高温吸收式热变换器热力学和传递性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源紧缺和全球变暖已经引起世界各国政府和学术机构的高度关注,提高能源利用率、减小单位产值能耗已经成为世界范围内能源战略的重点之一。吸收式热变换器(Absorption heat transformer, AHT)作为热泵技术的一种,主要以废热源为驱动将低品位能量提升温度后重新利用,是一项节能环保的余热回收利用技术,具有广阔的市场和应用前景。为了扩展AHT技术工业余热回收利用的温度范围,实现高温热量的梯级利用,本文对高温吸收式热变换器(High temperature absorption heat transformer, HT-AHT)的热力和传递进行了较为系统的理论分析和实验研究。
     建立高精度高温溴化锂溶液相平衡实验系统,实验测定水和溴化锂溶液相平衡饱和蒸汽压与文献值吻合较好。测定了温度范围为156.06-257.84℃,浓度为43.14%、52.67%、54.26%、59.33%和65.26%的溴化锂溶液相平衡饱和蒸汽压数据,并对实验数据进行拟合,得到高温范围溴化锂溶液相平衡P-T-X计算式,为工业应用中运行在高温范围(150-250℃)吸收式系统的设计和运行扩展了溴化锂溶液基础物性数据的范围。
     提出(?)平衡-能级分析方法并建立了HT-AHT循环热力学模型,应用能级差表征能量传递过程中不可逆因素强度,将系统能量传递过程中(?)损失的数量因素和不可逆因素((?)损失机理)剥离,对系统(?)损失分布及机理进行全面的分析。结果表明,吸收器是(?)损失最大部件,大约占系统总(?)损失40-50%,其进出口流体温度差引起的不可逆因素占主导且受操作温度影响较小;其次是再生器,大约占10-40%,其进出口溶液浓度差引起的不可逆因素占主导,且受操作温度影响较大。低温工况下系统性能系数(COP)和(?)性能系数(ECOP)分别为0.25-0.48和0.4-0.7;高温工况下系统的COP和ECOP分别为0.4-0.46和0.8-0.9,HT-AHT在热力学第一和第二定律性能方面都明显优于常规温度下AHT系统。提出了HT-AHT-HP(高温吸收式热变换器-热泵联合循环)对高温热源能量梯级利用策略,在给定工况条件下,大约46%输入能量以205℃高温输出,98%输入能量以70℃的中温输出;高温输出(?)值占输入(?)的49%,中温输出(?)值占30%,实现了高温热源能量利用效率的最大化。
     应用VOF (Volume of Fluid)方法建立了三维功能涂层管外降液膜流动的CFD(Computational Fluid Dynamics)模型。模型中引入了表面张力动量源项来考察壁面疏水性对降液膜过程的影响。结果表明,液膜在涂层上端交界处形成积液环,达到一定厚度后以滴状流和溪流方式通过涂层区域,在涂层下端交界处液膜重新铺展为薄液膜形式。在积液过程、溪流过程和重新铺展过程中,液膜内部在轴向和径向两个方向实现了有效地扰动掺混。设计了两种涂层构型并对其降膜流动形态和内部流场进行分析,结果表明积液环液膜通过导流区域汇合后,#1构型涂层液膜重新分流为两条溪流,有效的减小了积液环厚度且增加了液膜润湿面积;#2构型涂层液膜再一次发生积聚过程,溪流厚度进一步增加,该过程进一步增强了径向方向液膜内部掺混作用。两种优化构型在液膜内部流场方面均实现了强制掺混的目的。实验考察了光滑管和优化设计功能涂层构型管传热传质特性,结果表明,#1和#2涂层管总传热系数较光滑管分别提高了21.47%和24.25%。
     设计和建立了HT-AHT实验系统,经过调试运行该实验样机各项性能指标均达到设计要求。其主要部件在150-205℃的高温高压操作,系统温升大于40℃,并辅以表面抗蚀技术,实验过程中系统设备没有明显腐蚀现象。实验结果表明:随着蒸发温度增加,COP和Qa(吸收器热负荷)增加;随着吸收温度增加,COP和Qa先增加后减小;随着再生温度增加,COP和Qa先是增加后略微减小;COP和Qa随着系统温升增加而减小;随着蒸发温度和吸收温度的增加,ECOP先增加后减小;随着再生温度增加,ECOP整体上呈现增加的趋势;当系统温升增加时,ECOP开始略微增加而后急剧减小。
The continued rising of energy prices and global warming is remarkably attracting the attention of governments and academic communities around the world. Energy efficiency, reducing energy consumption per unit output has become the focus of world's energy strategy. The absorption heat transformer (AHT) mainly driven by waste heat source for low grade energy reuse after ascending temperature is an energy conservation and environmental protection technology and has a broad market and application prospect. In order to extend the temperature range of industrial waste heat recycling of AHT technology, and realize the cascade utilization of high temperature heat, in this paper, the thermodynamic and transport performance for high temperature absorption heat transformer (HT-AHT) are investigated theoretically and experimentally.
