基于射流流场的微藻混凝共聚气浮采收基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源微藻作为一种可再生的生物质能源,具有生长周期短、油脂含量高、低污染、不占用耕地等优点,被认为是未来最有潜力替代化石燃油的生物质能源。但是,目前能源微藻的生产加工成本过高,尤其是采收环节,阻碍其产业化进程。由于微藻细胞个体小、浓度低,且稳定悬浮于培养液中,给采收带来很大的挑战。气浮法作为一种高效的固液分离方法,用于能源微藻的采收具有较大的发展潜力。但是,传统的气浮法利用空压机和填料式溶气罐进行高压溶气,噪音大、能耗高、设备维护复杂;采用机械搅拌式或结构复杂的反应器进行絮凝,停留反应时间较长,且需要额外的能耗,增加运行成本;气泡与絮体只是通过简单的逆流接触碰撞的方式,粘附效率低、牢固性差。
     基于以上问题,本文在传统气浮法和矿物浮选的基础上,研发了基于射流流场的能源微藻混凝共聚气浮采收系统。系统主要由溢流鼓泡式溶气系统、射流释气混合器、螺旋混凝共聚反应器、嵌套式气浮柱4部分构成。通过射流释气混合器与混凝共聚反应器相结合,让气泡直接参与微藻混凝的过程,在絮体中成核,使更多的气泡被包裹在絮体中,形成“絮体-气泡”共聚复合体,实现了集释气、混药、混凝、粘附为一体的微藻混凝共聚气浮采收。在此基础上对采收条件和作用机理进行了试验研究和理论分析,最终建立了能源微藻混凝共聚气浮采收的技术理论体系。
     论文首先对溢流鼓泡式溶气系统和射流释气混合器的溶释气效能进行试验研究,考察溶气压力、气液比、流量比、溢流水高度、表面活性剂对释气量和气泡粒径分布的影响。结果表明,增加溶气压力可提高释气量,减小气泡粒径分布,但溶气效率降低;随着气液比的增加,释气量变化较小,气泡平均直径增加;流量比对射流流场影响较大,过大或过小的流量比都会减小释气量,增加气泡的平均直径;随着溢流高度增加,溶气停留时间增加,释气量相应增加,同时气泡平均直径逐渐减小;表面活性剂可降低水的表面张力,抑制气泡兼并,形成的气泡更加微细,同时,由于形成微气泡与溶气水共存的混合水流,增加释气量。通过溶气和释气条件进行优化,该溶气释气系统实现低压高效溶气释气,在压力0.2MPa,溶气效率为96.4%,气泡直径在50-60μm分布。
     为了研究射流流场的释气机理,对射流释气混合器的气泡析出进行热力学分析,结果表明,析出微气泡的大小与溶气压力和释气压降有关,提高溶气压力和增加释气压降,使释放出的微气泡更小,分布更均匀;同时,结合伯努利方程、物料守衡、射流泵理论方程对射流释气混合器进行分段式能量分析,推导出各段的能量转化效率公式,并简化相应参数,计算出流量80L/h,流量比0.1时的能量转化效率,结果表明,释气能量耗散主要在喉管入口和喉管段完成;最后通过Fluent流场模拟软件对射流释气流场进行数值模拟,考察流量比对压力降、能量耗散速率、紊流强度的影响,结果表明,流量比在0.1-0.15间,基于射流流场环境的释气效率较好。
     通过正交试验考察了凝聚剂、絮凝剂、pH、混药时间、混凝时间对微藻混凝气浮效率和絮体结构的影响。结果表明,除混药搅拌时间表现不显著外,其它几个因素具有一定的显著性。在正交组合条件下,凝聚剂和絮凝剂用量分别为20,15mg/L、pH为6、混药时间30s、混凝时间10min时,混凝气浮效果最好,气浮采收率高达95.31%。在此基础上,对射流释气混合器的射流流场的混药性能进行优化试验研究,结果分析表明,流量比在0.1-0.2范围,射流流场对药剂的混合效果最佳。
     设计制作了螺旋混凝共聚反应器,使气泡直接参与微藻细胞的混凝过程,气泡在絮体中成核,随絮体一起并大,形成“絮体-气泡”共聚复合体。并与射流释气混合器相结合,实现集释气、混药、混凝、粘附为一体的微藻混凝共聚。由絮体图像显微系统观察可知:该反应器较传统的逆流接触絮凝,形成的絮体包裹气泡数更多,粘附更牢固。通过试验对反应器的结构参数和操作条件进行优化研究,初步建立了流场参数和停留时间对混凝共聚效果的影响关系,并引入狄恩常数和杰曼诺常数对螺旋混凝共聚反应器的流场进行较为准确的描述,为反应器的结构的进一步优化建立了理论基础。
     由碰撞粘附机理和效率动力学模型可知,气泡与絮体的碰撞粘附效率与二者的大小有关。在此基础上,通过试验考察混凝共聚反应器中絮体大小和气泡大小对气浮效率和带气絮体上浮速率的影响,从而间接反应二者的碰撞粘附效率。结果表明,在保证絮体结构较为紧密的条件下,增加絮体粒径和减小气泡大小可提高二者的粘附效率,从而提高混凝共聚效率。同时,由试验研究发现,适量的表面活性剂有利于增加细胞表面的憎水基团,提高絮体与气泡的粘附紧密性和粘附数量,但过量时会阻碍絮体与气泡的粘附。
     设计制作了嵌套式气浮柱,并进行了分段动力学模型分析,在此基础上,通过试验研究,考察气浮柱结构和操作参数对气浮分离效率的影响。结果分析表明,外内筒直径比Rd对分离静态环境影响较大,过大时,紊流强度较大,影响絮体结构和静态分离环境。过小时,增加过渡区长度和浊度,影响底流出水澄清度;管流加速段高度应高于过渡区长度,否则底流出水浊度较大;分离区高度过低时,管流加速段出口对分离区静态分离环境扰动较大,影响气浮效率。过高时,由于壁面摩擦和壁面粘附等影响絮体上浮;在保证采收率变化不大的情况下,可通过增加底流和溢流的流量比提高浮出物的浓缩倍率。
     在整个微藻混凝共聚气浮采收系统的条件和结构优化的基础上,对实验室小规模的气浮采收系统进行经济效率分析。结果表明,入料流量200L/h时,能耗较低,2.72kW h/kg(干重),浓缩倍率为24.9。以此为基础,计算了实验和工业规模的采收成本,分别为1.94,1.45元/kg(干重),低于常规微藻采收方法,并在能源微藻采收成本要求范围,因此证明该系统适用于能源微藻的采收,具有一定的推广价值。
As a renewable biomass energy, energy microalgae has the advantages of short growthperiod, high oil content, low pollution and no land occupation, has been considered the mostpromising future to replace the fossil fuel of biomass energy. However, the current energymicroalgae production and processing costs are too high, especially the recovery process,hindering its industrialization process. As the microalgae cells are small, low concentration, andstable suspended in culture medium, which brought great challenges to the harvest. Flotation asan efficient solid-liquid separation method, has great development potential for harvestingenergy microalgae. However, the dissolved air system of traditional flotation(TF) consituted a aircompressor and filler-type dissolved air tank has shortcoming of noise, high energy consumption,maintaining complex. The mechanical stirring or a complex structure of reactor are used in TFfor flocculation. Reaction time is long and additional energy consumption is needed, whichincrease operating costs. The adhesion efficiency between bubble and floc by countercurrentcontact in TF is low, and the structure of floc is loose.
