汽车乘坐空间热环境与乘员热舒适性分析关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市发展和生活方式的改变,汽车已经从过往的奢侈品逐步过渡为大众消费品,成为城市生活不可缺少的一部分,人们在汽车上度过的时间日益增加,汽车乘坐空间热环境开始成为广大消费者、研究人员和汽车厂商的关注一个热点和焦点问题。一方面车内热环境和乘员热舒适性密切相关,车内的空气温度、相对湿度、气流速度和平均辐射温度等环境因素都直接影响着乘员的乘坐舒适性;另一方面汽车乘坐空间热环境和乘员热舒适性又严重影响着汽车的燃油经济性,尤其是动力系统由内燃机转变为电池系统的新兴电动汽车,电动汽车空调所消耗的能量都来源于动力电池,车内热环境控制已经成为电动汽车研究人员面临的一个全新挑战。在此背景下,汽车乘坐空间热环境热与乘员热舒适性的研究,不仅是提高整车的能源利用率、降低外部环境对车内热环境的影响,实现对车内热环境进行科学高效热管理的迫切需要;同时也为制定舒适、节能的车内热环境标准提供科学依据和理论指导,对构建节能、舒适、安全的汽车乘坐环境具有深远意义。
     在综述国内外关于汽车乘坐空间热环境与乘员热舒适性相关研究文献的基础上,总结分析国内外的研究现状和不足,由此以建立完整的汽车乘坐空间热环境与乘员热舒适分析体系为主线,提出本文的研究内容。首先通过试验研究方法对我国南方气候环境下某中级车车内热环境参数进行试验测试,对不同的气候下车内外太阳辐射、温度及湿度等环境变量的分布情况进行分析说明,系统了解汽车乘坐空间热环境的基本情况,为后续车内热环境数值分析提供依据和验证数据。
     针对目前已有人体热舒适评价方法在汽车乘坐空间热环境下应用的不足,通过试验方法对车内瞬态非均匀热环境下乘员头部、胸部、腹部、背部、上臂、下臂、手、大腿、小腿和脚这10个部位进行皮肤温度测试,同时采用ASHRAE7点标尺对乘员局部热感觉进行相应的主观评价,应用数理统计分析方法拟合皮肤表面温度与乘员局部热感觉之间的关系,建立基于乘员皮肤表面温度的乘员热感觉及热舒适性客观评价方法,弥补国内关于乘员热舒适评价方法研究的空白,为本文后续研究提供科学可行的评价方法。
     在试验研究结论的基础上,根据汽车车身壁面传热数学模型建立其传热数值计算模型,并通过试验测试数据验证了数值模型的有效性,对车身壁面与外部太阳辐射、车内表面发射辐射、内外表面传导等传热过程进行仿真分析,计算壁面温度及不同形式传热热流量的动态变化过程,分析壁面热环境的主要影响因素。在基准模型的基础上,探索通过改变汽车车身特性来达到降低太阳辐射对车内热环境影响的方法及效果,分析结果表明改变车窗玻璃光学特性及车身外表面特性都可以有效降低外部环境因素对车内热环境的影响作用,为汽车设计以及乘员热舒适性研究提供参考。在汽车乘坐空间“热-流”场分布特性研究方面,首先从理论上分析流体力学计算模型及边界层的处理方法,讨论自然对流传热在车内的权重和影响作用,为车内自然对流计算和简化提供科学依据。随后采用固体壁面传热和车内流体流动与传热耦合仿真模型,建立可以考虑外部环境动态影响的完整的车内“热-流”场数值分析模型,并在我国南方夏季气候环境下对空调制冷过程中车内“热-流”场动态特性进行耦合数值仿真,重点讨论分析车内流体流动和温度动态分布规律和一般设计准则。
     最后根据人体热调节理论基础及数学模型,建立基于人体实际形状几何模型的乘员热调节数值模型,该模型共将乘员划分为14个不同的组成部分,每个部分又细分为4个层次。然后将人体热调节模型与所建立的车内热环境数值计算模型组成耦合仿真模型,建立完整的车内乘员热舒适性数值分析模型,计算在车内瞬态非均匀热环境下人体皮肤表面温度动态变化过程,并利用所建立的乘员热舒适性评价方法对乘员在空调制冷过程中的热舒适性动态变化过程进行详细分析,讨论乘员热感觉及热舒适变化的一般规律。
     本文对汽车乘坐空间热环境,乘员热舒适性评价方法,以及相关数值仿真方法关键技术所研究得到的成果,解决了汽车乘坐空间热环境和乘员热舒适分析中一些关键共性技术、共性规律和设计原则,丰富和完善了现有的研究体系,具有良好的理论和工程应用价值。
With the development of city and the change of citizens’ lifestyle, vehicles havegradually changed to mass consumer goods from luxury in the past, and become anindispensable part of urban life. People spend more and more time in the vehicle cabins, thenthe thermal environment in vehicle cabins has aroused wide attention from consumers,researchers and car manufacturers. The thermal environment in vehicle cabins is closelyrelated to occupants’ thermal comfort, the air temperature, relative humidity, flow velocity,mean radiant temperature and other environmental factors are known to afect the ridingcomfort of occupants. On the other hand, the thermal environment in vehicle cabins and theoccupants’ thermal comfort are seriously affecting the fuel economy of the vehicle, especiallyfor the electric vehicles. All the energy used for the cabins heating or cooling in electricvehicles is supplied by the main battery which is expected to be used to drive. Operation ofthe air-conditioning system thus has a major influence on battery’s cruising range, which isone of the bottlenecks to restrict electric vehicle’s development. Under this background,thermal environment and occupant’s thermal comfort in vehicle cabins research is not onlythe urgent need to improve the energy efficiency of the vehicle, reduce the impact of theexternal environment on the interior thermal environment, then to achieve scientific andefficient thermal environment thermal management in vehicles cabins; but also fordevelopment of comfortable, energy-efficient thermal environment standards in vehiclescabins providing a scientific basis and theoretical guidance, it has far-reaching significancefor constructing energy-efficient, comfortable and safe vehicles cabins environment.
