钙和内质网通路参与对氧磷诱导的EL4细胞凋亡
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机磷化合物(organophosphorus compounds, OPCs)在全世界范围内被广泛应用于工业、农业和医学领域中。由于其广泛的应用,OPCs也是分布广泛的环境污染物,对包括人类在内的多种生物具有很强的毒性。因此,迄今为止,OPCs的毒性效应和毒理学机制一直是众多科学研究者关注的对象,并进行了许多这方面的体外和在体研究。近年来,越来越多的体外和在体的研究结果表明诱导凋亡是OPCs的一种新发现的毒理学机制,并且凋亡性的细胞死亡在OPCs诱导的损伤效应中起重要作用。因此,很有必要阐明OPCs诱导的凋亡的分子机制,目前已经有一些科学家进行了这方面的研究。
     目前已有的实验结果表明,钙信号与凋亡的诱导和调节有密切的关系,内质网通路是目前为止发现的三条主要的凋亡信号通路之一。但是尚未有实验研究内质网通路是否参与了OPCs诱导的凋亡,以及钙信号是否在OPCs诱导的凋亡早期的信号传递中发挥作用。本研究以对氧磷(paraoxon, POX)诱导的小鼠T淋巴细胞瘤细胞系EL4细胞凋亡为模型,研究钙信号是否在对氧磷诱导的EL4细胞凋亡早期的信号传递中发挥作用,以及内质网通路是否参与了该凋亡的过程。
     在本研究中我们采用实时监测激光扫描共聚焦显微技术(laser scanning confocal m icroscopy, LSCM)检测对氧磷诱导的EL4细胞凋亡早期(0-2 h)细胞内钙信号的变化,并采用荧光显微技术检测对氧磷诱导的EL4细胞凋亡的形态学变化和凋亡率的变化。Caspase-12是内质网通路中的一个重要信号分子。在本研究中我们采用免疫组织化学方法(immunohistochemistry, IHC)检测对氧磷诱导的EL4细胞凋亡过程中caspase-12表达的变化。本研究中EGTA被用于螯合细胞外的钙离子,肝素(heparin)和普鲁卡因(procaine)分别被用来抑制内质网上的IP3受体相关的钙通道和兰尼定(ryanodine)受体相关的钙通道,从而抑制钙离子从内质网的释放。
     本研究的实验结果表明,对氧磷在浓度范围1-10 nM时处理EL4细胞16 h后,能以浓度依赖的模式诱导细胞凋亡率显著上升。1-10 nM对氧磷还以浓度依赖的模式诱导EL4细胞内钙信号在凋亡的早期(0-2 h)增强。分别用EGTA.肝素和普鲁卡因对EL4细胞进行预处理可以部分地抑制对氧磷诱导的EL4细胞内钙信号增强和细胞凋亡。此外,对氧磷还可以以浓度依赖的模式上调caspase-12的表达量。分别用EGTA、肝素和普鲁卡因对EL4细胞进行预处理能显著抑制对氧磷诱导的caspase-12表达量上升现象。
     这些实验结果显示,对氧磷可以在EL4细胞中诱导钙信号的上升,此种上升发生在对氧磷诱导的EL4细胞凋亡过程的早期(0-2 h)。钙信号的上升来源于细胞外钙离子的内流和内质网存储的钙离子的释放,内质网存储的钙离子主要是通过IP3受体相关的钙通道和兰尼定受体相关的钙通道释放。本研究首次证明钙信号是对氧磷诱导的EL4细胞凋亡过程中重要的上游信号,内质网通路也参与了该凋亡过程的信号传递。
Organophosphorus compounds (OPCs) are frequently utilized in agriculture, industry and medicine all over the world. Because of their wide uses, OPCs are also widespread environmental pollutants and potent toxicants to many kinds of organisms, including human beings. Therefore, until the present time, toxic effects and toxicological mechanisms of OPCs have been attended to and been studied in vitro or in vivo by many researchers. In recent years, more and more studies have indicated that induction of apoptosis is a new toxic effect of OPCs, in vitro or in vivo, and that apoptotic cell death may play an important role in OPC-mediated impairing effects. It is necessary to elucidate molecular mechanisms involved in OPC-induced apoptosis, and some researchers have investigated signaling pathways in apoptosis induced by OPCs.
     According to results obtained now, intracellular calcium signaling has been strongly implicated in induction of apoptosis and regulation of the apoptotic signaling pathways and the endoplasmic reticulum (ER)-associated pathway is one of the three major apoptotic pathways which have been found to date. Until the present time, no one has investigated whether intracellular calcium signals were involved in OPC-induced apoptosis at the early stage of apoptotic process, and whether the ER-associated pathway participated in apoptosis induced by OPCs. In the present study, we used the experimental model in which paraoxon (POX) induced apoptosis in murine EL4 T-lymphocytic leukemia cells. The objective of this study is to investigate whether intracellular calcium signals were involved in POX-induced apoptosis in EL4 cells at the early stage of apoptotic process, and whether the ER-associated pathway participated in this apoptotic process.