     On account of the above problems, this study based on the traditional flotation and mineralflotation was carried out, and a microalgae coagulation copolymerization flotation sytem basedon jet flow field consists of verflow bubbling system, jet release mix reactor(JRMR), spiralcoagulation copolymerization reactor(CCR), and nested flotation column, is established. In thissystem bubbles nucleated in flocs are added to the process of microalgae coagulation.Floc-bubble copolymers adhered more bubbles are produced in this system, which achieverelease air, mixing, coagulation, adhesion as a whole microalgae coagulation-copolymerizationflotation. On this basis, a series of optimization expirements and theoretical analysis were carriedout, and technical theory of microalgae coagulation copolymerization flotation was built.
     Firstly, a series of experiments on dissolved and released air efficiency of overflowbubbling system and JRMR were carried out to study the effects of dissolved air pressure,gas-liquid ratio, flow ratio, overflow height, surfactant on released air volume and bubble sizedistribution. The results show that with the increasing of dissolved air pressure, the released airvolume increased and the average diameter of bubbles reduced, but the efficiency of dissolvedair decreased. When the gas-liquid ratio increases, the average diameter of bubbles increased, butthe released air volume changed little. Effect of flow rate on the jet flow field is large, too largeor small flow ratio will reduce the release of gas, and increase the average diameter of bubbles.With the overflow height increased, the residence time of dissolved air increases, so the averagediameter of bubbles increased, and the average bubble diameter decreases. Surfactant canreduces the surface tension of water, inhibition of bubble coalescence, form more fine bubbles, at the same time, due to the formation of micro bubbles and dissolved air water mixed flow,increase the released air volume. The low dissolved air pressure and high released air efficiencycan been achieved by this system under the optimal conditions. At a pressure of0.2MPa, thedissolved air efficiency is96.4%and the bubbles diameter range is50-60μm.
     In order to study the mechanism of released air in jet flow field, thermodynamic analysiswas performed on the JRMR. The results show that bubble size is related to dissolved airpressure, which the higher dissolved air pressure and released air pressure difference, the smallerbubble. At the same time, by using the bernoulli equation, the material balance and thetheoretical equation of jet pump to analysis of segmented energy on JRMR, the energyconversion efficiency formulas are deduced, and simplify the corresponding parameters,calculate the flow rate80L/h, the flow ratio of0.1energy conversion efficiency. It shows that,the air released energy dissipation complete mainly at the throat and throat entrance; Finally, theflow field of the JRMR is simulated by Fluent, and the influence of flow ratio on pressure drop,the energy dissipation rate, turbulent intensity were studied. The results show that, the flow ratiobetween0.1-0.15, the efficiency of gas release based on the jet flow environment is better.
     Coagulant, flocculant, pH, mixing time, coagulation time effect of coagulation flotationefficiency and floc structure of microalgae was investigated by orthogonal test. The results showthat, in addition to mixing and stirring time performance is not significant, several other factorshave significant certain. In the conditions of orthogonal combination, when the coagulant andflocculant dosage were20,15mg/L, pH6, mixing time30s, coagulation time10min, coagulationflotation efficiency is best, the recovery rate as high as95.31%. On this basis, to optimize theexperimental study about the mixing performance of jet flow field of JRMR, results show that,when the flow ratio in the range of0.1-0.2, jet flow field for coagulant and flocculant mixing isbest.
     CCR was dsigned and manufactured for coagulation copolymerization of microalgae.In thisreactor, the bubble is directly involved in the coagulation process of microalgae cells, bubblenucleation in flocs, together with the floc become big, to form the "floc-bubble" copolymer. Andwith JRMR combined, realize the integration of released air, mixing, coagulation, adhere formicroalgae coagulation copolymerization. Aerated flocs formed in CCR adhere more bubblesand more strong than them in the traditional countercurrent contact flocculation. Theoptimization experiments of structural parameters and operating conditions of CCR were carriedout, and the effect of flow parameters and residence time on microalgae coagulationcopolymerization was estabished. The Dean number and Germano number were introduced todescribe the coagulation flow field of CCR, which established theoretical basis for structuraloptimization of CCR.
     According to mechanism and dynamics of adhesion, the adhesion efficiency of bubbles andfloc relative to the size of them. On this basis, a series of experiments were carried out to studythe effect of floc size and bubble size on flotation efficiency and floc floating rate, therebyindirectly reaction the adhesion efficiency. The results show that, when the floc more compactly,the adhesion efficiency of flocs and bubble will been improved by increasing the floc size orreducing the bubble size. Meanwhile, the experimental results indicate that proper quantitysurfactant are better to increase the hydrophobic groups of cells, and the structrue of aeratedflocs adhered many more bubbles is more compactly.
     The nested flotation column was designed, and its dynamics models were establishedpiecewise. On this basis, the effect of structrue and operating parameters of flotation column onseparation efficiency was studied. Results show that, the outer and inner tube diameter ratiohas a great influence on the static separation environment, when the is too large, turbulentintensity is large, affect the floc structure and static separation environment. When the is toosmall, increase the length of transition zone and turbidity, affect the clarity of bottom water. Pipeflow acceleration section height should be higher than the length of transition zone, otherwise theturbidity of the bottom outflow water will be increased. When the height of separation zone islow, its flow field will been disturbed. When the height of separation zone is high, the separationefficiency may been reduced by wall effect. The concentration factor(CF) can been improved byincreased the flow ratio of underflow and overflow.