     With comprehensive reviewing of the thermal environment and occupant’s thermalcomfort in vehicle cabins research in open literature, this paper analyzed and summarizedtheir advantages and limitations, thus proposed to build a complete transient thermalenvironment and occupant’s thermal comfort analysis system as the main line, put forward theresearch contents in this paper. Firstly, with the purposes of understanding the basic thermalconditions in the cabin of a typical Mittelklasse, the solar radiation inside and outside thecabin, the distribution of temperature and humidity and other environmental variables underdifferent climate in south China were experimental measured and analyzed. Furthermore, themeasurement data would provide the analysis basis and validation data for the subsequentthermal environment numerical study.
     According to the deficiencies of current occupant’s thermal comfort evaluation methodsin the vehicle cabins thermal environment, this paper tested the skin temperature of occupant's head, chest, abdomen, back, upper arms, lower arms, hands, thighs, legs and feet under thetransient and non-uniform thermal environment in the cabin, while using the ASHRAE7-points scale to evaluate the local thermal sensation of corresponding body parts, then usingthe mathematical statistical analysis method to investigate the relationship between the skintemperature and the local thermal sensation of corresponding body part. Finally, establishing anew objective occupant’s thermal comfort evaluation methods based on the occupant’s skintemperature, providing scientific and feasible evaluation method for the follow-up study inthis paper and making up the blank of domestic occupant’s thermal comfort evaluationmethod.
     Based on the conclusions of experimental study and according to the heat transfermathematical model of car body, the numerical calculation model was established andvalidated in this paper. Then, the solar radiation, the wall emitting radiation and theconduction heat transfer process, etc. on the interior wall were simulated; the wall temperaturedistribution and the heat flow flux of different heat transfer process were calculated throughthe established numerical model. Based on the numerical results, this paper, furthermore,analyzed the main influencing factors of surface thermal environment in vehicle cabins. Onthe basis of the benchmark model, this paper investigated means to reduce the influence ofsolar radiation on the thermal environment in vehicle cabins by changing car body features.The resulted showed that it can effectively reduce the impact of the external environmentalconditions on the vehicle cabins by changing the window glass optical properties as well asthe surface characteristics of the car body. These conclusions would provide valuablereferences for the vehicle design and the occupant’s thermal comfort study.