     A high precision experiment system for vapor-liquid phase equilibrium of lithium bromide solution at high temperature is established and the results of saturation vapor pressure of water and lithium bromide solution obtained by experiment are in good agreement with the results in literature. The data of saturation vapor pressure of lithium bromide solution at the temperature ranging from156.06-257.84℃, the concentration of43.14%,52.67%,54.26%,59.33%,65.26%are measured. The fitting curves of P-T-X from experimental results for lithium bromide solution at high temperature are obtained. The scope of existing data is extended and these physical property data of lithium bromide solution are significant for the design and operation of high temperature (150-250℃) absorption system in industry.
     The exergy balance-energy level analysis method is proposed and the thermodynamics model of HT-AHT cycle is established. The energy level difference is applied to investigate the intensity of the irreversible factors in the process of energy transfer. The exergy loss distribution and its mechanism are comprehensively analyzed by separating the number factors and irreversible factors (exergy loss mechanism) of exergy loss in energy transfer process. The results show that the absorber is the element with the highest exergy loss, about40-50%of total system exergy loss. Irreversible factors caused by the temperature difference of input and output fluids are dominated and less affected by the operation temperature. The exergy loss of the generator is about10-40%. Irreversible factors caused by the concentration difference of import and export solution are dominated and significantly influenced by the operating temperature. The COP and ECOP of the AHT system are0.25-0.48and0.4-0.7at low temperature and are0.4-0.46and0.8-0.9at high temperature. This suggests that the performance of HT-AHT is superior to conventional AHT system in the first and second law of thermodynamics aspect. In the proposed combined cycle, a high temperature absorption heat transformer and an absorption heat pump (HAHT-HP) are employed to reuse the high temperature waste heat for higher thermal and exergy efficiencies. The energy distribution results of waste heat in the cycle show that around46%of the total input energy is available as a useful energy output at high temperature (205℃), about98%is available at intermediate temperature (70℃) and around43%waste heat at low temperature (40℃) is recovered by the cycle. The exergy distribution shows about49%is useful exergy output at high temperature.
     The three-dimensional CFD model is established to simulate falling liquid film flow on functional coating tubes with VOF method. The momentum source term with respect to the surface tension is introduced into the model to examine the influence of the surface wettability on falling liquid film flow. The results show that the effusion ring is formed at the top boundary of coating area. The liquid film flows through the coating area via droplet and rivulet flow after reaching a certain thickness and then liquid film spreads out as thin liquid film at bottom boundary of the coating. The intensified disturbance mixing effect of the axial and radial directions are formed within the liquid film during the effusion, passing and spreading processes. The mixing effect is beneficial to enhance the heat and mass transfer. The falling film flow pattern and internal flow field on the two kinds of designed coatings are analyzed. The results indicate that the liquid film is separated as two streams after the convergence of the liquid film with effusion ring by two diversion areas on#1configuration coating. The thickness of the effusion ring decreases and thus the mixing effect inside the liquid film is enhanced. The liquid film on the#2configuration coating converges into a rivulet flow again after a diversion area. The internal liquid film mixing effect in radial direction is enhanced although the thickness of the liquid film in rivulet flow increases. The forced mixing effect inside the liquid film is obtained by the above optimization configuration coatings. The heat and mass transfer properties of the smooth tube and the optimized design tubes with functional configuration coating are investigated experimentally. The results show that the total heat transfer coefficient of#1and#2coating tube are21.47%and24.25%higher than that of the smooth tube, respectively.
     The high temperature absorption heat transformer (HT-AHT) system is designed and built. The experimental investigations proved that all the properties of this prototype approach to the designed value. The experimental system is operated at the temperature of150-205℃and high pressure, the gross temperature lift of the system is over40℃. The corrosion phenomenon is insignificant due to the usage of surface anti-corrosion technology. The experimental results show that the COP and Qa increase with the increase of the evaporating temperature, and increase firstly and then decrease with increasing the absorbing temperature, and increase firstly and then decrease lightly with the increase of generating temperature, and decrease with the increase of GTL. The ECOP increases firstly and then decreases with the increase of evaporating temperature and absorbing temperature, and increases with the increase of generating temperature, and increases firstly and then decreases rapidly with the increase of GTL.