     We used real-time laser scanning confocal microscopy (LSCM) to examine POX-induced changes of intracellular calcium signals at the early stage (0-2 h) of POX-induced apoptosis in EL4 cells, and we investigated apoptotic rates and morphological changes of EL4 cells after treatment with POX using fluorescent microscopy. Caspase-12 is one of key elements in the ER-pathway. We also evaluated changes of caspase-12 expression in POX-induced apoptosis in EL4 cells, using immunohistochemistry (IHC). In the present research, EGTA was used to chelate Ca2+in extracellular medium; heparin and procaine were used as the specific antagonists to IP3 receptor (IP3 R)-associated Ca2+channels and ryanodine receptor (Ry R)-associated Ca2+channels respectively, to inhibit Ca2+efflux from the ER.
     POX (1-10 nM) increased intracellular calcium signals of EL4 cells in a dose-dependent manner at the early stage (0-2 h) of POX-induced apoptosis, and apoptotic rates of EL4 cells after treatment with POX for 16h also increased in a dose-dependent manner. Pre-incubation with EGTA, heparin or procaine could partly inhibit POX-induced intracellular calcium elevation and apoptosis in EL4 cells. Additionally, POX could up-regulate caspase-12 expression in a dose-dependent manner, and pre-incubation with EGTA, heparin or procaine could significantly inhibit POX-induced increase of caspase-12 expression.
     Our results suggest that POX induced intracellular calcium increases in EL4 cells at the early stage (0-2 h) of POX-induced apoptotic process, which included the mobilization of Ca2+stored in the ER and Ca2+influx from extracellular medium. Ca2+release from the ER was via IP3 R-associated Ca2+channels and Ry R-associated Ca2+channels. The present study firstly proved that calcium signaling was an important upstream messenger in POX-induced apoptotic process in EL4 cell, and the ER-associated pathway was also involved in this apoptosis.
引文
[1]Storm, J.E., Karl, K.R., Doull, J.,2000. Occupational exposure limits for 30 organophosphate pestcides based on inhibition of red cell acetylcholinesterase. Toxicology 150,1-29.
    [2]Aspelin, A.L.,1997. Pesticides industry sales and usage:1994 and 1995 market estimates. Biological and Economic Analysis Division, Office of Pesticide Programs, Office of Prevention, Pesticides and Toxic Substances. U.S. Environmental Protection Agency, Washington, D.C.
    [3]Mochida, K., Gomyoda, M., Fujita, T., Yamagata, K.,1988. Tricresyl phosphate and triphenyl phosphate are toxic to cultured human, monkey and dog cells. Zbl. Bakt. Hyg. B.185,427-429.
    [4]Katoh, K., Konno, N., Yamauchi, T., Fukushima, M.,1990. Effects of age on susceptibility of chickens to delayed neurotoxicity due to triphenyl phosphite. Pharmacol. Toxicol.66, 387-392.
    [5]Mortensen, A., Ladefoged, O.,1992. Delayed neurotoxicity of trixylenyl phosphate and a trialkyl/aryl phosphate mixture, and the modulating effect of atropine on tri-o-tolyl phosphate-induced neurotoxicity. Neurotoxicology 13,347-354.
    [6]Chantelli-Forti, G., Paolini, M., Hrelia, P.,1993. Multiple end point procedure to evaluate risk from pesticides. Environ. Health Perspect.101,15-20.
    [7]Chaudhuri, K., Selvaraj, S., Pal, A.K.,1999. Studies on the genotoxicity of endosulfan in bacterial systems. Mutat. Res.439,63-67.
    [8]Di Monte, D.A., Lavasani, M., Manning-Bog, A.B.,2002. Environmental factors in Parkinson's disease. Neurotoxicology 23,487-502.
    [9]Nasreddine, L., Parent-Massin, D.,2002. Food contamination by metals and pesticides in The European Union:should we worry. Toxicol. Lett.127,29-41.
    [10]Warren, N., Allan, I.J., Carter, J.E., House, W.A., Parker, A.,2003. Pesticides and other micro-organic contaminants in freshwater sedimentary environments:a review. Appl. Geochem.18,159-194.
    [11]Karalliedde, L., Henry, J.A.,1993. Effects of organophosphates on skeletal muscle. Hum. Exp. Toxicol.12,289-296.
    [12]Abou-Donia, M.B.,2003. Organophosphorus ester-induced chronic neurotoxicity. Arch. Environ. Health.58,484-497.
    [13]Bazylewicz-Walczak, B., Majczakowa, W., Szymczak, M.,1999. Behavioral effects of occupational exposure to organophosphorous pesticides in female greenhouse planting workers. Neurotoxicology 20,819-826.
    [14]Stallones, L., Beseler, C.,2002. Pesticide illness, farm practices, and neurological symptoms among farm residents in Colorado. Environ. Res.90,89-97.
    [15]Guillette, E.A., Meza, M.M., Aquilar, M.G., Soto, A.D., Garcia, I.E.,1998. An anthropological approach to the evaluation of preschool children exposed to pesticides in Mexico. Environ. Health Perspect.106,347-353.