     In the aspect of “temperature-flow” distribution characteristics investigation in vehiclecabins, this paper firstly theoretically analyzed the computational fluid dynamics model andthe boundary layer treatment approach, discussed the influence of natural heat transfer andobtained the simplification basis of the numerical approach of vehicle cabins. Then couplingthe solid wall heat transfer and the fluid flow and heat transfer model, this paper established acompleted coupled numerical model of thermal environment in vehicle cabins, which canconsider the influences of external environment conditions. With the coupled numericalmodel, this paper simulated the “temperature-flow” dynamic characteristics in vehicle cabinsin the process of air-conditioning refrigeration under south China climate and analyzed thefluid flow and temperature dynamic distribution inside the cabin as well as the generalguidelines of the cabin’s thermal management design.
     Finally, according to the human thermal regulation theory and mathematical model, based on the occupant geometric model this paper established an occupant thermal regulationnumerical model, this model divided the body of occupant into14different components, andeach component was subdivided into four levels. Then coupling the occupant thermalregulation and the thermal environment numerical model, this paper established a completedcoupled numerical model of occupant’s thermal comfort analysis. With the coupled thermalcomfort analysis model, this paper calculated the occupant’s skin temperature under thetransient and non-uniform thermal environment in vehicle cabin, and used the establishedoccupant’s thermal comfort evaluation method to detailed analyzed occupant’s thermalcomfort in the process of air-conditioning refrigeration, and discussed the general law of theoccupant’s thermal sensation then the thermal comfort in vehicle cabins.
     The thermal environment coupled simulation methods, the occupant’s thermal comfortevaluation method, as well as the main conclusions obtained in this paper, solved some keycommon technologies, rules and design principles during the thermal environment andoccupant’s thermal comfort analysis in vehicle cabins, enriched and improved the existingresearch system, had a good theory and engineering application value in vehicle design.
引文
[1]张吉礼,马良栋,赵天怡.建筑环境热舒适性研究进展与趋势分析[J].建筑热能通风空调,2011,30(1):1-10.
    [2] Bhatti M S. Evolution of automotive heating-Riding in comfort: Part I [J]. Ashrae Journal,1999,41(8):51-57.
    [3] Bhatti M S. Evolution of automotive air conditioning-Riding in comfort: Part II [J]. Ashrae Journal,1999,41(9):44-50.
    [4] Alahmer A, Mayyas A, Mayyas A A, et al. Vehicular thermal comfort models; a comprehensive review[J]. Applied Thermal Engineering,2011,31(6-7):995-1002.
    [5] Allnutt M F, Allan J R. The effects of core temperature elevation and thermal sensation onperformance [J]. Ergonomics,1973,16(2):189-196.
    [6]张力,黄曙东,何爱武等.人因可靠性分析方法[J].中国安全科学学报,2001,11(3):6-16.
    [7]徐德蜀.安全文化、安全科技与科学安全生产观[J].中国安全科学学报,2006,16(3):71-82.
    [8] Norin F, Wyon D. Driver vigilance—the effects of compartment temperature. SAE Technical Paper No.920168. Society of Automotive Engineers [J]. Inc, Warrendale, PA, USA,1992,
    [9] Giuliano M R, Prasad A K, Advani S G. Experimental study of an air-cooled thermal managementsystem for high capacity lithium–titanate batteries [J]. Journal of Power Sources,2012,216(0):345-352.
    [10]McGuffin R, Burke R, Huizenga C, et al. Human thermal comfort model and manikin [M]. SAE Paper:2002-2001-1955.
    [11] ANSI/ASHRAE. Thermal environmental conditions for human occupancy [M]. Atlanta; AmericanSociety of Heating, Refrigerating and Air Conditioning Engineering Inc.1992.
    [12] Cheng Y D, Niu J L, Gao N P. Thermal comfort models: A review and numerical investigation [J].Building and Environment,2012,47(13-22.
