涡轮压力可控涡设计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涡轮气动设计是叶轮机械领域的一个非常重要的研究方向,在推动高性能航空发动机以及地面燃气轮机发展上起着举足轻重的作用。随着计算流体力学的进步,涡轮设计技术也得到了快速发展,然而涡轮气动设计仍是一个十分具有挑战性的研究课题。本文对涡轮的压力可控涡气动设计机理进行了一系列研究,主要包括以下几个方面的工作:
     首先,本文提出了涡轮的压力可控涡设计方法,并基于此方法设计了一个单级涡轮。与传统可控涡控制切向环量cur和轴向速度cz分布有所不同,压力可控涡方法主要控制轴向速度cz和径向压力p的分布。通过控制轴向速度cz建立了与子午流面之间的联系,致使流面发生变化,从而在叶栅通道内诱导产生了较大的二次涡,有效地抑制了通道涡的生成与发展。通过径向压力p又将流体运动的宏观驱动力关联起来,从而将流面变化与压力控制有机地结合起来,更好地发挥了可控涡设计效果。这种设计方法旨在合理利用和控制叶栅流道中的二次流的产生与迁移,其核心概念是通过改变不同展向位置处的叶栅负荷来控制最为主要的径向压力梯度。同时,这种设计方法不仅对叶型升力产生了影响,相应的叶栅喉部宽度、反动度以及质量流量沿径向的分布也都发生了改变或者进行了重新分配。在涡轮总流量保持不变的前提下,采用压力可控涡设计的涡轮级总体效率明显获得提升。此外,压力可控涡设计只改变了叶型气流角和安装角,并没有对端壁型线、叶栅积叠线以及节距比进行优化。
     其次,在径向压力梯度控制的基础上,结合三维压力控制措施提出了一种三维压力可控涡设计方法,与先进叶型技术、弯掠叶片技术以及可控子午端壁技术一起形成了一套高性能涡轮设计框架。通过压力可控涡诱导流道内流面厚度变化及流面发生挠曲,合理地利用和控制了叶栅中的旋涡流动,从而在叶片表面形成了有利的边界层流动,降低了二次流损失。通过进一步控制径向、流向以及周向三个方向的压力分布使各个方向的压力梯度合理匹配,在上述区域形成有利的压力场,从而有效地控制了边界层的分离与增厚,减少了相应损失。运用三维压力可控涡设计对某低压涡轮第一级进行了重新设计,设计结果表明新设计涡轮等熵效率提高了0.76%,功率提高了0.6%,而流量与原型保持一致。此外三维压力可控涡设计还改善了大子午扩张涡轮的动静叶匹配特性。
     最后,应用三维压力可控涡方法对某多级涡轮进行了重新设计,设计过程中采用了整体设计逐级校核的设计思想,并对多级涡轮级间匹配问题进行了深入研究。运用数值模拟对多级环境下的三维压力可控涡设计效果进行了系统分析,计算结果表明:三维压力可控涡设计的多级涡轮具有良好的变工况性能,在整个运行工况范围内涡轮效率和功率均有大幅度提升。数值结果充分展示了三维压力可控涡设计的优越性。尽管多级涡轮三维压力可控涡设计是在单一设计工作点下进行的,然而新设计涡轮性能无论在设计工况还是非设计工况均得到了有效改善。
Turbine aerodynamic design is an important research direction of turbomachinery,playing a significant role in high performance aeroengine and gas turbine. With the rapiddevelopment of computational fluid dynamics (CFD) and blade modeling method, turbineblade design technique has been developed speedily. Nevertheless, turbine aerodynamicdesign is still a challenge reaseach topic. A series of research about turbine design have beenconducted in this thesis. These studies mainly consist of the following aspects:
     Firstly, a turbine design method based on Pressure Controlled Vortex Design (PCVD) ispresented to design a small size turbine stage. Contrary to conventional CVD method withdirect assumptions of tangential circulation cur and axial velocity czdistributions, the mainobjective of PCVD is to control the axial velocity and radial pressure in the stator-rotor gap.Through controlling axial velocity cz, the PCVD establishes a direct tie to meridional streamsurface. Thus stream surface variation is induced, resulting in a large secondary flow vortexcovering the full blade passage in respective stator and rotor. This secondary flow vortexcould be dedicated to control passage vortex generation and development. Through radialpressure p, the PCVD is also associated with macroscopic driving force of fluid motion. Sothe stream surface variation and pressure are organically unified in order to achieve betterbenefit of CVD. The emphasis of this design method is secondary flow mitigation andmigration. Core concept behind PCVD is to mainly control the spanwise pressure gradient byaltering profile loading at various spanwise locations. Therefore not only the local profile liftis affected, but also the resulting throat widths, stage reaction degree and massflow rate arealtered or redistributed respectively. With the PCVD method, the global stage efficiency isincreased successfully while mass flow rate keeps constant. Additionally there is no endwallshape optimization, stacking optimization or pitch/chord variations, concentrating solely onvarying blade profile deflections and stagger.