     Finally, the economic efficiency of Microalgae coagulation-copolymerization flotationsystem in lab scale was analysised. Results shows that when the feeding flow is200L/h, thelower energy will been consumed,2.72kW h/kg(dry weight), in the meantime CF of24.9will beobtained. On this basis, the recovery cost of experimental and industrial scale were calculated,respectively is1.94,1.45yuan/kg (dry weight), lower than that of conventional microalgaerecovery method, and meet the energy of microalgae recovery cost requirements, so that thesystem is suitable for harvesting energy microalgae, and has a certain popularization value.
引文
[1]江泽民.对中国能源问题的思考[J].中国石油和化工经济分析,2008,(06):4-16.
    [2]石定寰.中国可再生能源装备的发展和方向[J].商务周刊,2010,(19).
    [3]开启余.生物质(能源)产业发展现状及趋势[J].农机化研究,2010,(11).
    [4] Chisti Y. Biodiesel from Microalgae [J]. Biotechnology Advances,2007,25(3):294-306.
    [5]孔维宝,华绍烽,宋昊, et al.利用微藻生产生物柴油的研究进展[J].中国油脂,2010,(08).
    [6]李臣.微藻生物柴油研究进展[J].安徽农业科学,2010,(27).
    [7]冯普凌.藻类:未来能源希望之光[J].中国石化,2010,(07).
    [8] Ayhan D. Use of Algae as Biofuel Sources [J]. Energy Conversion and Management,2010,51(12):2738-2749.
    [9] Nyomi Uduman Y Q, Michael K. Danquah, Gareth M. Forde, and Andrew Hoadley. Dewatering ofMicroalgal Cultures: A Major Bottleneck to Algae-Based Fuels [J]. Journal of Renewable Sustainable Energy,2010,(2):012707.
    [10] Chen J-J, Yeh H-H, Tseng I C. Effect of Ozone and Permanganate on Algae Coagulation Removal–Pilotand Bench Scale Tests [J]. Chemosphere,2009,74(6):840-846.
    [11] Chen C-Y, Yeh K-L, Aisyah R, et al. Cultivation, Photobioreactor Design and Harvesting of Microalgaefor Biodiesel Production: A Critical Review [J]. Bioresource Technology,2011,102(1):71-81.
    [12] Edzwald J K. Dissolved Air Flotation and Me [J]. Water Research,2010,44(7):2077-2106.
    [13]李秀辰,牟晨晓,母刚, et al.海洋微藻的加压气浮采收工艺研究[J].大连海洋大学学报,2012,27(4):355-359.
    [14]林喆,匡亚莉,郭进, et al.微藻采收技术的进展与展望[J].过程工程学报,2009,9(06):1242-1248.
    [15]高莉丽,江怀真,刘天中.紫球藻溶气气浮法采收条件研究[J].中国海洋大学学报(自然科学版),2010,(11).
    [16] Cheng Y-L, Juang Y-C, Liao G-Y, et al. Dispersed Ozone Flotation of Chlorella Vulgaris [J]. BioresourceTechnology,2010,101(23):9092-9096.
    [17]曾文炉,李浩然,丛威, et al.微藻细胞的气浮法采收[J].海洋通报,2002,21(3):55-61.
    [18] Maruyama H, Seki H, Suzuki A. Flotation of Blue-Green Algae Using Methylated Egg Ovalbumin [J].Chemical Engineering Journal,2009,155(1-2):49-54.
    [19] Zhang J, Hu B. A Novel Method to Harvest Microalgae Via Co-Culture of Filamentous Fungi to FormCell Pellets [J]. Bioresource Technology,2012,114(0):529-535.
    [20] Park J B K, Craggs R J, Shilton A N. Recycling Algae to Improve Species Control and Harvest Efficiencyfrom a High Rate Algal Pond [J]. Water Research,2011,45(20):6637-6649.
    [21] Kim D-G, La H-J, Ahn C-Y, et al. Harvest of Scenedesmus Sp. With Bioflocculant and Reuse of CultureMedium for Subsequent High-Density Cultures [J]. Bioresource Technology,2011,102(3):3163-3168.
    [22] Olaizola M. Commercial Development of Microalgal Biotechnology: From the Test Tube to theMarketplace [J]. Biomolecular Engineering,2003,20(4–6):459-466.
    [23] Wu Z, Zhu Y, Huang W, et al. Evaluation of Flocculation Induced by Ph Increase for HarvestingMicroalgae and Reuse of Flocculated Medium [J]. Bioresource Technology,2012,110(0):496-502.
    [24] Vandamme D, Foubert I, Muylaert K. Flocculation as a Low-Cost Method for Harvesting Microalgae forBulk Biomass Production [J]. Trends in Biotechnology,(0).
    [25] Dassey A J, Theegala C S. Harvesting Economics and Strategies Using Centrifugation for Cost EffectiveSeparation of Microalgae Cells for Biodiesel Applications [J]. Bioresource Technology,2013,128(0):241-245.
    [26] Prochazkova G, Safarik I, Branyik T. Harvesting Microalgae with Microwave Synthesized MagneticMicroparticles [J]. Bioresource Technology,2013,130(0):472-477.
    [27] Zheng H, Gao Z, Yin J, et al. Harvesting of Microalgae by Flocculation with Poly (Γ-Glutamic Acid)[J].Bioresource Technology,2012,112(0):212-220.
    [28] Salim S, Vermu M H, Wijffels R H. Ratio between Autoflocculating and Target Microalgae Affects theEnergy-Efficient Harvesting by Bio-Flocculation [J]. Bioresource Technology,2012,118(0):49-55.
    [29] Barrut B, Blancheton J-P, Muller-Feuga A, et al. Separation Efficiency of a Vacuum Gas Lift forMicroalgae Harvesting [J]. Bioresource Technology,2013,128(0):235-240.
    [30] Xu L, Guo C, Wang F, et al. A Simple and Rapid Harvesting Method for Microalgae by in Situ MagneticSeparation [J]. Bioresource Technology,2011,102(21):10047-10051.
    [31] Sim T S, Goh A, Becker E W. Comparison of Centrifugation, Dissolved Air Flotation and Drum FiltrationTechniques for Harvesting Sewage-Grown Algae [J]. Biomass,1988,16(1):51-62.
    [32]叶正祥.生物大分子离心分离技术[M].长沙:湖南科学技术出版社,1990:1-30.