    [13] Temming J, Hucho W H. PASSENGER-CAR VENTILATION FOR THERMAL COMFORT [J]. SAEPreprints,1979,790398):
    [14] Komoriya T. Analysis of vehicle passenger compartment ventilation using experimental and numericalmodel; proceedings of the International Congress and Exposition, February27,1989-March3,1989,Detroit, MI, United states, F,1989[C]. SAE International.
    [15] Burch S D, Ramadhyani S, Pearson J T. Analysis of passenger thermal comfort in an automobile undersevere winter conditions; proceedings of the ASHRAE Winter Meeting-Technical Papers, January19,1991-January23,1991, New York, NY, USA, F,1991[C]. Publ by ASHRAE.
    [16] Lin C-H, Lelli M A, Han T, et al. An experimental and computational study of cooling in a simplifiedGM-10passenger compartment; proceedings of the International Congress and Expostition, February25,1991-March1,1991, Detroit, MI, United states, F,1991[C]. SAE International.
    [17] Shojaee M H, Tehrani F P H, Noorpoor A R, et al. Analysis of vehicle passenger compartment HVACusing simulation; proceedings of the2004SAE World Congress, March8,2004-March11,2004,Detroit, MI, United states, F,2004[C]. SAE International.
    [18] Chien C H, Jang J Y, Chen Y H, et al.3-D numerical and experimental analysis for airflow within apassenger compartment [J]. International Journal Of Automotive Technology,2008,9(4):437-445.
    [19] Kilic M, Kaynakli O. An experimental investigation on interior thermal conditions and human bodytemperatures during cooling period in automobile [J]. Heat And Mass Transfer,2011,47(4):407-418.
    [20] Alahmer A, Abdelhamid M, Omar M. Design for thermal sensation and comfort states in vehiclescabins [J]. Applied Thermal Engineering,2012,36(1):126-140.
    [21]刘军朴,陈江平,陈芝久.客车车厢内气流分布及传热数值分析[J].上海交通大学学报,2003,37(7):1098-1101.
    [22]谢金法,朱涛,李水良,等.空调客车内部流场计算流体动力学数值模拟[J].中国机械工程,2007,18(13):1591-1594.
    [23]张登春,翁培奋,邹声华.旅客列车空调硬座车厢内热舒适性研究[J].铁道学报,2006,28(5):35-40.
    [24]张文灿,陈吉清,兰凤崇, et al.太阳辐射下客车车厢内热环境的分析研究[J].汽车工程,2010,007):621-625.
    [25]张文灿,陈吉清,兰凤崇.太阳辐射下车窗玻璃特性对车内温度场的影响研究[J].机械工程学报,2011,47(22):119-125.
    [26] Fung W, Parsons K. Some investigations into the relationship between car seat cover materials andthermal comfort using human subjects [J]. Journal of Industrial Textiles,1996,26(2):147-176.
    [27] Brooks J, Parsons K. An ergonomics investigation into human thermal comfort using an automobileseat heated with encapsulated carbonized fabric (ECF)[J]. Ergonomics,1999,42(5):661-673.
    [28] Oi H, Tabata K, Naka Y, et al. Effects of heated seats in vehicles on thermal comfort during the initialwarm-up period [J]. Applied Ergonomics,2012,43(2):360-367.
    [29] Lund Madsen T. Thermal effects of ventilated car seats [J]. International Journal of IndustrialErgonomics,1994,13(3):253-258.
    [30] Karimi G, Chan E C, Culham J R, et al. Thermal comfort analysis of an automobile driver with heatedand ventilated seat; proceedings of the SAE2002World Congress, F,2002[C].
    [31] Hoke P B. Vehicle paint radiation properties and affect on vehicle soak temperature, climate controlsystem load, and fuel economy [J].2005,
    [32] Levinson R, Pan H, Ban-Weiss G, et al. Potential benefits of solar reflective car shells: Cooler cabins,fuel savings and emission reductions [J]. Applied Energy,2011,88(12):4343-4357.