     Secondly, based on the radial pressure control, a3D PCVD method incorporating3Dpressure control approach into PCVD technique is proposed and a high performance turbinedesign framework including advanced blading,3D geometry features as well as endwallprofiling is formed. Via stream surface thickness variation and stream surface deflection induced by PCVD, the secondary flow vortex in cascade is rationally utilized and dominated.A well-posed boundary layer flow pattern is presented, so the relevant secondary flow lossesare reduced largely. Through further control of spanwise, streamwise and azimuthal pressure,favorable pressure gradients are achieved in the above three directions. Not only canboundary layer separation and thickening be effectively controlled, but also profile loss canprofit. The3D PCVD results of the first stage in a low pressure turbine demonstrate that thenew design turbine isentropic efficiency increases by0.76%and the power rises by0.6%withthe massflow unchanged. The3D PCVD also greatly increases the turbine root reaction andsignificantly improves the matching characteristics between stator and rotor in a largemeridional expansion turbine.
     Finally a multi-stage3D PCVD method is developed and demonstrated with amulti-stage low pressure turbine in this thesis. The design process has been carried out basedon stage-by-stage design approach and the stage matching is also interpreted for effectivedesign. A systematic investigation has been carried out to evaluate the3D PCVD effects in amulti-stage turbine environment. An optimal design over the entire operating range isachieved relative to the baseline turbine and the3D PCVD turbine has fine off-designperformance. Numerical results fully demonstrate the advantage of this design method.Although3D PCVD is executed at design condition, the multi-stage turbine performance atoff-design condition has improved greatly simultaneously.
引文
[1]李军,孙皓,李彬,等.透平机械高负荷叶片和大焓降级的研究进展[J].热力透平,2011,40(1):16-22.
    [2]国家能源科技“十二五”规划[Z].国家能源局,2011:8-13.
    [3]魏兵海,吴克启.高性能弯掠叶片及其对内流影响的研究概况[J].流体机械,2001,29,(1):31-35.
    [4]季路成,陈江,黄海波,等.关于叶轮机时均(准四维)和非定常(四维)气动设计体系的初步诠释[J].工程热物理学报,2003,24(4):570-574.
    [5] Lichtfuss H J. Customized profiles-the beginning of an era: a short history of bladedesign[C]. Proceedings of ASME Turbo Expo2004: Power for Land, Sea, and Air, No.GT2004-53742.
    [6] Dutta A K, Flassig P M, Bestle D. A non-dimensional quasi-3D blade design approachwith respect to aerodynamic criteria[C]. Proceedings of ASME Turbo Expo2008:Power for Land, Sea and Air, No. GT2008-50687.
    [7] Wu Chunghua. A general theory of three-dimensional flow in subsonic and supersonicturbomachines of axial-, radial-and mix-flow types[Z]. National Advisory Committeefor Aeronautics Technical Note,1952, No.2604.