    [16]Levin, E.D., Addy, N., Nakajima, A., Christopher, N.C., Seidler, F.J., Slotkin, T.A.,2001. Persistent behavioral consequences of neonatal chlorpyrifos exposure in rats. Brain Res. Dev. Brain Res.130,83-89.
    [17]Levin, E.D., Addy, N., Baruah, A., Elias, A., Christopher, N.C., Seidler, F.J., Slotkin, T.A., 2002. Prenatal chlorpyrifos exposure in rats causes persistent behavioral alterations. Neurotoxicol. Teratol.24,733-741.
    [18]Terry, A.V., Jr., Stone, J.D., Buccafusco, J.J., Sickles, D.W., Sood, A., Prendergast, M.A., 2003. Repeated exposures to subthreshold doses of chlorpyrifos in rats:hippocampal damage, impaired axonal transport, and deficits in spatial learning. J. Pharmacol. Exp. Ther.305, 375-384.
    [19]Le Couteur, D.G., McLean, A.J., Taylor, M.C., Woodham, B.L., Board, P.G.,1999. Pesticides and Parkinson's disease. Biomed. Pharmacother.53,122-130.
    [20]Carlson, K., Ehrich, M.,1999. Organophosphorus compound-induced modification of SH-SY5Y human neuroblastoma mitochondrial transmembrane potential. Toxicol. Appl. Pharm.160,33-42.
    [21]Anguiano, O.L., Caballero de Castro, A., Pechen de D'Angelo, A.M.,2001. The role of glutathione conjugation in the regulation of early toad embryos'tolerance to pesticides. Comp. Biochem. Physiol. C Toxicol. Pharmacol.128,35-43.
    [22]Dulout, F.N., Pastori, M.C., Olivero, O.A., Gonza'lez, M., Loria, D., Matos, E., Sobel, N., de Bujan, E.C., Albiano, N.,1985. Sister-chromatid exchanges and chromosomal aberrations in a population exposed to pesticides. Mutat. Res.143,237-244.
    [23]Bagchi, D., Bagchi, M., Hassoun, E.A., Stohs, S.J.,1995. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology 104,129-140.
    [24]Moffett, J.R., Price, R.A., Anderson, S.M., Sipos, M.L., Moran, A.V., Tortella, F.C., Dave, J.R.,2003. DNA fragmentation in leukocytes following subacute lowdose nerve agent exposure. Cell. Mol. Life Sci.60,2266-2271.
    [25]Pina-Guzman, B., Solis-Heredia, M.J., Quintanilla-Vega, B.,2005. Diazinon alters sperm chromatin structure in mice by phosphorylating nuclear protamines. Toxicol. Appl. Pharm. 202,189-198.
    [26]Sanchez-Pena, L.C., Reyes, B.E., Lopez-Carrillo, L., Recio, R., Moran-Martinez, J., Cebrian, M.E., Quintanilla-Vega, B.,2004. Organophosphorous pesticide exposure alters sperm chromatin structure in Mexican agricultural workers. Toxicol. Appl. Pharm.196,108-113.
    [27]Roy, T.S., Andrews, J.E., Seidler, F.J., Slotkin, T.A.,1998. Chlorpyrifos elicits mitotic abnormalities and apoptosis in neuroepithelium of cultured rat embryos. Teratology 58, 62-68.
    [28]Gao, Y., He, J.R., Chen, X.Q., Miao, Q.,2003. Study on T-lymphocyte subsets in acute organophosphorus pesticide poisoning patients with multiple organ dysfunction syndrome. Chinese J. Ind. Med.16,6-8.
    [29]Wang, Y.P., Song, J.F., Rao, Z.R., Mou, D.L.,2004. Spinal cord neuronal apoptosis induced by triorthocresyl phosphate poisoning in hens. Chinese J. Ind. Hyg. Occup. Dis.22,19-21.
    [30]Akbarsha, M.A., Sivasamy, P.,1998. Male reproductive toxicity of phosphamidon: histopathological changes in epididymis. Indian J. Exp. Biol.36,34-38.
    [31]Baille, V., Clarke, P.G.H., Brochier, G., Dorandeu, F., Verna, J.M., Four, E., Lallement, G., Carpentier, P.,2005. Soman-induced convulsions:the neuropathology revisited. Toxicology 215,1-24.
    [32]Bustos-Obregon, E., Diaz, O., Sobarzo, C.,2001. Parathion induces mouse germ cells apoptosis. Ital. J. Anat. Embryol.106(2 Suppl 2),199-204.
    [33]Carlson, K., Jortner, B.S., Ehrich, M.,2000. Organophosphorus compound-induced apoptosis in SH-SY5Y human neuroblastoma cells. Toxicol. Appl. Pharm.168,102-113.
    [34]Slotkin, T.A.,1999. Developmental cholinotoxicants:nicotine and chlorpyrifos. Environ. Health Perspect.107 Suppl 1,71-80.
    [35]Greenlee, A.R., Ellis, T.M., Berg, R.L.,2004. Low-dose agrochemicals and lawn-carepesticides induce developmental toxicity in murine preimplantation embryos. Environ. Health Perspect.112,703-709.