    [33] Mezrhab A, Bouzidi M. Computation of thermal comfort inside a passenger car compartment [J].Applied thermal engineering,2006,26(14):1697-1704.
    [34] Pennes H H. Analysis of tissue and arterial blood temperatures in the resting human forearm [J].Journal of applied physiology,1948,1(2):93-122.
    [35] Weinbaum S, Jiji L, Lemons D. Theory and experiment for the effect of vascular microstructure onsurface tissue heat transfer--Part I: Anatomical foundation and model conceptualization [J]. Journal ofbiomechanical engineering,1984,106(4):321.
    [36] Gagge A P, Stolwijk J A J, Nishi Y. An effective temperature scale based on a simple model of humanphysiological regulatory response [J]. ASHRAE Transactions,1971,77(1):247-262.
    [37]Stolwijk J A J. A mathematical model of physiological temperature regulation in man [M]. Washington,DC: National Aeronautics and Space Administration,1971.
    [38] Wissler E. Mathematical simulation of human thermal behavior using whole body models [J]. Heattransfer in medicine and biology,1985,1(13):325-373.
    [39] Werner J, Webb P. A six-cylinder model of human thermoregulation for general use on personalcomputers [J]. Annals of physiological anthropology,1993,12(123-123.
    [40] Huizenga C, Zhang H, Arens E. A model of human physiology and comfort for assessing complexthermal environments [J]. Building and Environment2001,36(6):691-699.
    [41] Huizenga C, Zhang H, Arens E, et al. Skin and core temperature response to partial and whole bodyheating and cooling [J]. Journal of Thermal Biology,2004,29(7-8):549-558.
    [42] Wang D, Zhang H, Arens E, et al. Observations of upper-extremity skin temperature andcorresponding overall-body thermal sensations and comfort [J]. Building and Environment,2007,42(12):3933-3943.
    [43] Zhang H, Huizenga C, Arens E, et al. Considering individual physiological differences in a humanthermal model [J]. Journal of Thermal Biology,2001,26(4-5):401-418.
    [44] Zhang H, Arens E, Kim D, et al. Comfort, perceived air quality, and work performance in a low powertask ambient conditioning system.[J]. Building and Environment,2010,45(1):29-39.
    [45] Zhang H, Arens E, Huizenga C, et al. Thermal sensation and comfort models for non-uniform andtransient environments part I: local sensation of individual body parts [J]. Building and Environment,2010,45(2):380-388.
    [46] Zhang H, Arens E, Huizenga C, et al. Thermal sensation and comfort models for non-uniform andtransient environments, part II: local comfort of individual body parts [J]. Building and Environment2010,45(2):389-398.
    [47] Zhang H, Arens E, Huizenga C, et al. Thermal sensation and comfort models for non-uniform andtransient environments, part III: whole body sensation and comfort [J]. Building and Environment,2010,45(2):399-410.
    [48] Salloum M, Ghaddar N, Ghali K. A new transient bioheat model of the human body and its integrationto clothing models [J]. International Journal of Thermal Sciences,2007,46(4):371-384.
    [49] Ghali K, Ghaddar N, Salloum M. Effect of stove asymmetric radiation field on thermal comfort usinga multi-segmented bioheat model [J]. Building and Environment2008,43(7):1241-1249.
    [50] Al-Othmani M, Ghaddar N, Ghali K. A multi-segmented human bioheat model for transient andasymmetric radiative environments [J]. International Journal of Heat and Mass Transfer2008,51(23-24):5522-5533.
    [51] Tanabe S, Kobayashi K, Nakano J, et al. Evaluation of thermal comfort using combined multi-nodethermoregulation (65MN) and radiation models and computational fluid dynamics (CFD)[J]. Energyand Buildings,2002,34(6):637-646.
    [52] Fiala D, Lomas K J, Stohrer M. A computer model of human thermoregulation for a wide range ofenvironmental conditions: the passive system [J]. Journal of Applied Physiology,1999,87(5):1957-1972.
    [53] Fiala D, Lomas K J, Stohrer M. Computer predictions of human thermoregulatory and temperatureresponses to a wide range of environment conditions [J]. International Journal of Biometeorology,2001,45(3):143-159.