    [8] Korakianitis T. Three dimensional direct turbine blade design method[C].32nd AIAAFluid Dynamics Conference and Exhibit, No. AIAA2002-3347.
    [9] Ekici K, Akmandort I S, Cetinkaya T. Quasi-3dimensional analysis and design ofturbomachinery blades[C].36th Aerospace Sciences Meeting and Exhibit, No.AIAA-98-0966.
    [10] Jennions I K, Stow P. A quasi-three-dimensional turbomachinery blade design system,Part I: Throughflow analysis[C]. ASME Paper, No.84-GT-26.
    [11] H hn W, Heinig K. Numerical and experimental investigation of unsteady flowinteraction in a low-pressure multistage turbine[J]. Journal of turbomachinery,2000,122(4):628-633.
    [12] Tallman J, Lakshminarayana B. Numerical simulation of tip leakage flows in axial flowturbines, with emphasis on flow physics: Part I: Effect of tip clearance height[J]. Journalof turbomachinery,2001,123(2):314-323.
    [13] Arnone A, Marconcini M, Greco A S D. Numerical investigation of three-dimensionalclocking effects in a low pressure turbine[J]. Journal of turbomachinery,2004,126(3):375-384.
    [14] Song Bo, Ng W F, Cotroneo J, et al. Aerodynamic design and testing of three lowsolidity steam turbine nozzle cascades[C]. Proceedings of ASME Turbo Expo2004:Power for Land, Sea, and Air, No. GT2004-53329.
    [15] Korakianitis T. Development of three direct-design methods for two-dimensionalaxial-turbomachinery cascades[J]. Journal of Turbomachinery,1993,121:312-324.
    [16] Xu C, Amano R S. On the development of turbine blade aerodynamic designsystem[C]. Proceedings of ASME Turbo Expo2001, No.2001-GT-0443.
    [17]姚征.平面叶栅速度图法有限元分析[J].上海机械学院学报,1983,4(2):43-53.
    [18]刘高联.任意旋成面叶栅杂交型气动命题的变分原理与广义变分原理(Ⅱ)[J].工程热物理学报,1989,7(3):315-322.
    [19]陈乃兴,董明,张家林.叶轮机械全三维气动杂交问题的数值求解方法[J].航空动力学报,1990(2):97-102.
    [20] Jarrett J P. Multi-fidelity gradient-based optimization in turbomachinery aerodynamicdesign[C].47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, andMaterials Conference, No. AIAA2006-1907.
    [21] Farinas M I, Garon A. Application of doe for optimal turbomachinery design[C].34thAIAA Fluid Dynamics Conference and Exhibit, No. AIAA2004-2139.
    [22] Jarrett J P, Bell T A, Clarkson P J. Towards orthogonal turbomachinery design[C].Proceedings of ASME Turbo Expo2006: Power for Land, Sea and Air, No.GT2006-90381.
    [23] Rai M M, Madavan N K. Application of artificial neural networks to the design ofturbomachinery airfoils[C].36th Aerospace Sciences Meeting&Exhibit, No.AIAA-98-1003.
    [24]樊会元,王尚锦,席光.透平机械叶片的遗传优化设计[J].航空学报,1999,20(1):47-51.
    [25]宁方飞,刘晓嘉.一种新的响应面模型及其在轴流压气机叶型气动优化中的应用[J].航空学报,2007,28(4):813-820.
    [26]李阳.先进涡轮设计方法研究[D].哈尔滨工程大学硕士学位论文,2008,3:1-7,50-51.
    [27] Main A J, Oldfield M L G, Lock G D, et al. Free vortex theory for efficiencycalculations from annular cascade data[J]. Journal of Turbomachinery,1997,119(2):247-255.
    [28]刘顺隆.船舶涡轮机原理[M].哈尔滨:哈尔滨船舶工程学院出版社,1980:182-201.