引文
[1]Mcneely L A. Thermodynamic properties of aqueous solutions of lithium bromide[J]. ASHRAE Transactions.1979,85(Part 1):413-434.
    [2]Iyoki S, Uemura T. Vapour pressure of the water--Iithium bromide system and the water-Iithium bromide-zinc bromide--Iithium chloride system at high temperatures[J]. International Journal of Refrigeration.1989,12(5):278-282.
    [3]Lenard J L Y, Jeter S M, Teja A S. Properties of lithium bromide-water solutions at high temperatures and concentrations-part Ⅳ:vapor pressure[C]. Anaheim, CA, USA:Publ by ASHRAE, Atlanta, GA, USA,1992.
    [4]Feuerecker G, Scharfe J, Greiter I, et al. Measurement of thermophysical properties of aqueous LiBr-solutions at high temperatures and concentrations[C]. New Orleans, LA, USA:Publ by ASME, New York, NY, USA,1994.
    [5]Kaita Y. Thermodynamic properties of lithium bromide-water solutions at high temperatures[J]. International Journal of Refrigeration.2001,24(5):374-390.
    [6]Rivera W, Best R, Hernandez J, et al. Thermodynamic study of advanced absorption heat transformers-I. Single and two stage configurations with heat exchangers[J]. Heat Recovery Systems and CHP.1994, 14(2):173-183.
    [7]Reyes R, Gomez V, Garcia-Gutierrez A. Performance modelling of single and double absorption heat transformers[J]. Current Applied Physics.2010, 10Sp. Iss. SI Suppl.2:S244-S248.
    [8]Jian S, Lin F, Shigang Z. Performance calculation of single effect absorption heat pump using LiBr + LiNO3 + H2O as working fluid[J]. Applied Thermal Engineering.2010,30(17-18):2680-2684.
    [9]马学虎,李达,郝兆龙等.高温双再生器型吸收式热变换器热力循环分析[J].大连理工大学学报.2012(06):794-798.
    [10]Martinez H, Rivera W. Energy and exergy analysis of a double absorption heat transformer operating with water/lithium bromide[J]. International Journal of Energy Research.2009,33(7):662-674.
    [11]Talbi M M, Agnew B. Exergy analysis: an absorption refrigerator using lithium bromide and water as the working fluids[J]. Applied Thermal Engineering.2000,20(7):619-630.
    [12]Sencan A, Yakut K A, Kalogirou S A. Exergy analysis of lithium bromide/water absorption systems[J]. Renewable Energy.2005,30(5):645-657.
    [13]Kilic M, Kaynakli O. Second law-based thermodynamic analysis of water-lithium bromide absorption refrigeration system[J]. Energy.2007,32(8):1505-1512.
    [14]Khaliq A, Kumar R. Exergy analysis of double effect vapor absorption refrigeration system[J]. International Journal of Energy Research.2008,32(2):161-174.
    [15]Kaushik S C, Arora A. Energy and exergy analysis of single effect and series flow double effect water-lithium bromide absorption refrigeration systems[J]. International Journal of Refrigeration-Revue Internationale Du Froid.2009,32(6):1247-1258.
    [16]Donnellan P, Byrne E, Cronin K. Internal energy and exergy recovery in high temperature application absorption heat transformers[J]. Applied Thermal Engineering.2013,56(1-2):1-10.
    [17]Fartaj S A. Comparison of energy, exergy, and entropy balance methods for analysing double-stage absorption heat transformer cycles[J]. International Journal of Energy Research.2004,28(14):1219-1230.
    [18]Ishida M, Ohno T. Application of energy-direction factor diagram for exergy analysis of a distillation column[J]. Journal of Chemical Engineering Of Japan.1983,16(4):281-287.
    [19]Jin H G, Ishida M. Graphical exergy analysis of complex cycles[J]. Energy.1993,18(6):615-625.
    [20]Jin H G, Ishida M. Graphical exergy analysis of a new-type of advanced cycle with saturated air[J]. HEAT RECOVERY SYSTEMS & CHP.1994,14(2):105-116.
    [21]Ishida M, Ji J. Graphical exergy study on single stage absorption heat transformer[J]. Applied Thermal Engineering.1999,19(11):1191-1206.