    [54] LI Y, Li F, Liu Y, et al. An integrated model for simulating interactive thermal processes in humanclothing system [J]. Journal of Thermal Biology2004,29(7-8):567-575.
    [55] Li F, Li Y. Effect of clothing material on thermal response of the human body [J]. Modelling andSimulation in Materials Science and Engineering,2005,13(6):809-827.
    [56] Kaynakli O, Unver U, Kilic M. Evaluating thermal environments for sitting and standing posture [J].International Communications in Heat and Mass Transfer,2003,30(8):1179-1188.
    [57] Kaynakli O, Kilic M. Investigation of indoor thermal comfort under transient conditions [J]. Buildingand Environment,2005,40(2):165-174.
    [58] Alahmer A, Omar M, Mayyas A R, et al. Analysis of vehicular cabins' thermal sensation and comfortstate, under relative humidity and temperature control, using Berkeley and Fanger models [J].Building and Environment,2012,48(1):146-163.
    [59] Schellen L, Loomans M, Kingma B R M, et al. The use of a thermophysiological model in the builtenvironment to predict thermal sensation Coupling with the indoor environment and thermal sensation[J]. Building And Environment,2013,59(10-22.
    [60] Gao N P, Niu J L, Zhang H. Coupling CFD and human body thermoregulation model for theassessment of personalized ventilation [J]. Hvac&R Research,2006,12(3):497-518.
    [61] Volker C, Kornadt O. Simulation and measurement of thermal comfort [J]. Bauphysik,2010,32(6):365-372.
    [62] Aranjo B S, Hughes B R, Chaudry H N. Performance investigation of ground cooling for the airbusA380in the United Arab Emirates [J]. Applied Thermal Engineering,2012,36(87-95.
    [63] Mady C E K, Ferreira M S, Yanagihara J I, et al. Modeling the exergy behavior of human body [J].Energy,2012,45(1):546-553.
    [64] Fanger P O. Thermal Comfort—Analysis and Applications in Environmental Engineering [M]. NewYork: McGraw-Hill,1973.
    [65] ASHRAE A. Standard55-1992[M]. Thermal environmental conditions for human occupancy.1992.
    [66] Oseland N A. Predicted and reported thermal sensation in climate chambers, offices and homes [J].Energy and Buildings,1995,23(2):105-115.
    [67] Schiavon S, Melikov A K. Energy saving and improved comfort by increased air movement [J].Energy and Buildings,2008,40(10):1954-1960.
    [68] Han J, Zhang G, Zhang Q, et al. Field study on occupants’ thermal comfort and residential thermalenvironment in a hot-humid climate of China [J]. Building and Environment,2007,42(12):4043-4050.
    [69] Brager G S, de Dear R J. Thermal adaptation in the built environment: a literature review [J]. Energyand buildings,1998,27(1):83-96.
    [70] Nicol J F, Humphreys M A. Adaptive thermal comfort and sustainable thermal standards for buildings[J]. Energy and buildings,2002,34(6):563-572.
    [71] Van Hoof J. Forty years of Fanger’s model of thermal comfort: comfort for all?[J]. Indoor Air,2008,18(3):182-201.
    [72] Spagnolo J, De Dear R. A field study of thermal comfort in outdoor and semi-outdoor environments insubtropical Sydney Australia [J]. Building and environment,2003,38(5):721-738.
    [73] de Dear R, Brager G S. The adaptive model of thermal comfort and energy conservation in the builtenvironment [J]. International Journal of Biometeorology,2001,45(2):100-108.
    [74] Cena K, de Dear R. Thermal comfort and behavioural strategies in office buildings located in ahot-arid climate [J]. Journal of Thermal Biology,2001,26(4):409-414.
    [75] Feriadi H, Wong N H. Thermal comfort for naturally ventilated houses in Indonesia [J]. Energy andBuildings,2004,36(7):614-626.
    [76] Hwang R-L, Lin T-P, Kuo N-J. Field experiments on thermal comfort in campus classrooms in Taiwan[J]. Energy and Buildings,2006,38(1):53-62.
