4前根(L4VR)与左侧腰6前根(L6VR)分别离断后,通过端端显微吻合技术,人工建立L4VR-L6VR异类神经前根。术后12周行T9-T10椎间脊髓横断,8周后将12只模型大鼠随机分为2组(n1=8,n2=4)。取1组8只模型大鼠进行肛肠动力学研究:分别电刺激L4VR-L6VR吻合口近端及左侧坐骨神经,同步记录直肠压力和肛门外括约肌的肌电活动,以了解直肠平滑肌-肛门括约肌的协同情况;以电刺激自身对侧L6VR及坐骨神经作为对照;取2组4只模型大鼠进行神经形态学研究:于左侧盆神经节(MPG)、左侧肛门外括约肌分别注射荧光金(FG)和四甲基罗丹明葡聚糖(dextran tetramethylrhodamine,TMR),通过神经逆行示踪,了解L4VR-L6VR吻合术后大鼠控制排便的神经通路的变化;以4只正常大鼠作为对照。
     结果:1.电刺激模型大鼠吻合口近端神经及左侧坐骨神经,在引起直肠持续收缩的同时出现肛门外括约肌的肌电活动大幅减弱;而电刺激自身对照侧L6VR,在引起直肠压力升高的同时出现肛门外括约肌肌电活动明显增强。2.在模型鼠左侧盆神经节(MPG)、肛门外括约肌(EAS)分别注射荧光金(FG)和四甲基罗丹明(TMR)后,主要在脊髓L4节段区域可见少量的FG与TMR双标神经元及FG、四甲基罗丹明单标神经元;正常鼠神经逆行追踪未见双标神经元。
     结论:体神经-内脏神经吻合术可有效修复脊髓损伤大鼠肛管直肠功能,改善脊髓损伤后的直肠平滑肌-肛门括约肌协同失调情况。在模型大鼠脊髓L4节段新出现的双标神经元同时支配着盆神经节和肛门外括约肌,这可能是体神经-内脏神经吻合术修复模型大鼠排便功能主要神经解剖学基础。
Objective:To study the physiological functions of the regenerated "spinal cord-major pelvic ganglion (MPG)-rectum" and "spinal cord-external anal sphincter (EAS) neural reflex pathways and to investigate the possible mechanisms underlying the artificial somato-autonomic neuroanastomosis for initiating defecation in the spinal cord injury rats.
     Methods:In normal male Sprague-Dawley rats, under anesthesia the new regenerated neural pathway was established by intradural microanastomosis of left L4 ventral root(L4VR) to the L6 ventral root (L6VR) while leaving the L4 dorsal root intact to trigger the new the regenerated neural pathway. Then L4VR-L6VR formed the foreign nerve root. Twelve weeks later the model rats were randomly divided into two groups of 8 and 4 respectively (n1=8, n2=4). The rats in the group 1 were used for electrophysiological experiment. Then the L4VR-L6VR foreign nerve root was stimulated by silver electrode and the evoked potentials were recorded on the preganglionic fibers and postganglionic fibers of the major pelvic ganglia (MPG). The rectal pressure and electromyologram of EAS were recorded. The stimulation of the right L4VR and L6VR in contralateral side were used as controls. The rats in the group 2 were used for neural retrograde tracing study. Fluorogold (FG) was injected into the left major pelvic ganglia (MPG). Retrograde tracing technique was used to investigate the material transmitting function of regenerated efferent nerve. Normal rats were used as controls.
     Results:(1)In the group 1, stimulation of the L4VR proximal end to the anastomosis evoked potentials on the left preganglionic fibers and the postganglionic fibers of the MPG, and change of rectal pressure (16.89±9.86mmHg) and electromyologram of EAS (127.91±28.73μV). Stimulation of the contralateral L4VR failed to evoke potentials on the right preganglionic fibers and the postganglionic fibers of MPG, and can't induce rectum and EAS to contract. (2) The conduction velocity of the regenerated motor axons was 35.43m/s±12.25m/s, significantly higher than that of the control group(12.33m/s±1.77 m/s). (3)After FG was microinjected into the left major pelvic ganglia (MPG) in the model rats FG labeled neurons were observed in the segment of L4. FG labeled neurons were observed in L6 segment after FG was injected into the left major pelvic ganglia (MPG) in the normal rats.
     Conclusion:Somatic nerve axons (L4VR) can regenerate to replace the peripheral autonomic and somatic motor nerve fibers through axonal regeneration. And the regenerated nerves can innervate the rectum and EAS to initiate defecating.