    [36]Sharma, Y., Bashir, S., Irshad, M., Nag, T.C., Dogra, T.D.,2005. Dimethoate-induced effects on antioxidant status of liver and brain of rats following subchronic exposure. Toxicology 215,173-181.
    [37]Wilczek, G.,2005. Apoptosis and biochemical biomarkers of stress in spiders from industrially polluted areas exposed to high temperature and dimethoate. Comp. Biochem. Physiol. C. Toxicol. Pharmacol.141,194-206.
    [38]Oral, B., Guney, M., Demirin, H., Ozguner, M., Giray, S.G., Take, G., Mungan, T., Altuntas, I.,2006. Endometrial damage and apoptosis in rats induced by dichlorvos and ameliorating effect of antioxidant Vitamins E and C. Reprod. Toxicol.22,783-790.
    [39]de Thonel, A., Eriksson, J.E.,2005. Regulation of death receptors—relevance in cancer therapies. Toxicol. Appl. Pharm.207, S123-S132.
    [40]Nicholson, D.W., Thornberry, N.A.,1997. Caspases:killer proteases. Trends. Biochem. Sci. 22,299-306.
    [41]Pinton, P., Ferrari, D., Di Virgilio, F., Pozzan, T., Rizzuto, R.,2001. Molecular machinery and signaling events in apoptosis. Drug. Develop. Res.52,558-570.
    [42]Desagher, S., Martinou, J.C.,2000. Mitochondria as the central control point of apoptosis. Trends Cell Biol.10,369-377.
    [43]Wang, X.,2001. The expanding role of mitochondria in apoptosis. Gene. Dev.15, 2922-2933.
    [44]Sidoti-de Fraisse, C., Rincheval, V., Risler, Y., Mignotte, B., Vayssiere, J.L.,1998. TNF-alpha activates at least two apoptotic signaling cascades. Oncogene 17,1639-1651.
    [45]Sun, X.M., MacFarlane, M., Zhuang, J., Wolf, B.B., Green, D.R., Cohen, G.M.,1999. Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J. Biol. Chem.274,5053-5060.
    [46]Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A., Yuan, J.,2000. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403,98-103.
    [47]Szegezdi, E., Fitzgerald, U., Samali, A.,2003. Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann. N.Y. Acad. Sci.1010,186-194.
    [48]Ermak, G., Davies, K.J.A.,2001. Calcium and oxidative stress:from cell signaling to cell death. Mol. Immunol.38,713-721.
    [49]Berridge, M.J.,2002. The endoplasmic reticulum:a multifunctional signaling organelle. Cell Calcium 32,235-249.
    [50]Ferrari, D., Pinton, P., Szabadkai, G., Chami, M., Campanella, M., Pozzan, T., Rizzutol, R., 2002. Endoplasmic reticulum, Bcl-2 and Ca2+handling in apoptosis. Cell Calcium.32, 413-420.
    [51]Hajnoczky, G., Davies, E., Madesh, M.,2003. Calcium signaling and apoptosis. Biochem. Bioph. Res. Co.304,445-454.
    [52]Oakes, S.A., Opferman, J.T., Pozzan, T., Korsmeyer, Scorrano, L.,2003. Regulation of endoplasmic reticulum Ca2+dynamics by proapoptotic BCL-2 family members. Biochem. Pharmacol.66,1335-1340.
    [53]Prevarskaya, N., Skryma, R., Shuba, Y.,2004. Ca2+homeostasis in apoptotic resistance of prostate cancer cells. Biochem. Bioph. Res. Co.322,1326-1335.
    [54]Guo, J., Pu, Y., Zhang, D.,2005. Calcium signaling in apoptosis. Acta Biophysica Sinica.21, 1-18.
    [55]Sergeev, I.,2005. Calcium signaling in cancer and vitamin D. J. Steroid Biochem.97, 145-151.
    [56]Hajnoczky, G., Csordas, G., Das, S., Garcia-Perez, C., Saotome, M., Roy, S.S., Yi, M.,2006. Mitochondrial calcium signalling and cell death:Approaches for assessing the role of mitochondrial Ca2+uptake in apoptosis. Cell Calcium 40,553-560.
    [57]Ravagnan L., Roumier T., Kroemer G.,2002. Mitochondria, the killer organelles and their weapons. Journal of Cellular Physiology 192,131-137.
    [58]Green D.R., Reed J.C.,1998. Mitochondria and apoptosis. Science 281,1309-1312.
    [59]Fang M., Wang X.,2002. The mitochondrial pathways of apoptosis. Journal of Peking University (Health Sciences) 34,1-10.
    [60]Kluck R.M., Bossy-Wetzel E., Green D.R., Newmeyer D.D.,1997. The release of cytochrome c from mitochondria:a primary site for Bcl-2 regulation of apoptosis. [comment]. Science 275,1132-1136
    [61]Reed J.C.,1997. Cytochrome c:can't live with it—can't live without it. [comment]. Cell 91, 559-562.
    [62]Zheng C., Zhang M., Li Y.,2001. The important roles of mitochondria during apoptosis. Journal of Zhejiang Ocean University (Natural Science) 20,237-243.