    [77] Nicol F. Adaptive thermal comfort standards in the hot–humid tropics [J]. Energy and Buildings,2004,36(7):628-637.
    [78]连之伟,冯海燕.建筑室内热环境的模糊评判模型[J].上海交通大学学报,2002,36(2):169-172.
    [79]赵博,连之伟,周湘江, et al.基于神经网络的室内热舒适评判模型[J].哈尔滨工业大学学报,2003,35(12):1436-1438.
    [80] Taniguchi Y., Hiroshi A., Kenji F., Study on car air conditioning system controlled by car occupants’skin temperatures-Part1: research on a method of quantitative evaluation of car occupants’ thermalsensations by skin temperature, SAE Technical Paper Series No.920169
    [81] Matsunaga K, Sudo F, Tanabe S-i, et al. Evaluation and measurement of thermal comfort in thevehicles with a new thermal manikin [J]. SP-Society of Automotive Engineers,1993,990):35-43.
    [82] Kohri I, Mochida T. Evaluation Method of Thermal Comfort in a Vehicle with a Dispersed Two-NodeModel Part1—Development of Dispersed Two-Node Model [J]. Journal of Human-EnvironmentalSystem,2002,6(1):19-29.
    [83] Kohri I, Mochida T. Evaluation Method of Thermal Comfort in a Vehicle with a Dispersed Two-NodeModel Part2-Development of New Evaluation [J]. Journal of Human-Environmental System,2003,6(2):77-91.
    [84] Han T, Huang L. A model for relating a thermal comfort scale to EHT comfort index [J]. SAE SP,2004,59-68.
    [85] Han T, Chen K-H, Khalighi B, et al. Assessment of various environmental thermal loads on passengerthermal comfort [J]. SAE International Journal of Passenger Cars-Mechanical Systems,2010,3(1):830-841.
    [86]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.
    [87] Fanger P O. Thermal Comfort [M]. Danishi Technical Press,1970.
    [88] Chen C-P, Hwang R-L, Chang S-Y, et al. Effects of temperature steps on human skin physiology andthermal sensation response [J]. Building and Environment,2011,46(11):2387-2397.
    [89] Choi J-H, Loftness V. Investigation of human body skin temperatures as a bio-signal to indicateoverall thermal sensations [J]. Building and Environment,2012,58(258-269.
    [90] DE DEAR R J, RING J W, FANGER P O. Thermal sensations resulting from sudden ambienttemperature changes [J]. Indoor Air,1993,3(3):181-192.
    [91] Nielsen R, Nielsen B. Influence of skin temperature distribution on thermal sensation in a coolenvironment [J]. European journal of applied physiology and occupational physiology,1984,53(3):225-230.
    [92] Lee D H K编,陈炎磐,张国高译.环境与健康-生产、生活因素对人体的作用[M].北京:人民卫生出版社,1986.
    [93] handbook A. thermal comfort [M]. ASHRAE fundamentals handbook (SI),2001.
    [94]庄楚强,何春雄.应用数理统计基础[M].广州:华南理工大学出版社,2006.
    [95] Lomas K J, Fiala A D, Stohrer M. First principles modeling of thermal sensation responses insteady-state and transient conditions [J]. ASHRAE Transactions,2003,109(1):179-186.
    [96] OLESEN B W, FANGER P O. The skin temperature distribution for resting man in comfort [J].Archives des Sciences Physiologiques (Archives of Physiological Sciences),1973,27(4):385-393.
    [97] Zhang H. Human thermal sensation and comfort in transient and non-uniform thermalenvironments [D]; University of California Berkeley,2003.
    [98] ASHRAE. Handbook of fundamentals [M]. Atlanta: American Society of Heating, Refrigerating, andAir-Conditioning Engineers Inc,2005.
    [99] Mcadams W H. Heat transmission3rd [M]. New York: McGraw-Hill,1994.
    [100] Duffie J A, Bechman W A. Solar engineering of thermal process [M]. New York: Wiley,1980.