     Objective:A new artifical somatic-autonomic neuroanastomosis has been estabilished in male rat with spinal cord injury (SCI). Anorectal manometry and neural retrograde tracing were conducted in such animal model after estabilishing the regenerated reflex pathway to analyze the mechanisms, and the effects on restoring anorectal function and rectum external sphincter synergetic status.
     Methods:In normal male Sprague-Dawley rats with weight of 280-300 g, under anesthesia the rats were subjected to limited laminectomy of L4-L6 vertebrae to expose the spinal cord, and the new reflex pathways were estabished by intradural microanastomosis of left L4 ventral root to the L6 ventral root while leaving the L4 dorsal root intact to trigger the new defecation reflex pathway. Then L4VR-L6VR formed the foreign nerve root. Three months later the spinal cord was completely transected at the T9-10 level. Eight weeks later the model rats were randomly divided into two groups of 8 and 4 respectively (n1=8, n2=4). The rats in the group 1 were applied in anorectal manometry. When the left L4VR proximal to the anastomosis and left sciatic nerve were stimulated by silver electrode, the rectal pressure and EMG of external anal sphincter (EAS) were simultaneously recorded. The stimulated L6VR and the right sciatic nerve in contralateral side served as controls. The rats in the group 2 were used for neural retrograde tracing study. Fluorogold (FG) was injected into the left major pelvic ganglia (MPG) and dextran tetramethylrhodamine (TMR) was injected into the left external anal sphincter. Retrograde tracing technique was used to investigate important neuromechanism for defecation of regenerated efferent nerve. The normal rats were used as controls.
     Result:Stimulation of the L4VR proximal end to the anastomosis and the left sciatic nerve induced rectum to contract and simultaneously electric activity of EAS to become weak or disappearing(indicating synergetic relaxation of EAS). But stimulation of the contralateral L6VR evoked simultaneous contraction of rectum and EAS. After FG was injected into the left major pelvic ganglia (MPG) and TMR was injected into the external anal sphincter (EAS), FG-TMR dual labelled neurons and FG or TMR single labeled neurons were mainly observed in the angulus anterior ofL4 segment in the model rats. FG-TMR positive neurons were not observed in the spinal cord of the normal rats.
     Conclusion:After established the artifical somato-autonomic neuroanastomosis the regenerated neural pathways are effective to improve the rectum external sphincter synergetic status and restore the anorectal function. Simultaneous reinnervation of MPG and EAS by one group of the dual labelled neurons in L4 may be the key neural anatomy infrastructure for controllable defecation via the somatic-autonomic reflex pathway.
引文
1.卫生部卫生政策法规司.2004年全国妇幼卫生监测结果分析报告.卫士政务通报.2005.第23期(总第379期)
    2. Haro H, Komori H, Okawa A, et al. Long-term outcomes of surgical treatment for tethered cord syndrome. J Spinal Disorders & Techniques. 2004; 17(1):16-20
    3. Kayaba H, hebiguchi T, Itoh Y, et al. Evaluation of anorectal function in patients with tethered cord syndrome:saline enema test and fecoflowmetry. J Neurosurg Spine.2003; 98(3):251-7
    4.王任直主译.神经外科学.北京:人民卫生出版社,2002.49-62
    5.肖传国,杜茂信,刘钊等.人工体神经-内脏神经反射弧治疗脊髓脊膜膨出患者大小便功能障碍.临床泌尿外科杂志,2003,18(11):644-5
    6. Xiao CG, Li B. An Effective Surgical Treatment For Neurogenic Bladder For Spina Bifida Children:Results Of 20 Cases,2004. American Urology Association(AUA) Annual Meeting, San Francisco, USA
    7. Xiao CG, Du M, Li B, Et al. An artificial somatic-autonomic reflex pathway procedure for spina bifida children to gain bladder control, J Urol.2005; 173(6):1850-1
    8. Xiao CG., Du M., Dai C., Li B., Nitti WV. And De Groat WC.:An Artificial Somatic-Autonomic Reflex Pathway For Controllable Micturition After SCI:Preliminary Results Of 15 Patients. J Urol.2003,170(4 Pt 1):1237-41
    9. Xiao CG, De Groat WC, Godec CJ,Et. Skin-CNS-Bladder Reflex Pathway For Micturition After Spinal Cord Injury And Its Underlying Mechanisms. J Urol.1999,163(3 Pt 1):936-42
    10、李文成博士论文
    1. Ministry of Health of China. The analysis report of health of mothers and children in 2004 in China. Medical government affairs report.2005; 23:102-103
    2. Kayaba H, Hebiguchi T, Itoh Y, et al. Evaluation of anorectal function in patients with tethered cord syndrome:saline enema test and fecoflowmetry. J Neurosurg Spine.2003; 98(3):251-7
    3. Vogel LC, Krajci KA, Anderson CJ. Adults with pediatric-onset spinal cord injury:part 1:prevalence of medical complications. J Spinal Cord Med.2002; 25:106-116
    4. Haro H, Komori H, Okawa A, et al. Long-term outcomes of surgical treatment for tethered cord syndrome. J Spinal Disorders & Techniques.2004; 17(1):16-20
    5. Benevento BT, Sipski ML. Neurogenic bladder, neurogenic bowel, and sexual dysfunction in people with spinal cord injury. Phys Ther.2002; 82:601-612.