    [33] M Heasman J D, W O'connor, T Sushames, L Foulkes. Development of Extended Shelf-Life MicroalgaeConcentrate Diets Harvested by Centrifugation for Bivalve Molluscs-a Summary [J]. Aquaculture Research,2000,31(8):637-659.
    [34] Molina Grima E, Belarbi E H, Acién Fernández F G, et al. Recovery of Microalgal Biomass andMetabolites: Process Options and Economics [J]. Biotechnology Advances,2003,20(7–8):491-515.
    [35]杨守志,孙德堃,何方箴.固液分离[M].北京:冶金工业出版社,2003:86-198.
    [36] Mohn F H. Experiences and Strategies in the Recovery of Biomass from Mass Cultures of Microalgae [J].Algae biomass,1980,23(2):71-547.
    [37] Rossignol N, Vandanjon L, Jaouen P, et al. Membrane Technology for the Continuous SeparationMicroalgae/Culture Medium: Compared Performances of Cross-Flow Microfiltration and Ultrafiltration [J].Aquacultural Engineering,1999,20(3):191-208.
    [38] Zhang X, Hu Q, Sommerfeld M, et al. Harvesting Algal Biomass for Biofuels Using UltrafiltrationMembranes [J]. Bioresource Technology,2010,101(14):5297-5304.
    [39] Bilad M R, Vandamme D, Foubert I, et al. Harvesting Microalgal Biomass Using SubmergedMicrofiltration Membranes [J]. Bioresource Technology,2012,111(0):343-352.
    [40] Mackay D, Salusbury T. Choosing between Centrifugation and Crossflow Microfiltration [J]. ChemicalEngineering and Processing: Process Intensification,1988,45(302):45-50.
    [41] Babel S, Takizawa S. Microfiltration Membrane Fouling and Cake Behavior During Algal Filtration [J].Desalination,2010,261(1–2):46-51.
    [42] Ladner D A, Vardon D R, Clark M M. Effects of Shear on Microfiltration and Ultrafiltration Fouling byMarine Bloom-Forming Algae [J]. Journal of Membrane Science,2010,356(1–2):33-43.
    [43] Peer M. Schenk S R T-H, Evan Stephens, Ute C. Marx, Jan H. Mussgnug, Clemens Posten, Olaf Kruse,Ben Hankamer. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production [J].BioEnergy Research,2008,1(1):20-43.
    [44]张海阳,匡亚莉,林喆, et al.小球藻细胞表面特征研究[J].中国矿业大学学报,2013,42(1):112-116.
    [45]高莉丽,刘天中,张维, et al.小球藻的絮凝沉降及溶气气浮采收研究[J].海洋科学,2010,34(12):46-51.
    [46]张芳,程丽华,徐新华, et al.能源微藻采收及油脂提取技术[J].化学进展,2012,24(10):2063-2072.
    [47] Sema irin R T, Carles Ibanez, Joan Salvadó. Harvesting the Microalgae Phaeodactylum Tricornutumwith Polyaluminum Chloride, Aluminium Sulphate, Chitosan and Alkalinity-Induced Flocculation [J]. Journalof Applied Phycology,2012,24(5):1067-1080.
    [48] González López C V, Acién Fernández F G, Fernández Sevilla J M, et al. Utilization of the CyanobacteriaAnabaena Sp. Atcc33047in Co2Removal Processes [J]. Bioresource Technology,2009,100(23):5904-5910.
    [49] Horiuchi J-I, Ohba I, Tada K, et al. Effective Cell Harvesting of the Halotolerant Microalga DunaliellaTertiolecta with Ph Control [J]. Journal of Bioscience and Bioengineering,2003,95(4):412-415.
    [50]吕乐,杨晓静,关珊珊, et al.壳聚糖一纳米金属絮凝剂絮凝沉降水华蓝藻研究[J].环境工程学报,2010,4(3):521-525.
    [51]陈翼孙,胡斌.气浮净水技术的研究与应用[M].上海:上海科学技术出版社,1985:1-40.
    [52]朱兆亮,曹相生.气浮净水工艺述评[J].环境科学与技术,2008,31(8):55-58.
    [53]王广丰,熊永超.原水流态对气浮净水固液分离效率的影响[J].辽宁工程技术大学学报:自然科学版,2008,27(2):269-271.
    [54]杨勇,王广丰,刘龙.气泡直径与气浮净水效果关系的分析[J].工业用水与废水,2007,38(4):18-20.
    [55]王毅力,汤鸿霄.气浮净水技术研究及进展[J].环境科学进展,1999,7(6):94-103.
    [56]赵培培.细粒矿物浮选技术和高效浮选柱研究进展[J].金属矿山,2011,(12):78-81.
    [57]葛英勇,侯静涛,余俊.微细粒矿物浮选技术进展[J].金属矿山,2010,(12):90-94.
    [58]张旭.磷矿物浮选药剂的应用现状[J].矿业快报,2008,24(4):10-12.
    [59] Teixeira M R, Rosa M J. Comparing Dissolved Air Flotation and Conventional Sedimentation to RemoveCyanobacterial Cells of Microcystis Aeruginosa: Part I: The Key Operating Conditions [J]. Separation andPurification Technology,2006,52(1):84-94.
    [60] Coward T, Lee J G M, Caldwell G S. Development of a Foam Flotation System for HarvestingMicroalgae Biomass [J]. Algal Research,2013,2(2):135-144.
    [61] Chen Y M, Liu J C, Ju Y-H. Flotation Removal of Algae from Water [J]. Colloids and Surfaces B:Biointerfaces,1998,12(1):49-55.
    [62] Graeme J J. Hydrophobicity and Floc Density in Induced-Air Flotation for Water Treatment [J]. Colloidsand Surfaces A: Physicochemical and Engineering Aspects,1999,151(1-2):269-281.
    [63] Teixeira M R, Sousa V, Rosa M J. Investigating Dissolved Air Flotation Performance with CyanobacterialCells and Filaments [J]. Water Research,2010,44(11):3337-3344.
    [64]郑毅.微藻细胞培养与采收研究[D].北京:北京化工大学,2003.95.
    [65]高莉丽.微藻的溶气气浮采收技术研究[D].青岛:中国海洋大学,2010.66.
    [66] Rubio J, Souza M L, Smith R W. Overview of Flotation as a Wastewater Treatment Technique [J].Minerals Engineering,2002,15(3):139-155.
    [67] Zhenga Y Y, Zhaoa C C. A Study of Kinetics on Induced-Air Flotation for Oil-Water Separation [J].Separation Science and Technology,1993,28(5):1233-1240.