    [22]Rivera W, Cerezo J, Martinez H. Energy and exergy analysis of an experimental single-stage heat transformer operating with the water/lithium bromide mixture[J]. International Journal of Energy Research,2010,34(13):1121-1131.
    [23]王群昌,马学虎,薄守石等.管内降膜式第二类吸收热泵性能实验研究[J].化学工程.2010(03):1-4.
    [24]Bakhtiari B, Fradette L, Legros R, et al. A model for analysis and design of H2O-LiBr absorption heat pumps[J]. Energy Conversion and Management,2011,52(2):1439-1448.
    [25]Jian S, Lin F, Shigang Z, et al. A mathematical model with experiments of single effect absorption heat pump using LiBr-H2O [J]. Applied Thermal Engineering,2010,30(17-18).
    [26]宿建峰,韩巍,金红光.结合双效吸收式热泵的新型海水淡化系统[J].工程热物理学报,2008(03):377-380.
    [27]Siqueiros J, Romero R J. Increase of COP for heat transformer in water purification systems. Part Ⅰ-Increasing heat source temperature[J]. Applied Thermal Engineering.2007,27(5-6):1043-1053.
    [28]Romero R J, Siqueiros J, Huicochea A. Increase of COP for heat transformer in water purification systems. Part Ⅱ-Without increasing heat source temperature[J]. Applied Thermal Engineering.2007, 27(5-6):1054-1061.
    [29]Rivera W, Siqueiros J, Martinez H, et al. Exergy analysis of a heat transformer for water purification increasing heat source temperature[J]. Applied Thermal Engineering.2010,30(14-15):2088-2095.
    [30]Rivera W, Huicochea A, Martinez H, et al. Exergy analysis of an experimental heat transformer for water purification[J]. Energy.2011,36(1):320-327.
    [31]Sekar S, Saravanan R. Experimental studies on absorption heat transformer coupled distillation system[J]. Desalination,2011,274(1-3):292-301.
    [32]Gomri R. Thermal seawater desalination:Possibilities of using single effect and double effect absorption heat transformer systems[J]. Desalination,2010,253(1-3):112-118.
    [33]Wang Y, Lior N. Thermoeconomic analysis of a low-temperature multi-effect thermal desalination system coupled with an absorption heat pump[J]. Energy,2011,36(6SI):3878-3887.
    [34]Nakata T, Kubo K, Lamont A. Design for renewable energy systems with application to rural areas in Japan[J]. Energy Policy,2005,33(2):209-219.
    [35]Alzola J A, Vechiu 1, Camblong H, et al. Microgrids project, Part 2:Design of an electrification kit with high content of renewable energy sources in Senegal[J]. Renewable Energy,2009,34(10):2151-2159.
    [36]Lund H, Salgi G. The role of compressed air energy storage (CAES) in future sustainable energy systems[J]. Energy Conversion and Management,2009,50(5):1172-1179.
    [37]Munster M, Lund H. Comparing waste-to-energy technologies by applying energy system analysis[J]. WASTE MANAGEMENT,2010,30(7SI):1251-1263.
    [38]Li Y, Fu L, Zhang S, et al. A new type of district heating system based on distributed absorption heat pumps[J]. Energy,2011,36(7):4570-4576.
    [39]Ma X H, Chen J B, Li S P, et al. Application of absorption heat transformer to recover waste heat from a synthetic rubber plant[J]. Applied Thermal Engineering.2003,23(7):797-806.
    [40]Horuz I, Kurt B. Single stage and double absorption heat transformers in an industrial application^]. International Journal of Energy Research,2009,33(9):787-798.
    [41]Horuz I, Kurt B. Absorption heat transformers and an industrial application[J]. Renewable Energy,2010, 35(10):2175-2181.
    [42]Cortes E, Rivera W. Exergetic and exergoeconomic optimization of a cogeneration pulp and paper mill plant including the useof a heat transformer[J]. Energy.2010,35(3):1289-1299.
    [43]Huicochea A, Romero R J, Rivera W, et al. A novel cogeneration system:a proton exchange membrane fuel cell coupled to a heat transformer[J]. Applied Thermal Engineering.2011(0).
    [44]Khaliq A, Agrawal B K, Kumar R. First and second law investigation of waste heat based combined power and ejector-absorption refrigeration cycle[J]. International Journal of Refrigeration-Revue Internationale Du Froid.2012,35(1):88-97.