    6. Xiao CG and Godec C J. A Possible New Reflex Pathway For Micturition After Spinal Cord Injury. Paraplegia.1994; 32:300-307.
    7. Xiao CG, de Groat W C, Godec C J, et al. Skin-CNS-Bladder Reflex Pathway For Micturition After Spinal Cord Injury And Its Underlying Mechanisms. J Urol.1999; 163:936-942.
    8. Xiao CG, Du MX, Dai C, et al. An artificial somatic-central nervous system-autonomic reflex pathway for controllable micturition after spinal cord injury:preliminary results in 15 patients. J Urol.2003; 170(4 Pt 1):1237-41.
    9. Xiao CG, Du MX, Li B, Liu Z, et al, An Artificial Somatic-Autonomic Reflex Pathway Procedure for bladder control in Children with spina bifida. J Urol.2005; 173:2112-2116
    10. Xiao CG. Rennervation for neurogenic bladder:historic review and introduction of a somatic-autonomic reflex pathway procedure for patients with spinal cord injury or spina bifida. Eur Urol.2006; 49(1):22-8
    11. Sadik Kara, Duygu Istek, Mustafa Okandan.Low-Cost Instrumentation for the Diagnosis of Hirschsprung's Disease. Journal of Medical Systems.2003; 27:157-162
    12. Henrique Sarubbi Fillmann, Suzana Llessuy, et al. Diabetes Mellitus and Anal Sphincter Pressures:An Experimental Model in Rats. Dis Colon Rectum.2007; 50:517-522
    13. Grossman R. G. Pinciples of Neurosurgery.2nd Ed. Beijing:People Medicine Publish,2002; 49-62
    14. Proctor W, Roper S, Taylor R. Somatic motor axons can innervate autonomic neurons in the frog heart. J Physiol.1982; 326:173-188
    15. Purves D. Competitive and non-competitive reinneration of mammalian sympathetic neurons by native and foreign fibers. J Physiol.1976; 261: 453-475.
    16. Ceccareli B, Clementi F, Mantegazza P. Synaptic transmission in the superior cervical ganglion of the cat after reinnervafion by vagusfibers. J Physiol, 1971; 216:87-98.
    17. McLachlan EM. The formation of synapses in mammalian sympathetic ganglia reinnervated with preganglionic or somatic nerves. J Physiol.1974; 237:217.
    18. Hoang TX, Nieto JH, Dobkin BH, et al. Acute implantation of an avulsed lumboscral ventral root into the rat conus medullaris promotes neuroprotection and graft reinnervation by autonomic and motor neurons. Neuroscience,2006: 138 (4):1149-1160
    19. Xiao CG, Li B. Light and electronmicmscopic observation of axonal regeneration after establ ished somatic-autonomic anastomosis. Chin J Exp Sur. 2002; 19:571-572.
    20. Schofield BR. Retrograde axonal tracing with fluorescent markers. Curr Protoc Neurosci.2008; 4:Chapter 1:Unit 1.17.
    21. Krane RJ and Siroky MB. Clinical Neuro-Urology.2nd Ed. Boston:Little Brown and Company,1991:102-134.
    1. Krogh K, Nielsen J, Djurhuus JC, et al. Colorectal function in patients with spinal cord lesions. Dis Colon Rectum,1997,40:1233-1239.
    2.. Vogel LC, Krajci KA, Anderson CJ. Adults with pediatric-onset spinal cord injury:part 1:prevalence of medical complications. J Spinal Cord Med,2002, 25:106-116.
    3. Liu CW, Huang CC, et al. Relationship between neurogenic bowel dysfunction and health-related quality of life in persons with spinal cord injury. J Rehabil Med.2009 Jan; 41 (1):35-40.