    [63]Zhao Y., Xu J.,2001. Mitochondria, reactive oxygen species and apoptosis. Prog. Biochem. Biophys.28,168-171.
    [64]Liu F., Mao X.,2002. Mitochondrion-mediated apoptosis. Modern Medical Journal 30, 201-203.
    [65]高晋华,王爱风,1999.线粒体与细胞凋亡;山西教育学院学报第2卷,32-34.
    [66]Fan T., Xia L., Han Y.,2001. Mitochondrion and apoptosis. Acta Biochimica et Biophysica Sinica 33,7-12.
    [67]Xu Z., Peng J.,2001. Mitochondria and apoptosis. Journal of Anhui Institute of Education.19, 46-48.
    [68]庞涛,陈婉蓉,2003.线粒体与细胞凋亡的研究进展;卫生毒理学杂志第17卷,122-125.
    [69]Liu L., Peng J., Hong H., Ye W., Qiao Y,2005. Mitochondrial changes and role in apoptosis. Chinese Journal of Cell Biology 27,117-120.
    [70]Zou H., Henzel W.J., Liu X., Lutschg A., Wang X.,1997. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. [comment]. Cell 90,405-413.
    [71]Li P., Nijhawan D., Budihardjo I., Srinivasula S.M., Ahmad M., Alnemri E.S., Wang X.,1997. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91,479-489.
    [72]Riedl S.J., Renatus M., Schwarzenbacher R., Zhou Q., Sun C., Fesik S.W., Liddington R.C., Salvesen G.S.,2001. Structural basis for the inhibition of caspase-3 by XIAP. Cell 104, 791-800.
    [73]Du C., Fang M., Li Y., Li L., Wang X.,2000. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102,33-42.
    [74]Verhagen A.M., Ekert P.G., Pakusch M., Silke J., Connolly L.M., Reid GE., Moritz R.L., Simpson R.J., Vaux D.L.,2000. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102,43-53.
    [75]Verhagen A.M., Vaux D.L.,2002. Cell death regulation by the mammalian IAP antagonist Diablo/Smac. Apoptosis 7,163-166.
    [76]Patterson S.D., Spahr C.S., Daugas E.,2000. Mass spectrometric identification of proteins released from mitochondria undergoing permeability transition. Cell Death Differ.7,137 —144.
    [77]Li L.L., Luo X., Wang X.,2001. Endonuclease G (EndoG) is an apoptotic Dnase when released from mitochondria. Nature 412,95-99.
    [78]Nagata, S., Golstein, P.,1995. The Fas death factor. Science,1449-1456 (review).
    [79]Thorburn, A.,2004. Death receptor-induced cell killing. Cell Signalling,139-144 (review).
    [80]姜山,谢青,2004.内质网应激与细胞凋亡;国外医学·流行病学传染病学分册 第31卷,330-333.
    [81]Ferri K.F., Kroemer G.,2001. Organelle-specific initiation of cell death pathways. Nat. Cell Biol.31,E255-263.
    [82]Mori K.,2000. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101,451-454.
    [83]Nakagawa T.,Yuan J.Y.,2000. Cross-talk between two cysteine protease families activation of caspase-12 by calpain in apoptosis. J. Cell Biol.150,887-894.
    [84]Rao R.V., Peel A., Logvinova A., et al.2002. Coupling endoplasmic reticulum stress to the cell death program:role of the ER chaperone GRP78. FEBS Lett.514,122-128.
    [85]Yoneda T., Imaizumi K., Oono K., Yui D., Gomi F., Katayama T., Tohyama M.,2001. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem.,276,13935-13940.
    [86]Orrenius S., Zhivotovsky B., Nicotera P.,2003. Regulation of cell death:the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol.4,552-565.
    [87]Chang D.C., Meng C.,1995. A localized elevation of cytosolic free calcium is associated with cytolinesis in the zebrafish embryo. J. Cell Biol.,131,1539-1545.
    [88]Xu N., Luo K.Q., Chang D.C.,2003. Ca2+signal blockers can inhibit M/A transition in mammalian cells by interfering with the spindle checkpoint. Biochem. Biophys. Res. Commun.,306,737-745.
    [89]寿天德 主编,神经生物学,高等教育出版社,2001年第一版,58页。
    [90]Mikoshiba, K.,1997. The lnsP3 receptor and intracellular Ca*+signaling. Curr. Opin. Neurobiol.7,339-345.
    [91]Aw, T.Y., Nicotera P., Manzo L., Orrenius S.,1990. Tributyltin stimulates apoptosis in rat thymocytes. Arch. Biochem.Biophys.,283,46-50.
    [92]Chow S.C., Kass G.E., McCabe M.J., Jr Orrenius S.,1992. Tributyltin increases cytosolic free Ca2+concentration in thymocytes by mobilizing intracellular Ca2+, activating a Ca2+ entry pathway, and inhibiting Ca2+efflux. Arch. Biochem. Biophys.,298,143-149.