    [68] Cheng Y-L, Juang Y-C, Liao G-Y, et al. Harvesting of Scenedesmus Obliquus Fsp-3Using DispersedOzone Flotation [J]. Bioresource Technology,2011,102(1):82-87.
    [69] Nguyen T L, Lee D J, Chang J S, et al. Effects of Ozone and Peroxone on Algal Separation Via DispersedAir Flotation [J]. Colloids and Surfaces B: Biointerfaces,2013,105(0):246-250.
    [70] Johannes H. Dissolved Air Flotation: Progress and Prospects for Drinking Water Treatment [J]. Researchand Technology,2008,57(8):555-567.
    [71] Koopman B, Lincoln E P. Autoflotation Harvesting of Algae from High-Rate Pond Effluents [J].Agricultural Wastes,1983,5(4):231-246.
    [72] Edzwald J K. Lgae, Bubbles, Coagulants, and Dissolved Air Flotation [J]. Water Science&Technology,1993,27(10):67-81.
    [73]张爱群,刘长岩.利用气浮法采收盐藻的研究[J].海湖盐与化工,1997,26(3):7-9.
    [74]曾文炉,李宝华,石红, et al.低溶气压力下微藻细胞的气浮法采收[J].工业微生物,2002,(01):13-18.
    [75]曾文炉,李宝华,蔡昭铃, et al.微藻细胞的连续气浮法采收[J].水生生物学报,2003,27(5):507-511.
    [76] Gao S, Yang J, Tian J, et al. Electro-Coagulation–Flotation Process for Algae Removal [J]. Journal ofHazardous Materials,2010,177(1–3):336-343.
    [77] Uduman N, Bourniquel V, Danquah M K, et al. A Parametric Study of Electrocoagulation as a RecoveryProcess of Marine Microalgae for Biodiesel Production [J]. Chemical Engineering Journal,2011,174(1):249-257.
    [78]张仁瑞,杨伟华.气浮―生化―气浮法处理皮革废水[J].江苏环境科技,1998,2(1):11-13.
    [79]梁为民.凝聚与絮凝[M].北京:冶金工业出版社,1987:1-4.
    [80] R.艾克斯.絮凝技术[M].北京:原子能出版社,1981:1-92.
    [81] Edzwald J K. Principles and Applications of Dissolved Air Flotation [J]. Water Science and Technology,1995,31(3–4):1-23.
    [82] Chen J-J, Yeh H-H. The Mechanisms of Potassium Permanganate on Algae Removal [J]. Water Research,2005,39(18):4420-4428.
    [83] Bache D H, Johnson C, McGilligan J F, et al. A Conceptual View of Floc Structure in the Sweep FlocDomain [J]. Water Science and Technology,1997,36(4):49-56.
    [84] Jiang J-Q, Graham N J D. Pre-Polymerised Inorganic Coagulants for Treating Water and Waste Water [J].Chemistry&Industry,1997,10:388–391.
    [85] La Mer V K. Coagulation Symposium Introduction [J]. Journal of Colloid Science,1964,19(4):291-293.
    [86]刘青.逆流絮凝气浮技术处理含油污水的实验研究[D].青岛:中国石油大学,2008.
    [87] Packham R F. Some Studies of the Coagulation of Dispersed Clays with Hydrolyzing Salts [J]. Journal ofColloid Science,1965,20(1):81-92.
    [88]湛含辉,张晓琪,罗定提.混凝机理的研究现状及其定义[J].株洲工学院学报,2003,17(5):1-4.
    [89] Trinh T K, Kang L S. Response Surface Methodological Approach to Optimize theCoagulation–Flocculation Process in Drinking Water Treatment [J]. Chemical Engineering Research andDesign,2011,89(7):1126-1135.
    [90] Qin J-J, Oo M H, Kekre K A, et al. Impact of Coagulation Ph on Enhanced Removal of Natural OrganicMatter in Treatment of Reservoir Water [J]. Separation and Purification Technology,2006,49(3):295-298.
    [91] O'Melia C R. Coagulation and Sedimentation in Lakes, Reservoirs and Water Treatment Plants [J]. WaterScience and Technology,1998,37(2):129-135.
    [92] Liu T, Chen Z-l, Yu W-z, et al. Effect of Two-Stage Coagulant Addition on Coagulation-UltrafiltrationProcess for Treatment of Humic-Rich Water [J]. Water Research,2011,45(14):4260-4268.
    [93] Konieczny K, S kol D, P onka J, et al. Coagulation—Ultrafiltration System for River Water Treatment [J].Desalination,2009,240(1–3):151-159.
    [94] Kan C, Huang C. Coagulation Monitoring in Surface Water Treatment Facilities [J]. Water Science andTechnology,1998,38(3):237-244.
    [95] Jiang J-Q, Graham N, AndréC, et al. Laboratory Study of Electro-Coagulation–Flotation for WaterTreatment [J]. Water Research,2002,36(16):4064-4078.
    [96] Yang Z, Gao B, Cao B, et al. Effect of Oh/Al3+Ratio on the Coagulation Behavior and ResidualAluminum Speciation of Polyaluminum Chloride (Pac) in Surface Water Treatment [J]. Separation andPurification Technology,2011,80(1):59-66.
    [97] Jiang J-Q. Development of Coagulation Theory and Pre-Polymerized Coagulants for Water Treatment [J].Separation&Purification Reviews2007,30(1):127-141.
    [98] Matilainen A, Veps l inen M, Sillanp M. Natural Organic Matter Removal by Coagulation DuringDrinking Water Treatment: A Review [J]. Advances in Colloid and Interface Science,2010,159(2):189-197.
    [99] Heng L, Jun N, Wen-jie H, et al. Algae Removal by Ultrasonic Irradiation–Coagulation [J]. Desalination,2009,239(1–3):191-197.
    [100] Zhao X, Zhang Y. Algae-Removing and Algicidal Efficiencies of PolydiallyldimethylammoniumChloride Composite Coagulants in Enhanced Coagulation Treatment of Algae-Containing Raw Water [J].Chemical Engineering Journal,2011,173(1):164-170.
    [101] Qiaohui S, Jianwen Z, Lihua C, et al. Enhanced Algae Removal by Drinking Water Treatment ofChlorination Coupled with Coagulation [J]. Desalination,2011,271(1–3):236-240.