    4. Kayaba H, hebiguchi T, Itoh Y, et al. Evaluation of anorectal function in patients with tethered cord syndrome:saline enema test and fecoflowmetry. J Neurosurg Spine.2003; 98(3):251-7
    5. Vogel LC, Krajci KA, Anderson CJ. Adults with pediatric-onset suinal cord injury: part 1:prevalence of medical complications. J Spinal Cord Med,2002, 25:106-116
    6. Benevento BT, Sipski ML. Neurogenic bladder, neurogenic bowel, and sexual dysfunction in people with spinal cord injury. Phys Ther,2002,82:601-612.
    7. Xiao CG and Godec C J. A Possible New Reflex Pathway For Micturition After Spinal Cord Injury. Paraplegia,1994,32:300-307.
    8. Xiao, CG. and Godec, C. J.:Mechanism underlying the Skin-CNS-Bladder reflex pathway. Proceedings of the 1995 Annual Scientific Meeting of the International Medical Society of Paraplegia, New Delhi, India. November 2-4, 1995.
    9. Xiao CG, Du MX, Dai C, Li B, Nitti VW, de Groat WC. An artificial somatic-central nervous system-autonomic reflex pathway for controllable micturition after spinal cord injury:preliminary results in 15 patients. J Urol.2003,170(4 Pt 1):1237-41.
    10. Xiao CG. Rennervation for neurogenic bladder:historic review and introduction of a somatic-autonomic reflex pathway procedure for patients with spinal cord injury or spina bifida. Eur Urol.2006 Jan; 49(1):22-8
    11. Sadik Kara, Duygu Istek, et al. Low-Cost Instrumentation for the Diagnosis of Hirschsprung's Disease. Journal of Medical Systems,27:157-162
    12. Henrique Sarubbi Fillmann, Suzana Llessuy, et al. Diabetes Mellitus and Anal Sphincter Pressures:An Experimental Model in Rats. Dis Colon Rectum 2007; 50:517-522
    13. Brading AF, Ramalingam T. Mechanisms controlling normal defecation and the potential effects of spinal cord injury. Prog Brain Res.2006; 152:335-43.
    14. Lynch AC, Frizelle FA. Colorectal motility and defecation after spinal cord injury in humans. Prog Brain Res.2006;152:335-43
    15. Ditunno JF, Little JW, Tessler A, et al. Spinal shock revisited:a four-phase model. Spinal Cord.2004,42:383-395.
    16. Holmes GM, Van Meter MJ, Beattie MS, et al. Serotonergic fiber sprouting to external anal sphincter motoneurons after spinal cord contusion. Exp Neurol. 2005,193(1):29-42.
    17. Liu Z, Liu CJ, Hu JW, et al. An electrophysiological study on the art if icial somato-autonomic pathway for inducing voiding. Nail Med J China.2005,85: 1315-1318.
    1. Comarr, A. E. Sexual function among patients with spinal cord injury. Urol Int.1970; 25:134-168.
    2. Frenckner, B. Function of the anal sphincters in spinal man. Gut.1975; 16:638-644.
    3. Pedersen, E. Regulation of bladder and colon-rectum in patients with spinal lesions. J. Auton. Nerv. Syst.1983; 7:329-338
    4. De Groat, W. C., Araki, I., Vizzard, M. A., et al. Developmental and injury induced plasticity in themicturition reflex pathway. Behav. Brain Res.1998; 92:127-140.
    5. De Groat, W. C., Kawatani, M., Hisamitsu, T., et al. Mechanisms underlying the recovery of urinary bladder function following spinal cord injury. J. Autonom. Nerv. Sys.1990; 30(Suppl):S71-S77.
    6. Cosman, B.C., Stone, J. M. and Perkash, I. Gastrointestinal complications of chronic spinal cord injury. J. Am. Paraplegia Soc.1991; 14:175-181.
    7. Holmes, G. M., Rogers, R. C., Bresnahan, J. C. et al. External anal sphincter hyperreflexia following spinal transection in the rat. J. Neurotrauma.1998; 15:451-457.
    8. Holmes, G. M., Van Meter, M. T., Beattie, M.S. et al. Serotonergic fiber sprouting to external anal sphincter motoneurons after spinal cord contusion. Exp. Neurol..2005; 193:2-42.
    9. Higgins Jr, G. E. Sexual responses in spinal cord injured adults:a review of the literature. Arch. Sex. Behav.1979; 8:173-196.
    10. Basu, S., Aballa, T. C., Ferrell, S. M. et al. Inflammatory cytokine concentrations are elevated in seminal plasma of men with spinal cord injuries. J. Androl.2004; 25:250-254.