    [93]Zhivotovsky B., Cedervall B., Jiang S., Nicotera P., Orrenius S.,1994. Involvement of Ca2+ in the formation of high molecular weight DNA fragments in the thymocyte apoptosis. Biochem. Biophys. Res. Commum.,202,120-127.
    [94]Zhivotovsky B., Nicotera P., Bellomo G., Hanson K., Orrenius S.,1993. Ca2+and endonuclease activation in radiation-induced lymphoid cell death. Exp., Cell Res.,207, 163-170.
    [95]Szondy Z.,1994. Adenosine stimulates DNA fragmentation in human thymocytrs by Ca2+-mediated mechanisms. Biochem. J.,304,877-885.
    [96]Kobayashi N., Hiromatsu K., Matsuzaki G., Harada M., Matsumoto Y., Nomoto K., Yoshikai Y.,1997. A sustained increase of cytosolic Ca2+in gammadelta T cells triggered by costimulation via TCR/CD3 and LFA-1. Cell Calcium,22,421-430.
    [97]Kimura C., Zhao Q.L., Kondo T., Amatsu M., Fujiwara Y.,1998. Mechanism of UV-induced apoptosis in human leukemia cells:roles of Ca2+/Mg2+-dependent endonuclease, caspase-3, and stress-activated protein kinases. Exp., Cell Res.,239,411-422.
    [98]Kerr, J.F.R., Wyllie, A.H., Currie, A.R.,1972. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26,239-257.
    [99]Petronilli, V., Cola, C., Massari, S., Colonna, R., Bernardi, P.,1993. Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria. J. Biol. Chem.268,21939-21945.
    [100]Bernardi, P.,1996. The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochim. Biophys. Acta 1275, 5-9.
    [101]Saleh, A.M., Vijayasarathy, C., Fernandez-Cabezudo, M., Taleb, M., Petroianu, G.,2003a. Influence of paraoxon (POX) and parathion (PAT) on apoptosis:a possible mechanism for toxicity in low dose exposure. J. Appl. Toxicol.23,23-29.
    [102]Saleh, A.M., Vijayasarathy, C., Masoud, L., Kumar, L., Shahin, A., Kambal, A.,2003b. Paraoxon induces apoptosis in EL4 cells via activation of mitochondrial pathways. Toxicol. Appl.Pharm.190,47-57.
    [103]Slee, E.A., Harte, M.T., Kluck, R.M., Wolf, B.B., Casiano, C.A., Newmeyer, D.D., Wang, H.G., Reed, J.C., Nicholson, D.W., Alnemri, E.S., Green, D.R., Martin, S.J.,1999. Ordering the cytochrome c-initiated caspase cascade:hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9-dependent manner. J. Cell Biol.144,281-292.
    [104]Wu, X., Tian, F., Okagaki, P., Marini, A.M.,2005. Inhibition of N-methyl-d-aspartate receptors increases paraoxon-induced apoptosis in cultured neurons. Toxicol. Appl. Pharm. 208,57-67.
    [105]Qin, H., Srinivasula, S.M., Wu, G., Fernandes-Alnemri, T., Alnemri, E.S., Shi, Y.,1999. Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 399,549-557.
    [106]Saleh, A., Srinivasula, S.M., Acharya, S., Fishel, R., Alnemri, E.S.,1999. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J. Biol. Chem.274,17941-17945.
    [107]Nomura, M., Shimizu, S., Ito, T., Narita, M., Matsuda, H., Tsujimoto, Y.,1999. Apoptotic cytosol facilitates Bax translocation to mitochondria that involves cytosolic factor regulated by Bcl-2. Cancer Res.59,5542-5548.
    [108]Wei, M.C., Zong, W.X., Cheng, E.H., Lindsten, T., Panoutsakopoulou, V., Ross, A.J., Roth, K.A., MacGregor, G.R., Thompson, C.B., Korsmeyer, S.J.,2001. Proapoptotic Bax and Bak: a requisite gateway to mitochondrial dysfunction and death. Science 292,727-730.
    [109]Hughes, P.E., Alexi, T., Schreiber, S.S.,1997. A role for the tumour suppressor gene p53 in regulating neuronal apoptosis. Neuroreport.15, R5-R12.
    [110]Morrison, R.S., Kinoshita, Y.,2000. The role of p53 in neuronal cell death. Cell Death Differ.10,868-879.
    [111]Masoud, L., Vijayasarathy, C, Fernandez-Cabezudo, M., Petroianu, G., Saleh, A.M.,2003. Effect of malathion on apoptosis of murine L929 fibroblasts:a possible mechanism for toxicity in low dose exposure. Toxicology 185,89-102.
    [112]Baille, V., Clarke, P.G.H., Brochier, G., Dorandeu, F., Verna, J.M., Four, E., Lallement, G., Carpentier, P.,2005. Soman-induced convulsions:the neuropathology revisited. Toxicology 215,1-24.
    [113]Miyashita, T., Reed, J.C.,1995. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80,293-299.
    [114]Borner, C.,2003. The Bcl-2 protein family:sensors and checkpoints for life-or-death decisions. Mol. Immunol.39,615-647.