    [102] Wu C-D, Xu X-J, Liang J-L, et al. Enhanced Coagulation for Treating Slightly PollutedAlgae-Containing Surface Water Combining Polyaluminum Chloride (Pac) with Diatomite [J]. Desalination,2011,279(1–3):140-145.
    [103] Henderson R K, Parsons S A, Jefferson B. The Impact of Differing Cell and Algogenic Organic Matter(Aom) Characteristics on the Coagulation and Flotation of Algae [J]. Water Research,2010,44(12):3617-3624.
    [104] Lee D-J, Liao G-Y, Chang Y-R, et al. Coagulation-Membrane Filtration of Chlorella Vulgaris [J].Bioresource Technology,2012,108(0):184-189.
    [105] Ahmad A L, Mat Yasin N H, Derek C J C, et al. Optimization of Microalgae Coagulation Process UsingChitosan [J]. Chemical Engineering Journal,2011,173(3):879-882.
    [106] Smith B T, Davis R H. Sedimentation of Algae Flocculated Using Naturally-Available,Magnesium-Based Flocculants [J]. Algal Research,2012,(0):1-8.
    [107] Babel S, Takizawa S. Chemical Pretreatment for Reduction of Membrane Fouling Caused by Algae [J].Desalination,2011,274(1–3):171-176.
    [108] Millamena O M, Aujero E J, Borlcmgan I G. Techniques on Algae Harvesting and Preservation for Usein Culture and as Larval Food [J]. Aquacultural Engineering,1990,9(5):295-304.
    [109] Lavoie A, Noüe J d l. Harvesting Microalgae with Chitosan [J]. Journal of the World Mariculture Society,2009,14(1-4):685-694.
    [110]单忠健,狄平宽,濮贵新.气泡—絮粒的粘附[J].水处理技术,1989,(02):61-65.
    [111] Schulze H J, St ckelhuber K W, Wenger A. The Influence of Acting Forces on the Rupture Mechanismof Wetting Films—Nucleation or Capillary Waves [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2001,192(1–3):61-72.
    [112] Derjaguin B V. Some Results from50Years' Research on Surface Forces [J]. Surface Forces andSurfactant Systems,1987,74:17-30.
    [113] Levich V G. Physicochemical Hydrodynamics [M]. Prentice-Hall,1962:700.
    [114] Ven T G M v d. Colloidal Hydrodynamics [M]. London [etc.]: Academic Press,1989:578.
    [115] Edwards D A, Brenner H, Wasan D T. Interfacial Transport Processes and Rheology [M]. Boston [etc.]:Butterworth-Heinemann,1991:558.
    [116] Derjaguin B V, Dukhin S S. Theory of Flotation of Small and Medium-Size Particles [J]. Progress inSurface Science,1993,43(1–4):241-266.
    [117] Hewitt D, Fornasiero D, Ralston J. Bubble–Particle Attachment [J]. Journal of the Chemical Society,Faraday Transactions,1995,91:1997-2001.
    [118] Langmuir I, Blodgett K. Mathematical Investigation of Water Droplet Trajectories [M].1946:175.
    [119] Sutherland K L. Physical Chemistry of Flotation. Xi. Kinetics of the Flotation Process [J]. PhysicalChemistry,1948,52(2):394–425.
    [120] Dai Z, Fornasiero D, Ralston J. Particle–Bubble Collision Models—a Review [J]. Advances in Colloidand Interface Science,2000,85(2–3):231-256.
    [121] Yoon R H. The Role of Hydrodynamic and Surface Forces in Bubble–Particle Interaction [J].International Journal of Mineral Processing,2000,58(1–4):129-143.
    [122] Flint L R, Howarth W J. The Collision Efficiency of Small Particles with Spherical Air Bubbles [J].Chemical Engineering Science,1971,26(8):1155-1168.
    [123] Anfruns J F, Kitchener J A. Rate of Capture of Small Particles in Solution [J]. Trans. Inst. Min.Metall,1977,86(2):9-15.
    [124] Weber M E, Paddock D. Interceptional and Gravitational Collision Efficiencies for Single Collectors atIntermediate Reynolds Numbers [J]. Journal of Colloid and Interface Science,1983,94(2):328-335.
    [125] YOON R H, LUTTRELL G H. The Effect of Bubble Size on Fine Particle Flotation [J]. MineralProcessing and Extractive Metallurgy Review: An International Journal1989,5(1-4):101-122.
    [126] SCHULZE H J. Hydrodynamics of Bubble-Mineral Particle Collisions [J]. Mineral Processing andExtractive Metallurgy Review: An International Journal1989,5(1-4): H. J. SCHULZEa
    [127] Nguyen Van A, Kme S. Collision Efficiency for Fine Mineral Particles with Single Bubble in aCountercurrent Flow Regime [J]. International Journal of Mineral Processing,1992,35(3–4):205-223.
    [128] Ralston J, Fornasiero D, Hayes R. Bubble–Particle Attachment and Detachment in Flotation [J].International Journal of Mineral Processing,1999,56(1–4):133-164.
    [129] Dobby G S, Finch J A. Particle Size Dependence in Flotation Derived from a Fundamental Model of theCapture Process [J]. International Journal of Mineral Processing,1987,21(3–4):241-260.
    [130] Jowett A. Formation and Disruption of Particle-Bubble Aggregates in Flotation [A]. Las Vegas [C].1980.720-754.
    [131]李同卓郑陆邓向.蒙特卡罗法对射流泵模型内部流场的数值模拟[J].华北水利水电学院学报,2005,26(01):42-44.
    [132]何培杰吕龙陆.喷射泵内部流动数值分析[J].核动力工程,2005,26(02):135-139.
    [133]陆宏圻,陆东宏.喷射技术研究及其发展空间展望[J].前沿科学,2011,5(03):32-39.
    [134]何培杰龙梁刘陆.射流泵流场的piv测量[J].水科学进展,2004,25(03):296-299.
    [135]
    [136] Shtern V. Cosmic Jets as a Pump for the Magnetic Field [J]. Physics Letters A,1995,206(1–2):96-100.
    [137] Bayley R W, Biggs C A. Evaluation of the Jet Pump Scrubber as a Novel Approach for Soil Remediation[J]. Process Safety and Environmental Protection,2005,83(4):381-386.
    [138] Sonnenberg K, Deksnis E, Shaw R, et al. Jet Pump Limiter [J]. Journal of Nuclear Materials,1989,162–164(0):674-679.
    [139] Elliott D G. Liquid Helium Transfer with a Two-Phase Jet Pump [J]. Cryogenics,1986,26(2):90-92.