    11. Janig, W. and McLachlan, E. M. Organization of lumbar spinal outflow to distal colon and pelvic organs. Physiol. Rev.1987; 67:1332-1404
    12. Schuster, M. M. Motor action of rectum and anal sphincters in continence and defecation. In:Code C. F.1968 (Ed.) Handbook of Physiology, Alimentary Canal Motility, Section 6, Vol. IV. Chapter 103. American Physiological Society, Washington, DC, pp.2121-2146.
    13. Gonella, J., Bouvier, M. and Blanquet, F. Extrinsicnervous control of motility of small and large intestined andrelated sphicters. Physiol. Rev.1987; 67:902-961.
    14. Rexed, B. A cytoarchitectonic atlas of the spinal cord inthe cat. J. Comp. Neurol.1954:100:297-379.
    15. Katagiri, T., Gibson, S. J., Su, H. C. and Polak, J. M. Composition and central projections of the pudendal nerve in the rat investigated by combined peptide immunocytochemistry and retrograde fluorescent labelling. Brain Res.1986:372:313-322.
    16. Holstege, G. and Tan, J. Supraspinal control of motoneurons innervating the striated muscles of the pelvic floor including urethral and anal sphincters in the cat. Brain.1987;110(Part 5):1323-1344.
    17. Paxinos, G. The Rat Nervous System (2nd ed.). Academic Press Inc., San Diego,1995, CA.
    18. Gonella, J., Bouvier, M. and Blanquet, F. Extrinsic nervous control of motility of small and large intestined and related sphicters. Physiol. Rev. 1987;67:902-961.
    19. Krier, J. Discharge patterns of pudendal efferent fibers innervating the external anal sphincter of the cat. J. Physio.1985;368:471-480.
    20. Dubrovsky, B., Martinez-Gomez, M. and Pacheco, P. Spinal control of pelvic floor muscles. Exp. Neurol.1985; 88:277-287.
    21. Holmes, G. M., Bresnahan, J. C., Rogers, R. C., et al. Differential characteristics of rat dorsomedial motoneurons. Soc. Neurosci. Abstr.1994;20: 791.
    22. Bremer, R. E., Barber, M. D., Coates, K. W., et al. Innervation of the levator ani and coccygeus muscles of the female rat. Anat. Rec.2003; 275:1031-1041
    23. Paxinos, G. The Rat Nervous System (2nd ed.). Academic Press Inc., San Diego,1995, CA.
    24. Baron, R. and Janig, W. Afferent and sympathetic neuronsprojecting into lumbar visceral nerves of the male rat. J. Comp. Neurol.1991;314:429-436.
    25. Vera, P. L. and Nadelhaft, I. Afferent and sympathetic innervation of the dome and the base of the urinary bladder of the female rat. Brain Res. Bull.1992; 29:651-658.
    26. Purinton, P. T., Fletcher, T. F. and Bradley, W. E. Gross and light microscopic features of the pelvic plexus in the rat. Anat. Rec.1973;175: 697-705.
    27. McKenna, K. E. and Nadelhaft, I. The organization of the pudendal nerve in the male and female rat. J. Comp. Neurol.1986; 248:532-549.
    28. Pacheco, P., Camacho, M. A., Garcia, L. I., et al. Electrophysiological evidence for the nomenclature of the pudendal nerve and sacral plexus in the male rat. Brain Res.1997;763:202-29.
    29. Breedlove, S. M. and Arnold, A. P. Hormone accumulation in a sexually dimorphic motor nucleus of the rat spinalcord. Science.1980;210:564-566.
    30. Collins, W.F.I., Alspaugh, W. H. and Erichsen, J. T. Morphology of external urethral sphincter motoneurons andlocalization of putative sphincter interneurons in the rat spinal cord. Soc. Neurosci. Abstr.1992;18:1050.
    31. Hermann, G. E., Bresnahan, J. C., Holmes, G. M., et al. Descending projections from the nucleus raphe obscurus to pudendal motoneurons in the male rat. J. Comp. Neurol.1998;397:458-474.
    32. Roney, K. J., Scheibel, A. B. and Shaw, G. L. Dendriticbundles:survey of anatomical experiments and physiologicaltheories. Brain Res. Rev.1979;1: 225-271.
    33. Schroder, H. D. Organization of the motor neurons innervating the pelvic muscles of the male rat. J. Comp. Neurol.1980; 192:567-587.
    34. Sasaki, M. Morphological analysis of external urethral and external anal sphincter motoneurones of cat. J. Comp. Neurol.1994; 349:269-287.