    [115]Hetman, M., Xia, Z.,2000. Signaling pathways mediating anti-apoptotic action of neurotrophins. Acta Neurobiol. Exp. (Warsz) 60,531-545.
    [116]Davis, R.J.,2000. Signal transduction by the JNK group of MAP kinases. Cell 103, 239-252.
    [117]Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J., Greenberg, M.E.,1995. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270,1326-1331.
    [118]Kawasaki, H., Morooka, T., Shimohama, S., Kimura, J., Hirano, T., Gotoh, Y., Nishida, E., 1997. Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. J. Biol. Chem.272, 18518-18521.
    [119]Yang, D.D., Kuan, C.Y., Whitmarsh, A.J., Rincon, M., Zheng, T.S., Davis, R.J., Rakic, P., Flavell, R.A.,1997. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389,865-870.
    [120]Ip, Y.T., Davis, R.J.,1998. Signal transduction by the c-Jun N-terminal kinase (JNK)-from inflammation to development. Curr. Opin. Cell Biol.10,205-219.
    [121]Namgung, U., Xia, Z.,2000. Arsenite-induced apoptosis in cortical neurons is mediated by c-Jun N-terminal protein kinase 3 and p38 mitogenactivated protein kinase. J. Neurosci.20, 6442-6451.
    [122]Figueroa-Masot, X.A., Hetman, M., Higgins, M.J., Kokot, N., Xia, Z.,2001. Taxol induces apoptosis in cortical neurons by a mechanism independent of Bcl-2 phosphorylation. J. Neurosci.21,4657-4667.
    [123]Caughlan, A., Newhouse, K., Namgung, U., Xia, Z.,2004. Chlorpyrifos induces apoptosis in rat cortical neurons that is regulated by a balance between p38 and ERK/JNK MAP kinases. Toxicol. Sci.78,125-134.
    [124]Lewis, T.S., Shapiro, P.S., Ahn, N.G.,1998. Signal transduction through MAP kinase cascades. Adv. Cancer Res.74,49-139.
    [125]Raveh, L., Chapman, S., Cohen, G., Alkalay, D., Gilat, E., Rabinovitz, I., Weissman, B.A., 1999. The involvement of the NMDA receptor complex in the protective effect of anticholinergic drugs against soman poisoning. Neurotoxicology 20,551-559.
    [126]Korhonen, L., Napankangas, U., Steen, H., Chen, Y., Martinez, R., Lindholm, D.,2004. Differential regulation of X-chromosome-linked inhibitor of apoptosis protein (XIAP) and caspase-3 by NMDA in developing hippocampal neurons; involvement of the mitochondrial pathway in NMDA-mediated neuronal survival. Exp. Cell Res.295,290-299.
    [127]Gultekin, F., Ozturk, M., Akdogan, M.,2000. The effect of organophosphate insecticide chlorpyrifos-ehtyl on lipid peroxidation and antioxidant enzymes (in vitro). Arch. Toxicol. 74,533-538.
    [128]Zhou, J.F., Xu, G.B., Fang, W.J.,2002. Relationship between acute organophosphorus pesticide poisoning and damages induced by free radicals. Biomed. Environ. Sci.15, 177-186.
    [129]Sharma, Y., Bashir, S., Irshad, M., Nag, T.C., Dogra, T.D.,2005. Dimethoate-induced effects on antioxidant status of liver and brain of rats following subchronic exposure. Toxicology 215,173-181.
    [130]Kamata, H., Hirata, H.,1999. Redox regulation of cellular signalling. Cell Signal.11,1-14.
    [131]Domenicotti, C., Paola, D., Vitali, A., Nitti, M., d'Abramo, C., Cottalasso, D., Maloberti, G., Biasi, F., Poli, G., Chiarpotto, E., Marinari, U.M., Pronzato, M.A.,2000. Glutathione depletion induces apoptosis of rat hepatocytes through activation of protein kinase C novel isoforms and dependent increase in AP-1 nuclear binding. Free Radical Biol. Med.29,1280-1290.
    [132]Chen, X., Shao, J., Xiang, L., Liu, X.,2006. Involvement of apoptosis in malathion-induced cytotoxicity in a grass carp (Ctenopharyngodon idellus) cell line. Comparative Biochemistry and Physiology C-Toxicology and Pharmacology 142,36-45.
    [133]Nakadai, A., Li, Q., Kawada, T.,2006. Chlorpyrifos induces apoptosis in human monocyte cell line U937. Toxicology 224,202-209.
    [134]Li, Q., Kobayashi, M., Kawada, T.,2007. Organophosphorus pesticides induce apoptosis in human NK cells. Toxicology 239,89-95.
    [135]Yu, F., Wang, Z., Ju, B., Wang, Y., Wang, J., Bai, D.,2008. Apoptotic effect of organophosphorus insecticide chlorpyrifos on mouse retina in vivo via oxidative stress and protection of combination of vitamins C and E. Experimental and Toxicologic Pathology 59, 415-42.
    [136]Vatanparast, J., Janahmadi, M., Asgari, A.R.,2006a. The functional consequences of paraoxon exposure in central neurones of land snail, Caucasotachea atrolabiata, are partly mediated through modulation of Ca2+and Ca2+-activated K+-channels. Comparative Biochemistry and Physiology C-Toxicology and Pharmacology 143,464-472.