    [140] Beithou N, Aybar H S. A Mathematical Model for Steam-Driven Jet Pump [J]. International Journal ofMultiphase Flow,2000,26(10):1609-1619.
    [141] Doms M, Mueller J. A Micromachined Vapor Jet Pump [J]. Sensors and Actuators A: Physical,2005,119(2):462-467.
    [142] Neve R S. The Performance and Modeling of Liquid Jet Gas Pumps [J]. International Journal of Heatand Fluid Flow,1988,9(2):156-164.
    [143] Salam T F, Gibbs B M. Solid Circulation between Fluidized Beds Using Jet Pumps [J]. PowderTechnology,1987,52(2):107-116.
    [144] Liao L-Y. Study and Application of Boiling Water Reactor Jet Pump Characteristic [J]. NuclearEngineering and Design,1992,132(3):339-350.
    [145] HONGQI L. Liquid Gas Two Phase Flow Theory of Jet Pump [J]. International conference on thephysical modelling of multi-phase flow,1983,1(1):439-451.
    [146]陆宏圻.射流泵技术的理论及应用[M].北京:水利电力出版社,1989:245-311.
    [147] Lingen T W V D. A Jet Pump Design Theory [J]. Journal of Basic Engineering,1960,82(4):947-960.
    [148]高传昌,王玉川.液气射流泵研究应用进展[J].石油机械,2008,36(2):67-70.
    [149] Senthil Kumar R, Kumaraswamy S, Mani A. Experimental Investigations on a Two-Phase Jet PumpUsed in Desalination Systems [J]. Desalination,2007,204(1–3):437-447.
    [150] Welch Z F. Freon-12Vapor Compression Jet Pump Solar Cooling System [M]. United States: Texas Aand M Univ.,College Station, TX,1-127.
    [151]廖定佳.液气二相湍射流和射流泵的数值模拟[D].武汉:武汉水利电力大学,1997.
    [152]吕玉娟,张雪利.气浮分离法的研究现状和发展方向[J].工业水处理,2007,(01):58-61.
    [153]朱锡海,任欣,陈卫国.气浮分离技术研究现状与方向[J].水处理技术,1991,(06):14-19.
    [154]高丽.共凝聚气浮反应器的研究及应用[D].大连交通大学,2005.
    [155] Zabel T F. Flotation in Water Treatment [J]. Innovations in Flotation Technology,1992,208(1):431-454.
    [156] Carissimi E, Rubio J. The Flocs Generator Reactor-Fgr: A New Basis for Flocculation and Solid–LiquidSeparation [J]. International Journal of Mineral Processing,2005,75(3–4):237-247.
    [157]陈冀孙,胡斌.气浮净水技术的研究与应用[M].上海:上海科学技术出版社,1985:225.
    [158]陈福泰.新型环流气浮反应器(Es-Daf)研制与机理研究[D].北京:中国科学院研究生院,2003.128.
    [159]林喆,匡亚莉,张海阳.射流发泡与小球藻的批次气浮采收[J].中国矿业大学学报,2012,21(5):839-843.
    [160] Teixeira M R, Rosa M J. Comparing Dissolved Air Flotation and Conventional Sedimentation toRemove Cyanobacterial Cells of Microcystis Aeruginosa: Part Ii. The Effect of Water Background Organics [J].Separation and Purification Technology,2007,53(1):126-134.
    [161] Xu Q, Nakajima M, Ichikawa S, et al. A Comparative Study of Microbubble Generation by MechanicalAgitation and Sonication [J]. Innovative Food Science&Emerging Technologies,2008,9(4):489-494.
    [162] Kazakis N A, Mouza A A, Paras S V. Experimental Study of Bubble Formation at Metal Porous Spargers:Effect of Liquid Properties and Sparger Characteristics on the Initial Bubble Size Distribution [J]. ChemicalEngineering Journal,2008,137(2):265-281.
    [163] Liu H, Wang J, Kelson N, et al. A Study of Abrasive Waterjet Characteristics by Cfd Simulation [J].Journal of Materials Processing Technology,2004,153–154(0):488-493.
    [164]蒋彧澄,宁原林,胡寿根.淹没水射流锥形喷嘴的计算分析与试验比较[J].上海理工大学学报,1999,21(4):345-350.
    [165] Sun Cuizhen, Yue Qinyan, Gao Baoyu, et al. Effect of Ph and Shear Force on Flocs Characteristics forHumic Acid Removal Using Polyferric Aluminum Chloride–Organic Polymer Dual-Coagulants [J].Desalination,2011,281(0):243-247.
    [166] Xu Weiying, Gao Baoyu, Yue Qinyan, et al. Effect of Shear Force and Solution Ph on Flocs Breakageand Re-Growth Formed by Nano-Al13Polymer [J]. Water Research,2010,44(6):1893-1899.
    [167] Zheng Huaili, Zhu Guocheng, Jiang Shaojie, et al. Investigations of Coagulation–FlocculationProcess by Performance Optimization, Model Prediction and Fractal Structure of Flocs [J]. Desalination,2011,269(1-3):148-156.
    [168] Wang Y L, Feng J, Dentel S K, et al. Effect of Polyferric Chloride (Pfc) Doses and Ph on theFractal Characteristics of Pfc–Ha Flocs [J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2011,379(1-3):51-61.
    [169] Vahedi Arman, Beata G. Application of Fractal Dimensions to Study the Structure of Flocs Formed inLime Softening Process [J]. Water Research,2011,45(2):545-556.
    [170] Li Tao, Zhu Zhe, Wang Dongsheng, et al. The Strength and Fractaldimensioncharacteristics ofAlum–Kaolin Flocs [J]. International Journal of Mineral Processing,2007,82(1):23-29.
    [171] Aouabed A, Hadj Boussaad D E, Ben Aim R. Morphological Characteristics and Fractal Approach of theFlocs Obtained from the Natural Organic Matter Extracts of Water of the Keddara Dam (Algeria)[J].Desalination,2008,231(1-3):314-322.
    [172] Kilps J R, Logan B E, Alldredge A L. Fractal Dimensions of Marine Snow Determined from ImageAnalysis of in Situ Photographs [J]. Deep-Sea Research,1994,41:1159–1169.
    [173] Chakraborti R K, Atkinson J F, Van Benschoten, et al. Characterization of Alum Floc by Image Analysis[J]. Environmental Science and Technology,2000,34:3969–3976.