    [45]Nusselt W. Die oberflaechenkondensateion des Wasserdampfes[Z].1916:60,541-546.
    [46]Kapotza P L. Wave flow of thin layers of a viscous fluid (in russian)[J]. Sov. Phys., J. Exp. Theor. Phys., 1948,3:3-28.
    [47]Brauer H. Stromung and wormeubergang bei rieselfilmen[J]. VDI Forschungsheft,1956,457(22).
    [48]Benjamin T B. Wave formation in laminar flow down an inclined plane[J]. J. Fluid Mech,1957,2:554-574.
    [49]Wilke W. Warmeubergang an rieselfilme[J]. VDI Fortschritte,1962,490.
    [50]Alekseenko S V, Nakoryakov V Y, Pokusaev B G. Wave formation on a vertical falling liquid-film[J]. Aiche Journal,1985,31(9):1446-1460.
    [51]SV A. Wave flow of liquid films[M]. New York:Begell House,1994.
    [52]Chang H C, Demekhin E A. Complex wave dynamics on thin films[M]. Amsterdam:Elsevier Science, 2002.
    [53]Gao D, Morley N B, Dhir V. Numerical simulation of wavy falling film flow using VOF method[J]. Journal of Computational Physics,2003,192(2):624-642.
    [54]Nosoko T, Miyara A. The evolution and subsequent dynamics of waves on a vertically falling liquid film[J]. Physics of Fluids,2004,16(4):1118-1126.
    [55]Scheid B, Ruyer-Quil C, Manneville P. Wave patterns in film flows:modelling and three-dimensional waves[J]. Journal of Fluid Mechanics,2006,562:183-222.
    [56]Tihon J, Serifi K, Argyriadi K, et al. Solitary waves on inclined films:their characteristics and the effects on wall shear stress[J]. Experiments in Fluids,2006,41(1):79-89.
    [57]Mudunuri R R, Balakotaiah V. Solitary waves on thin falling films in the very low forcing frequency limit[J]. Aiche Journal,2006,52(12):3995-4003.
    [58]Wasden F K, Dukler A E. Insights into the hydrodynamics of free falling wavy films[J]. Aiche Journal, 1989,35(2):187-195.
    [59]Miyara A. Numerical simulation of wavy liquid film flowing down on a vertical wall and an inclined wall[J]. International Journal of Thermal Sciences,2000,39(9-11):1015-1027.
    [60]Yu L Q, Wasden F K, Dukler A E, et al. Nonlinear evolution of waves on falling films at high reynolds-numbers[J]. Physics of Fluids,1995,7(8):1886-1902.
    [61]Ruyer-Quil C, Manneville P. Improved modeling of flows down inclined planes[J]. European Physical Journal B,2000,15(2):357-369.
    [62]Massot C, Irani F, Lightfoo. E N. Modified description of wave motion in a falling film[J]. Aiche Journal, 1966,12(3):445.
    [63]Malamataris N A, Vlachogiannis M, Bontozoglou V. Solitary waves on inclined films:flow structure and binary interactions[J]. Physics of Fluids,2002,14(3):1082-1094.
    [64]Tihon J, Tovchigrechko V, SoboliK V, et al. Electrodiffusion detection of the near-wall flow reversal in liquid films at the regime of solitary waves[J]. Journal of Applied Electrochemistry,2003,33(7):577-587.
    [65]Bo S S, Ma X H, Lan Z, et al. Numerical simulation on wave behaviour and flow dynamics of laminar-wavy falling films:effect of surface tension and viscosity[J]. Canadian Journal of Chemical Engineering, 2012,90(1):61-68.
    [66]马学虎,薄守石,兰忠等.降液膜波动的影响因素分析[J].高校化学工程学报,2010(01):10-15.
    [67]Bo S, Ma X, Chen H, et al. Numerical simulation on vapor absorption by wavy lithium bromide aqueous solution films[J]. Heat and Mass Transfer,2011,47(12):1611-1619.
    [68]薄守石.溴化锂溶液降膜流动及传热传质的数值研究[D].大连理工大学,201].
    [69]薄守石,马学虎,兰忠,等.溴化锂溶液垂直降膜过程中流动与传热的数值模拟[J].化学反应工程与工艺,2011(02):114-120.
    [70]Spiegel L, Meier W. Distillation columns with structured packings in the next decade[J]. Chemical Engineering Research & Design,2003,81(A1):39-47.
    [71]Murrieta C R, Seibert A F, Fair J R, et al. Liquid-side mass-transfer resistance of structured packingsfJ]. Industrial & Engineering Chemistry Research,2004,43(22):7113-7120.