    [101] Zhang W, Chen J, Lan F. A numerical simulation of combined radiation and natural convection heattransfer in a square enclosure heated by a centric circular cylinder [J]. Heat and Mass Transfer,2013,49(2):233-246.
    [102] Radtherm. ThermoAnalytics, Inc. and Ford Global Technologies, Inc.2010.
    [103] Swinbank W C. Long-wave radiation from clear skies [J]. Quarterly Journal of Royal MeteorolgicalSociety,1964,90(386):488-493.
    [104]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [105]窦国仁.紊流力学(上册)[M].北京:高等教育出版社,1985.
    [106]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [107] FLUENT User's Guid [M]. Flunent Inc.,2006.
    [108] Launder B E, Spalding D B. The Numerical Computation of Turbulent Flows [J]. Computer Methodsin Applied Mechanics and Engineering,1974,3(2):269-289.
    [109] Serag-Eldin M, Spalding D. Computations of three-dimensional gas-turbine combustion chamberflows [J]. American Society of Mechanical Engineers,1979,101(327-336.
    [110] Wang L B, Wang Q W, He Y L, et al. Experimental and numerical study of developing turbulent flowand heat transfer in convergent/divergent square ducts [J]. Heat and Mass Transfer,2002,38(4-5):399-408.
    [111] Tekriwal P. Heat Transfer Predictions with Extended k-e Turbulence Model in Radial Cooling DuctsRotating in Orthogonal Mode [J]. Journal of Heat Transfer, Transactions ASME,1994,116(2):369-382.
    [112] Zhong Z Y, Yang K T, Lloyd J R. Variable property effects in laminar natural convection in a squareenclosure [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME,1985,107(1):133-138.
    [113] Fluent. ANSYS, Inc.2011.
    [114] Butera F. Chapter3--Principles of thermal comfort [J]. Renewable and Sustainable EnergyReviews,1998,2(1-2):39-66.
    [115] Harris J A, Benedict F G. A biometric study of basal metabolism in man [M]. Washington CarnegieInstitute of Washington,1919.
    [116] Gregersen M I, Nickerson J L. Relation of blood volume and cardiac output to body type [J]. Journalof Applied Physiology,1950,3):329-341.
    [117] Allen T H, Peng M T, Chen K P, et al. Prediction of blood volume and adiposity in man from bodyweight and cube of height [J]. Metabolism,1956,5(328-345.
    [118] Zolfaghari A, Maerefat M. A new simplified thermoregulatory bioheat model for evaluating thermalresponse of the human body to transient environments [J]. Building and Environment,2010,45(10):2068-2076.
    [119] Gordon R G. The Response of Human Thermoregulatory System in the Cold [D]. Santa Barbara, CA;Univ. of California,1974.
    [120] DuBois D, DuBois E F. A formula to estimate approximate surface area, if height and weight areknown [J]. Archives of Internal Medicine1916,17(8):63-71.
    [121] Kakitsuba N. Dynamic changes in sweat rates and evaporation rates through clothing during hotexposure [J]. Journal of Thermal Biology,2004,29(7-8):739-742.
    [122] Zolfaghari A, Maerefat M. A new simplified model for evaluating non-uniform thermal sensationcaused by wearing clothing [J]. Building and Environment,2010,45(3):776-783.
    [123] Raven P B, Niki I, Dahms T E, et al. Compensatory cardiovascular responses during anenvironmental cold stress,5degrees C [J]. Journal of applied physiology,1970,29(4):417-421.
    [124] Raven P R, Horvath S M. Variability of physiological parameters of unacclimatized males during atwo-hour cold stress of5degrees C [J]. International journal of biometeorology,1970,14(3):309-320.
    [125] Ferreira M S, Yanagihara J I. A transient three-dimensional heat transfer model of the human body [J].International Communications in Heat and Mass Transfer,2009,36(7):718-724.
    [126] La Gennusaa M, Nucara A, Rizzo G, et al. The calculation of the mean radiant temperature of asubject exposed to the solar radiation-a generalised algorithm [J]. Building and Environment,2005,40(3):367-375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700