    35. Peshori, K. R., Erichsen, J. T. and Collins 3rd, W. F. Differences in the connectivity of rat pudendal motor nuclei as revealed by retrograde transneuronal transport of wheat germ agglutinin. J. Comp. Neurol.1995;353: 119-128.
    36. Matsumoto, A., Arnold, A. P., Zampighi, G. A. et al. Androgenic regulation of gap junctions between motoneurons in the male rat. J. Neurosci.1988;8: 4177-4183.
    37. Li, Q., Beattie, M.S. and Bresnahan, J. C. Onuf s nucleus (ON) motoneurons (MNs) have more GABA-ergic synapses than other somatic MNs:a quantitative immunocytochemical study in the cat. Soc. Neurosci. Abstr.1995;21:1201.
    38. Ramirez-Leon, V. and Ulfake, B. GABA-like immunoreactive innervation and dendro-dendritic eontacts in theventrolateral dendritic bundle in the cat S1 spinal segment:and electron microscopic study. Exp. Brain Res.1993;97:1-12.
    39. Sasaki, M. Morphological analysis of external urethral and external anal sphincter motoneurones of cat. J. Comp. Neurol.1994;349:269-287.
    40. Beattie, M.S., Li, Q., Leedy, M. G. and Bresnahan, J. C. Motoneurons innervating the external anal and urethral sphincters of the female cat have different patterns of dendritic arborization. Neurosci. Lett.1990;111: 69-74.
    41. Nadelhaft, I. and Vera, P. L. Separate urinary bladder and external urethral sphincter neurons in the central nervous system of the rat:simultaneous labeling with immunohisto chemically distinguishable pseudorabies viruses. Brain Res.2001;903:33-44.
    42. Nadelhaft, I. and Booth, A.M. The location and morphology of preganglionic neurons and the distribution of visceral afferents from the rat pelvic nerve: a horseradish peroxidase study. J. Comp. Neurol.1984;226:238-245.
    43. Guyton, A. C. and Hall, J. E. (2000) Textbook of Medical Physiology (10th ed.). W. B. Saunders Co., Philadelphia, PA.
    44. Maggi, C. A., Giuliani, S., Santicioli, P., et al. Neural pathways and pharmacological modulation of defecation reflex in rats. Gen. Pharmacol.1988;19:517-523.
    45. Marson, L. and McKenna, K. E. The identification of a brainstem site controlling spinal sexual reflexes in male rats. Brain Res.1990;515:303-308.
    46. Shen, P., Arnold, A. P. and Micevych, P. E. Supraspinal projections to the ventromedial lumbar spinal cord in adult male rats. J. Comp. Neurol.,1990; 300: 263-272.
    47. Monaghan, E. P. and Breedlove, S. M. Brain sites projecting to the spinal nucleus of the bulbocavernosus. J. Comp. Neurol.,1991; 307:370-374.
    48. Marson, L., List, M.S. and McKenna, K. E. Lesions of the nucleus paragigantocellularis alter ex copula penile re-flexes. Brain Res.,1992; 592: 187-192.
    49. Ding, Y. Q., Takada, M., Tokuno, H. et al. Direct projections from the dorsolateral pontine tegmentum to pudendal motoneurons innervating the external urethral sphincter muscle in the rat. J. Comp. Neurol.,1995; 357: 318-330.
    50. Tang, Y., Rampin,O., Giuliano, F. and Ugolini, G. Spinal and brain circuits to motoneurons of the bulbospongiosus muscle:retrograde transneuronal tracing with rabies virus. J. Comp. Neurol.,1999; 414:167-192.
    51. Vizzard, M. A., Brisson, M. and De Groat, W. C. Transneuronal labeling of neurons in the adult rat central nervous system following inoculation of pseudorabies virus into the colon. Cell Tissue Res.,2000;299:9-26.
    52. Hermann, G. E., Holmes, G. M., Rogers, R. C., et al. Descending spinal projections from the rostral gigantocellular reticular nuclei complex. J. Comp. Neurol.,2003; 455:210-221.
    53. McCann, M. J., Hermann, G. E. and Rogers, R. C. Nucleus raphe obscurus (nRO) influences vagal control of gastric motility in rats. Brain Res.,1989;486: 181-184
    54. Holmes, G. M., Rogers, R. C., Bresnahan, J. C. et al. Differential effects of intrathecal thyrotropin releasing hormone (TRH) on perineal reflexes in male rats. Physiol. Behav.,1997b; 61:57-63.
    55. Yamanouchi, K. and Kakeyama, M. Effect of medullary raphe lesions on sexual behavior in male rats with or without treatments of p-chlorophenylalanine. Physiol. Behav.,1992; 51:575-579.