    [72]Sidi-Boumedine R, Raynal L. Influence of the viscosity on the liquid hold-up in trickle-bed reactors with structured packings[J]. Catalysis Today,2005,105(3-4):673-679.
    [73]Ataki A, Bart H J. Experimental and CFD simulation study for the wetting of a structured packing element with liquids[J]. Chemical Engineering & Technology,2006,29(3):336-347.
    [74]Chen J B, Liu C J, Li Y K, et al. Experimental investigation of single-phase flow in structured packing by LDV[J]. Chinese Journal of Chemical Engineering,2007,15(6):821-827.
    [75]Valluri P, Matar O K, Hewitt G F, et al. Thin film flow over structured packings at moderate Reynolds numbers[J]. Chemical Engineering Science,2005.60(7):1965-1975.
    [76]Raynal L, Royon-Lebeaud A. A multi-scale approach for CFD calculations of gas-liquid flow within large size column equipped with structured packing[J]. Chemical Engineering Science,2007,62(24SI): 7196-7204.
    [77]Kenig E Y. Complementary modelling of fluid separation processes[J]. Chemical Engineering Research & Design,2008,86(9A):1059-1072.
    [78]Ludwig W, Dziak J. CFD modelling of a laminar film flow[J]. Chemical and Process Engineering-lnzynieria Chemiczna I Procesowa,2009,30(3):417-430.
    [79]Lan H, Wegener J L, Armaly B F, et al. Developing laminar gravity-driven thin liquid film flow down an inclined plane[J]. Journal of Fluids Engineering-Transactions of the ASME,2010,132(0813018).
    [80]Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics,1981,39(1):201-225.
    [81]Adomeit P, Renz U. Hydrodynamics of three-dimensional waves in laminar falling films[J]. International Journal of Multiphase Flow,2000,26(7):1183-1208.
    [82]谷芳.规整填料局部流动与传质的计算流体力学研究[D].天津大学,2004.
    [83]谷芳,刘春江,袁希钢,等.利用CFD及结点网络相结合的方法研究规整填料传质效率[J].化工学报,2005(0).
    [84]谷芳,刘春江,袁希钢,等.倾斜波纹板上液膜流动的CFD研究[J].化工学报,2005(0).
    [85]Xu Y, Paschke S, Repke J U, et al. Portraying the countercurrent flow on packings by three-dimensional computational fluid dynamics simulations[J]. Chemical Engineering & Technology,2008,31(10): 1445-1452.
    [86]Xu Y Y, Paschke S, Repke J U, et al. Computational approach to characterize the mass transfer between the counter-current gas-liquid flow[J]. Chemical Engineering & Technology,2009,32(8):1227-1235.
    [87]Iso Y, Chen X. Flow transition behavior of the wetting flow between the film flow and rivulet flow on an inclined wall[J]. Journal Of Fluids Engineering-Transactions of the ASME,2011,133(0911019).
    [88]汪磊磊.高效溴化锂吸收式制冷循环及吸收器热质传递研究[D].天津大学,2010.
    [89]王群昌.表面涂层分布构型对降液膜流动及传热的影响[D].大连理工大学,2011.
    [90]叶学民.壁面薄膜流的热质传递和稳定性研究[D].华北电力大学(河北),2003.
    [91]Craster R V, Matar O K. Dynamics and stability of thin liquid films[J]. Reviews of Modern Physics, 2009,81(3):1131-1198.
    [92]Schagen A, Modigell M. Local film thickness and temperature distribution measurement in wavy liquid films with a laser-induced luminescence technique[J]. Experiments in Fluids,2007,43(2-3):209-221.
    [93]Negny S, Meyer M, Prevost M. Study of a laminar falling film flowing over a wavy wall column:Part Ⅰ. Numerical investigation of the flow pattern and the coupled heat and mass transfer[J]. International Journal of Heat and Mass Transfer,2001,44(11):2137-2146.
    [94]Negny S, Meyer M, Prevost M. Study of a laminar falling film flowing over a wavy wall column:Part Ⅱ. Experimental validation of hydrodynamic model[J]. International Journal of Heat and Mass Transfer, 2001,44(11):2147-2154.
    [95]Yu L M, Zeng A W.Yu K T. Effect of interfacial velocity fluctuations on the enhancement of the mass-transfer process in falling-film flow[J]. Industrial & Engineering Chemistry Research,2006,45(3): 1201-1210.