    [174]陈灏,潘纲,张明明.藻细胞不同生长阶段的海泡石凝聚除藻性能[J].环境科学,2004,(06):85-88.
    [175]邹琳,陈卫,林涛, et al.水处理絮凝过程动力学的分形成长模型[J].河海大学学报(自然科学版),2008,(02).
    [176] Zhong R, Zhang X, Xiao F, et al. Effects of Humic Acid on Recoverability and Fractal Structure ofAlum-Kaolin Flocs [J]. Journal of Environmental Sciences,2011,23(5):731-737.
    [177] Godos I D, Guzman H O, Soto R, et al. Coagulation/Flocculation-Based Removal of Algal–BacterialBiomass from Piggery Wastewater Treatment [J]. Bioresource Technology,2011,102(2):923-927.
    [178]王春晓,董利,梁志.阳离子絮凝剂p(Dac-Am)的制备及在高藻污水处理上的应用[J].广东化工,2008,(05):96-99.
    [179]张亚杰,罗生军,蒋礼玲, et al.阳离子絮凝剂对小球藻浓缩收集效果的研究[J].可再生能源,2010,(03):35-38.
    [180]朱玉霜.浮选药剂的化学原理[M].武汉:中南大学出版社,1996:377.
    [181] Shelef, G.; Sukenik, A.; Green, M. Microalgae harvesting and processing: a literature review [R],Technion Research and Development Foundation Ltd., Haifa (Israel), SERI/STR-231-2396.
    [182] Nurdogan Y, Oswald W J. Enhanced Nutrient Removal in High-Rate Ponds [J]. Water Science andTechnology,1995,31(12):33-43.
    [183] Li T, Zhu Z, Wang D, et al. The Strength and Fractal Dimension Characteristics of Alum–Kaolin Flocs[J]. International Journal of Mineral Processing,2007,82(1):23-29.
    [184]王玉恒,王启山,吴玉宝, et al.絮凝方式对藻类絮体形态、强度及气浮的影响[J].中国环境科学,2008,(04):355-359.
    [185]飞达化工.阳离子聚丙烯酰胺的使用[EB/OL].http://www.sxshuichuli.com/news/itemid-11596.shtml,
    [186]叶健.絮凝动力学及其絮体的特性的初步研究[D].广州:华南理工大学,2011.
    [187] Vahedi A, Gorczyca B. Application of Fractal Dimensions to Study the Structure of Flocs Formed inLime Softening Process [J]. Water Research,2011,45(2):545-556.
    [188] Carissimi E, Miller J D, Rubio J. Characterization of the High Kinetic Energy Dissipation of the FlocsGenerator Reactor (Fgr)[J]. International Journal of Mineral Processing,2007,85(1–3):41-49.
    [189] Agarwal S. Efficiency of Shear-Induced Agglomeration of Particulate Suspensions Subjected to BridgingFlocculation [D]. West Virginia: West Virginia University,2002.138.
    [190] Weir S, Moody G M. The Importance of Flocculant Choice with Consideration to Mixing Energy toAchieve Efficient Solid/Liquid Separation [J]. Minerals Engineering,2003,16(2):109-113.
    [191] Ladner D A, Vardon D R, Clark M M. Effects of Shear on Microfiltration and Ultrafiltration Fouling byMarine Bloom-Forming Algae [J]. Journal of Membrane Science,2010,356(1-2):33-43.
    [192] Ofori P, Nguyen A V, Firth B, et al. Shear-Induced Floc Structure Changes for Enhanced Dewatering ofCoal Preparation Plant Tailings [J]. Chemical Engineering Journal,2011,172(2-3):914-923.
    [193]王玉恒,王启山,吴玉宝, et al.絮凝方式对藻类絮体形态、强度及气浮的影响[J].中国环境科学,2008,(04).
    [194] Gregory J. Polymer Adsorption and Flocculation in Sheared Suspensions [J]. Colloids and Surfaces,1988,31(0):231-253.
    [195] Kwak D-H, Jung H-J, Kwon S-B, et al. Rise Velocity Verification of Bubble-Floc Agglomerates UsingPopulation Balance in the Daf Process [J]. Journal of Water Supply: Research and Technology,2009,58(2):85-94.
    [196] Galier S, Issanchou S, Moulin P, et al. Electrochemical Measurement of Velocity Gradient at the Wall ofa Helical Tube [J]. American Institute of Chemical Engineers,2003,49(8):1972–1979.
    [197] Yamamoto K, Yanase S, Jiang R. Stability of the Flow in a Helical Tube [J]. Fluid Dynamics Research,1998,22(3):153-170.
    [198] Gao Shan-shan, Yang Ji-xian, Tian Jia-yu, et al. Electro-Coagulation–Flotation Process for AlgaeRemoval [J]. Journal of Hazardous Materials,2010,177(1-3):336-343.
    [199] Bondelind M, Sasic S, Bergdahl L. A Model to Estimate the Size of Aggregates Formed in a DissolvedAir Flotation Unit [J]. Applied Mathematical Modelling,2013,37(5):3036-3047.
    [200] Leppinen D M. A Kinetic Model of Dissolved Air Flotation Including the Effects of Interparticle Forces[J]. J Water SRT2000,49(8):259-268.
    [201] Han M Y. Modeling of Daf: The Effect of Particle and Bubble Characteristics [J]. J Water SRT,2002,51(8):27-34.
    [202] Gao Shan-shan, Du Mao-an, Tian Jia-yu, et al. Effects of Chloride Ions onElectro-Coagulation-Flotation Process with Aluminum Electrodes for Algae Removal [J]. Journal ofHazardous Materials,2010,182(1-3):827-834.
    [203]王淀佐,邱冠周,胡岳华.资料加工学[M].北京:科学出版社,2005:458.
    [204] Rubin A J, Cassel E A, Oliver Henderson, et al. Microflotation: New Low Gas-Flow Rate FoamSeparation Technique for Bacteria and Algae [J]. Biotechnology and Bioengineering,1966,8(1):135–151.
    [205] Demirbas A. Use of Algae as Biofuel Sources [J]. Energy Conversion and Management,2010,51(12):2738-2749.
    [206] Borowitzka M A. Marine and Halophilic Algae for the Production of Biofuels [J]. Journal ofBiotechnology,2008,136, Supplement(0): S7.
    [207] Cadoret J-P, Bernard O. Lipid Biofuel Production with Microalgae: Potential and Challenges [J]. Journalde la Sociétéde Biologie,2008,202(3):201-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700