    56. Holmes, G. M., Stephens, R. L., Bresnahan, J. C. et al. Intrathecal methiothepin and thyrotropin-releasing hormone effects on penile erection. Physiol. Behav.,2001; 73:59-64.
    57. Holmes, G. M., Martau, J. M., Hermann, G. E., et al. Nucleus rapheobscurus (nRO) regulation of anorectal motility in rats. BrainRes.,1997a; 759: 197-204.
    58. Holmes, G. M., Rogers, R. C., Bresnahan, J. C. et al. Thyrotropin-releasing hormone (TRH) and CNS regulation of anorectal motility in the rat. J. Auton. Nerv. Syst.1995;56:8-14.
    59. Holmes, G. M., Hermann, G. E., Rogers, R. C., et al. Dissociation of the effects of nucleus raphe obscurus or rostral ventrolateral medulla lesionson eliminatory and sexual reflexes. Physiol. Behav.2002;75:49-55.
    60. Sachs, B. D. and Leipheimer, R. E. Rapid effect of testosteroneon striated muscle activity in rats. Neuroendocrinology.1988;48:453-458.
    61. Schmidt, M. H., Valatx, J. L., Sakai, K., et al. Corpus spongiosum penis pressure and perineal muscle activity during reflexive erections in the rat. Am. J. Physiol.,1995;269:R904-R913.
    62. Arvidsson, U., Cullheim, S., Ulfhake, B, et al.5-Hydroxytryptamine, substance P, and thyrotropin releasing hormone in the adult cat spinal cord segment L7:immunohistochemical and chemical studies. Synapse.1990; 6:237-270.
    63. Appel, N. M., Wessendorf, W. and Elde, R. P. Thryrotropin-releasing hormone in spinal cord:coexistence with serotoninand with substance P in fibers and terminalsapposing identified preganglionic sympathetic neurons. BrainRes., 1987; 415:137-143.
    64. Hirsch, M. D. and Helke, C. J. Bulbospinal thryrotrophin releasing hormone projections to the intermediolateral cell column:a double fluorescence immunohistochemical retrograde tracing study in the rat. Neuroscience.1988; 25:625-637.
    65. Hulsebosch, C. E. and Coggeshall, R. E. An analysis of the axon populations in the nerves to the pelvic viscera in the rat. J. Comp. Neurol.1982;211:1-10.
    66. Miyata, K., Kamato, T., Nishida, A., et al. Role of the serotonin3 receptor in stress-induced defecation. J. Pharmacol. Exp. Ther.1992;261:297-303.
    67. Ditunno, J. F., Little, J. W., Tessler, A. et al. Spinal shock revisited: a four-phase model. Spinal Cord.2004;42:383-395.
    68. Anderson, K. D. Targeting recovery:priorities of the spinal cord injured population. J. Neurotrauma.2004;21:1371-1383.
    69. Kruse, M. N., Belton, A. L. and De Groat, W. C. Changes in bladder and external urethral sphincter function after spinal cord injury in the rat. Am. J. Physiol.1993:264:1157-1163.
    70. Pikov, V., Gillis, R. A., Jasmin, L. and Wrathall, J. R. Assessment of lower urinary tract functional deficit in rats with contusive spinal cord injury. J. Neurotrauma.1998;15:375-386.
    71. Yoshiyama, M., De Groat, W. C. and Fraser, M.O. Influences of external urethral sphincter relaxation induced by alpha-bungarotoxin, a neuromuscular junction blocking agent, on voiding dysfunction in the rat with spinal cordinjury. Urology.2000;55:956-960.
    72. Cheng, C. L. and de Groat, W. C. The role of capsaicinsensitive afferent fibers in the lower urinary tract dysfunction induced by chronic spinal cord injury in rats. Exp. Neurol.2004;187:445-454.
    73. Mitsui, T., Kakizaki, H., Tanaka, H., et al. Immortalized neural stem cells transplanted into the injured spinal cord promote recovery of voiding function in the rat. J. Uro.2003; 170:1421-1425.
    74. Bose, P., Parmer, R. and Thompson, F. J. Velocitydependent ankle torque in rats after contusion injury of the midthoracic spinal cord:time course. J. Neurotrauma.2002;19:1231-1249.
    75. McKenna, K. E., Sookja, K. C. and McVary, K. T. A model for the study of sexual function in anesthetized male and female rats. Am. J. Physiol.1991;30: 1276-1285.