    [96]Zhang F, Zhang Z B, Geng J. Study on shrinkage characteristics of heated falling liquid films[J]. AICHE Journal,2005,51(11):2899-2907.
    [97]Zhang F, Zhao X G, Geng J, et al. A new insight into Marangoni effect in non-isothermal falling liquid films[J]. Experimental Thermal and Fluid Science,2007,31(4):361-365.
    [98]Zhang F, Wu Y T, Geng R, et al. An investigation of falling liquid films on a vertical heated/cooled plate[J]. International Journal of Multiphase Flow,2008,34(1):13-28.
    [99]Zhang F, Tang D L, Geng H, et al. Study on the temperature distribution of heated falling liquid films[J]. Physica D-Nonlinear Phenomena,2008,237(7):867-872.
    [100]Wang Q C, Ma X H, Lan Z, et al. Heat transfer characteristics of falling film process on coated division tubes:effect of the surface configurations[J]. Industrial & Engineering Chemistry Research,2010, 49(14):6622-6629.
    [101]Wang Q, Ma X, Lan Z, et al. Experimental study on mixing effect of falling film on coated division tube by thermal tracing technique[J]. Experimental Thermal and Fluid Science,2012,38:165-170.
    [102]王群昌,马学虎,陈嘉宾,等.壁面涂层构型对垂直降膜流动特性的影响[J].工程热物理学报,2007(S2):37-40.
    [103]Kim K J. Performance evaluations of LiCl and LiBr for absorber design applications in the open cycle absorption refrigeration system:Absorption Heat Pump Conference, Montreal, Canada,1996[C].
    [104]Kim K J, Berman N S, Chau D, et al. Absorption of water-vapor into falling films of aqueous lithium bromide[J]. International Journal of Refrigeration-Revue Internationale Du Froid,1995,18(7):486-494.
    [105]Kim K J, Kulankara S, Herold K E, et al. Heat transfer additives for use in high temperature applications:Absorption Heat Pump Conference, Montreal, Canada,1996[C].
    [106]Morioka I, Kiyota M, Nakao R. Absorption of water-vapor into a film of aqueous-solution of libr falling along a vertical pipe[J]. JSME International Journal Series B-Fluids and Thermal Engineering, 1993,36(2):351-356.
    [107]Beutler A, Hoffmann L, Alefeld G, et al. Experimental investigations of heat and mass transfer in film absorption on horizontal and vertical tubes:Absorption Heat Pump Conference, Montreal, Canada, 1996[C].
    [108]Miller W A. Keyhani M. The correlation of simultaneous heat and mass transfer experimental data for aqueous lithium bromide vertical falling film absorption[J]. Journal of Solar Energy Engineering-Transactions of The ASME,2001,123(1):30-42.
    [109]Kulankara S. Effect of enhancement additives on the absorption of water vapor by aqueous lithium bromide[D]. College Park:University of Maryland,1999.
    [110]Bourouis M, Valles M, Medrano M, et al. Absorption of water vapour in the falling film of water-(LiBr plus LiI+LrNO3+LiCl)in a vertical tube at air-cooling thermal conditions[J]. International Journal of Thermal Sciences,2005,44(5):491-498.
    [111]Lin S, Zhang S G. Experimental study on vertical vapor absorption into LiBr solution with and without additive[J]. Applied Thermal Engineering,2011,31(14-15):2850-2854.
    [112]薄守石,马学虎,陈嘉宾,等.场协同原理强化管外降膜吸收传热特性实验研究[J].大连理工大学学报,2008(01):18-21.
    [113]Yoon J I, Kim E, Choi K H, et al. Heat transfer enhancement with a surfactant on horizontal bundle tubes of an absorber[J]. International Journal of Heat and Mass Transfer,2002,45(4):735-741.
    [114]Hoffmann L, Greiter I, Wagner A, et al. Experimental investigation of heat transfer in a horizontal tube falling film absorber with aqueous solutions of LiBr with and without surfactantsfJ]. International Journal of Refrigeration-Revue Internationale Du Froid,1996,19(5):331-341.
    [115]Kyung I S, Herold K E. Performance of horizontal smooth tube absorber with and without 2-ethyl-hexanol[J]. Journal of Heat Transfer-Transactions of the ASME,2002,124(1):177-183.
    [116]Kim J K, Park C W, Kang Y T. The effect of micro-scale surface treatment on heat and mass transfer performance for a falling film HiO/LiBr absorber[J]. International Journal of Refrigeration-Revue Internationale Du Froid,2003,26(5):575-585.