    [137]Sun, X., Liu, X.B., Martinez, J.R., Zhang, G.H.,2000. Effects of low concentrations of paraoxon on Ca2+mobilization in a human parotid salivary cell-line HSY. Archives of Oral Biology 45,621-638.
    [138]Hong, M.S., Hong, S.J., Barhoumi, R., Burghardt, R.C., Donnelly, K.C., Wild, J.R., Venkatraj, V, Tiffany-Castiglioni, E.,2003. Neurotoxicity induced in differentiated SK-N-SH-SY5Y human neuroblastoma cells by organophosphorus compounds. Toxicology and Applied Pharmacology 186,110-118.
    [139]Vatanparast, J., Janahmadi, M., Asgari, A.R.,2007. Involvement of protein kinase C and IP3-mediated Ca2+release in activity modulation by paraoxon in snail neurons. European Journal of Pharmacology 571,81-87.
    [140]Vatanparast, J., Janahmadi, M., Asgari, A.R., Sepehri, H., Haeri-Rohani, A.,2006b. Paraoxon suppresses Ca2+spike and afterhyperpolarization in snail neurons:Relevance to the hyperexcitability induction. Brain Research 1083,110-117.
    [141]Qian, Y., Venkatraj, J., Barhoumi, R., Pal, R., Datta, A., Wild, J.R., Tiffany-Castiglioni, E., 2007. Comparative non-cholinergic neurotoxic effects of paraoxon and diisopropyl fluorophosphate (DFP) on human neuroblastoma and astrocytoma cell lines. Toxicology and Applied Pharmacology 219,162-171.
    [142]Zhang, M., Wang, J.J., Chen, Y.J.,2006. Effects of mechanical pressure on intracellular calcium release channel and cytoskeletal structure in rabbit mandibular condylar chondrocytes. Life Science 78,2480-2487.
    [143]Wang H., Cai H.R.,2003. Modulation of extracellular calcium on miniature inhibitory postsynaptic currents of Xenopus'optic tectal neurons. Acta Physiology Sinica 55,599-606.
    [144]Xiu, M., Peng, J., Hong, H.,2005. Reactions of mitochondria and changes of Ca2+in the baculovirus-induced apoptosis in entomic cells. Chinese Science Bulletin 50,1213-1219.
    [145]Pu Y., Chang D.C.,2001. Cytosolic Ca2+signal is involved in regulating UV-induced apoptosis in HeLa cells. Biochemical and Biophysical Research Communications 282, 84-89.
    [146]Viets L.N., Campbell K.D., White K.L.,2001. Pathways involved in RGD-mediated calcium transients in mature bovine oocytes. Cloning and Stem Cells 3,105-113.
    [147]Kim, B.M., Chung, H.W.,2008. Desferrioxamine (DFX) induces apoptosis through the p38-caspase8-Bid-Bax pathway in PHA-stimulated human lymphocytes. Toxicol. Appl. Pharm.228,24-31.
    [148]Ma, X.D., Ma, X., Sui, Y.F., Wang, W.L., Wang, C.M.,2003. Signal transduction of gap junctional genes, connexin32, connexin43 in human hepatocarcinogenesis. World J. Gastroenterol.9,946-950.
    [149]Florea, A.M., Splettstoesser, F., Dopp, E., Rettenmeier, A.W., Busselberg, D.,2005. Modulation of intracellular calcium homeostasis by trimethyltin chloride in human tumour cells:Neuroblastoma SY5Y and cervix adenocarcinoma HeLa S3. Toxicology 216,1-8.
    [150]Yang, H., Wang, T., Li, J., Gu, L., Zheng, X,2006. Decreasing expression of α1C calcium L-type channel subunit mRNA in rat ventricular myocytes upon manganese exposure. J. Biochem. Mol. Toxic.20,159-166.
    [151]Florea, A.M., Splettstoesser, F., Busselberg, D.,2007. Arsenic trioxide (As2O3) induced calcium signals and cytotoxicity in two human cell lines:SY-5Y neuroblastoma and 293 embryonic kidney (HEK). Toxicol. Appl. Pharm.220,292-301.
    [152]Grondin, M., Marion, M., Denizeau, F., Averill-Bates, D.A.,2007. Tributyltin induces apoptotic signaling in hepatocytes through pathways involving the endoplasmic reticulum and mitochondria. Toxicol. Appl. Pharm.222,57-68.
    [153]Tang, L.L., Sun, C.X., Liu, H., Mi, Y., Yao, C.G., Li, C.X.,2007. Steep pulsed electric fields modulate cell apoptosis through the change of intracellular calcium concentration. Colloid. Surface. B.57,209-214.
    [154]Xavier, L.L., Viola, G.G., Ferraz, A.C., Da Cunha, C., Deonizio, J.M.D., Netto, C.A., Achaval, M.,2005. A simple and fast densitometric method for the analysis of tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta and in the ventral tegmental area. Brain Research Protocols 16,58-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700