    76. Coolen, L. M., Allard, J., Truitt, W. A. et al. Central regulation of ejaculation. Physiol. Beh.2004;83:203-215.
    77. Giuliano, F. and Rampin,O. Neural control of erection. Physiol. Behav.2004; 83:189-201.
    78. Nout, Y. S., Schmidt, M. H., Tovar, C. A., Culp, E., Beattie, M. S. and Bresnahan, J. C. Telemetric monitoring of corpus spongiosum penis pressures in conscious rats for assessment of micturition and sexual function following spinal cord contusion injury. J. Neurotrauma.2005; 22(4):429-444.
    79. Schmidt, M. H., Nout, Y. S., Culp, E., et al. A new technique for the simultaneous recording of micturition and penile erections in freely behaving rats:telemetric monitoring of corpusspongiosum penis (CSP) pressure. Society for Neuroscience, Online., Program No.922.16.2004 Abstract Viewer/Itinerary Planner. Washington, DC.
    80. Schmidt, M. H., Nout, Y. S., Culp, E., et al. A new technique for the simultaneous recording of micturition and penile erections in freely behaving rats:telemetric monitoring of corpus spongiosum penis (CSP) pressure, in preparation. Schmidt, M. H., (2005)
    81. Hubscher, C. H. and Johnson, R. D. Effects of acute and chronic midthoracic spinal cord injury on neural circuits for male sexual function. Ⅱ. Descending pathways. J. Neurophysio.2000;83:2508-2518.
    82. Hubscher, C. H. and Johnson, R. D. Effects of acute and chronic midthoracic spinal cord injury on neural circuits for male sexual function. Ⅰ. Ascending pathways. J. Neurophysiol.1999;82:1381-1389.
    83. Giuliano, F. and Rampin,O. Central neural regulation of penile erection. Neurosci. Biobehav. Rev.2000;24:517-533.
    84. Weaver, L. C., Verghese, P., Bruce, J. C., et al. Autonomic dysreflexia and primary afferent sprouting after clip-compression injury of the rats spinal cord. J. Neurotrauma.2001;18:1107-1119.
    85. Beattie, M.S., Holmes, G. M., Hermann, G. E., et al. Pudendal motoneuron function in intact and CNS injured rats:alterations following brainstem lesions and spinal transection. Soc. Neurosci. Abstr.1996;22:24-72.
    86. Beattie, M.S., Li, Q. and Bresnahan, J. C. Cell death and plasticity after experimental spinal cord injury. In:Seil F. J. (Ed.) Progress in Brain Research, Vol.128. Elsevier, Amsterdam.2000;65:9-21
    87. Cameron, A. A., Smith, G. M., Randall, D. C. et al. Genetic manipulation of afferent fiber sprouting following spinal cord injury modulates the severity of autonomic dysreflexia.2004; Soc. Neurosci. Abstr., Program No.459.15.
    88. Morrison, J., Birder, L., Craggs, M., et al.. Neural control. In: Incontinence, eds. Abrams, P., Cardozo, L., Khoury, S.& Wein, A.,. Jersey: Health Publications, Ltd..2005; pp:363-422
    89. Groat, W.C. Mechanisms underlying the recovery of lower urinary tract function following spinal cord injury. Progress in Brain Research.2005; 152:e59-84.,
    90. Ungerer, T., Roppollo, J. R., Tai, C. et al. Influence of urothelial and suburothelial muscarinic receptors on voiding in the spinal cord injured cat. Society for Neuroscience.2005;34:104-107.
    91. Rong, W., Spyer, K. M. Activation and senstitization of low and high threshold afferent fibres mediated by P2X receptors in the mouse urinary bladder. J. Physiol.2002;541:591-600.
    92. Morgan, C. W., DE GROAT, W. C., Felkins, L. A. Intracellular injection of neurobiotin or horseradish peroxidase reveals separate types of preganglionic neurons in the sacral parasympathetic nucleus of the cat. J. Comp. Neurol.1993; 331:161-182.
    93. Ishiura, Y., Yoshiyama,.. Central muscarinic mechanisms regulating voiding in rats. J. Pharmacol. Exp. Ther.2001; 297:933-939.
    94. Yokoyama,O., Yokoyama, M., Namiki, M.. Role of the forebrain in bladder hyperactivity followingcerebral infarction in the rat. Exp. Neurol.2000; 163: 469-476.
    95. Yokoyama,O., Yokoyama, M., Namiki, M. Interaction between D2 dopaminergic and glutamatergicexcitatory influences on lower urinary tract function in normal and cerebral infarcted rats. Exp. Neurol.2001;169:148-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700