    [117]Cosenza F, Vliet G C. Absorption in falling water/libr films on horizontal tubes[J]. ASHRAE Transactions, VOL 96, PT 1,1990:Technical and Symposium Papers Presented at the 1990 Winter Meeting,1990,96:693-701.
    [118]Deng S M, Ma W B. Experimental studies on the characteristics of an absorber using LiBr/H2O solution as working fluid[J]. International Journal of Refrigeration-Revue Internationale Du Froid,1999,22(4): 293-301.
    [119]Yoon J I, Phan T T, Moon C G, et al. Heat and mass transfer characteristics of a horizontal tube falling film absorber with small diameter tubes[J]. Heat and Mass Transfer,2008,44(4):437-444.
    [120]Me G Z, Sheng G G, Bansal P K, et al. Absorber performance of a water/lithium-bromide absorption chiller[J]. Applied Thermal Engineering,2008,28(13):1557-1562.
    [121]Bredow D, Jain P, Wohlfeil A, et al. Heat and mass transfer characteristics of a horizontal tube absorber in a semi-commercial absorption chillee[J]. International Journal of Refrigeration-Revue Internationale Du Froid,2008,31(7):1273-1281.
    [122]Harikrishnan L, Maiya M P, Tiwari S. Investigations on heat and mass transfer characteristics of falling film horizontal tubular absorber[J]. International Journal of Heat And Mass Transfer,2011,54(11-12): 2609-2617.
    [123]Flamensbeck M, Summerer F, Riesch P, et al. A cost effective absorption chiller with plate heat exchangers using water and hydroxides[J], Applied Thermal Engineering,1998,18(6):413-425.
    [124]Reay D A. Compact heat exchangers, enhancement and heat pumps[J]. International Journal of Refrigeration-Revue Internationale Du Froid,2002,25(4):460-470.
    [125]Islam M R, Wijeysundera N E, Ho J C. Performance study of a falling-film absorber with a film-inverting configuration[J]. International Journal of Refrigeration-Revue Internationale Du Froid,2003, 26(8):909-917.
    [126]Cui X Y, Shi J Z, Tan C, et al. Investigation of plate falling film absorber with film-inverting configuration[J]. Journal of Heat Transfer-Transactions of the ASME,2009,131(0720017).
    [127]严家碌,于晓福.水和水蒸气热力性质图表[M].北京:高等教育出版社,1995.
    [128]王补宣.工程热力学[M].北京:高等教育出版社,2011.
    [129]Bejan A. Entropy generation through heat and fluid flow[M]. New York:Wiley,1982.
    [130]Kotas T J. The exergy method of thermal plant analysis[M]. London, U.K.:Butterworths,1985.
    [131]Bejan A. Entropy generation minimization[M]. Boca Raton, FL:CRC Press,1996.
    [132]Bejan A, Tsatsaronis G, Moran M. Thermal design and optimization[M]. New York:Wiley,1996.
    [133]Bejan A, Mamut E, Editors. Thermodynamic optimization of complex energy systems[M]. London: Kluwer Academic Publishers,1999.
    [134]Irvine T F, Liley P E. Steam and gas tables with computer equations[M]. New York:Academic Press, 1984.
    [135]Batchelor G K. An introduction to fluid dynamics[M]. Cambridge, England:Cambridge Univ. Press, 1967.
    [136]Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics,1992,100(2):335-354.
    [137]Xu Y Y, Yuan J Q, Repke J U, et al. CFD study on liquid flow behavior on inclined flat plate focusing on effect of flow rate[J]. Engineering Applications of Computational Fluid Mechanics,2012,6(2):186-194.
    [138]Haeri S, Hashemabadi S H. Three dimensional CFD simulation and experimental study of power law fluid spreading on inclined plates[J]. International Communications in Heat and Mass Transfer,2008, 35(8):1041-1047.
    [139]Chen H X, Ma X H, Chen J B, et al. Pitting corrosion transformation of SUS304 stainless steel in lithium bromide solution at high temperature[J]. Materials and Corrosion,2009,60(5):360-364.
    [140]Chen H X, Ma X H, Bo S S, et al. Preparation of Fe/Cr doped SiO2 thin film on 304 stainless steel substrate originated from corrosion[J]. Corrosion Engineering, Science and Technology,2011,46(4): 453-457.
    [141]陈沛.垂直管外降膜吸收传热传质过程强化的研究[D].大连理工大学,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700