    [29]舒士甄,朱力,柯玄龄,等.叶轮机械原理[M].北京:清华大学出版社,1991:58-68.
    [30]沈邱农,崔琦,张兆鹤.可控涡设计环形叶栅的试验研究[J].动力工程,1999,19(5):333-337.
    [31]张志刚,彭泽瑛,张兆鹤.大功率汽轮机低压缸斜扭叶栅的开发与气动设计[J].上海汽轮机,2000,(3):1-9,17.
    [32]李才修,叶淇.工业汽轮机扭叶片系列[J].动力工程,1982,(2):18-27.
    [33]梅运焕,刘波,管继伟,等.大功率汽轮机长叶片气动设计初探[J].汽轮机技术,2006,48(4):241-244.
    [34] Cofer IV J I, Reinker J K, Sumner W J. Advances in steam path technology[R]. GEPower Generation,1996, GER-3713E.
    [35] Havakechian S, Greim R. Aerodynamic design of50per cent reaction steam turbines[J].Proceedings of the Institution of Mechanical Engineers, Part C: Journal of MechanicalEngineering Science,1999,213(1):1-25.
    [36] Harvey N W, Cox J C, Schulte V, et al. The role of research in the aerodynamic designof an advanced low-pressure turbine[J]. Proceedings of the Institution of MechanicalEngineers, Part A: Journal of Power and Energy,1999,213(4):235-242.
    [37]梁春霞.先进涡轮气动设计[D].哈尔滨工程大学硕士学位论文,2009,3:53-80.
    [38]李斌.先进涡轮气动设计规律的研究[D].哈尔滨工程大学硕士学位论文,2010,3:53-88.
    [39] Dorman T E, Welna H, Lindlauf R W. The application of controlled-vortexaerodynamics to advanced axial flow turbines[J]. Journal of Engineering for Power,1968,90(3):245-250.
    [40] Vad J, Kwedikha A R A, Horváth C, et al. Aerodynamic effect of forward blade skew inaxial flow rotors of controlled vortex design[J]. Proceedings of the Institution ofMechanical Engineers, Part A: Journal of Power and Energy,2007,221(7):1011-1023.
    [41] Couchman R S, Robbins K E, Schofield P. GE steam turbine design philosophy andtechnology programs[R]. GE Power Generation,1991, GER-3705.
    [42] Plaia J M, Lear W E. Preliminary turbine design for non-uniform inlet conditions[C].The33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, No.AIAA1997-3010.
    [43] Vad J, Bencze F. Three-dimensional flow in axial flow fans of non-free vortex design[J].International Journal of Heat and Fluid Flow,1998,19(6):601-607.
    [44] Vad J, Bencze F, Benigni H, et al. Comparative investigation on axial flow pump rotorsof free vortex and non-free vortex design[J]. Periodica Polytechnica-MechanicalEngineering,2002,46(2):107-116.
    [45] Albuquerque R B F, Manzanares-Filho N, Oliveira W. Conceptual optimization ofaxial-flow hydraulic turbines with non-free vortex design[J]. Proceedings of theInstitution of Mechanical Engineers, Part A: Journal of Power and Energy,2007,221(5):713-725.
    [46] Zheng Qun, Gao Jie, Li Bin. Study of viscous controlled vortex design of a LP turbinestage[C]. Proceedings of ASME Turbo Expo2010: Power for Land, Sea and Air, No.GT2010-23123.
    [47]中国科学院北京力学研究所透平研究组.透平的控制旋涡设计[J].力学情报,1975,(2):51-70.
    [48]徐大懋,俞翌然,陆永良.大功率汽轮机的长叶片设计[J].汽轮机技术,1980,(2):1-12.
    [49]邹滋样.轴流透平叶片的控制环量设计与扭曲规律优化的研究[J].工程热物理学报,1982,3(2):158-160.
    [50] Fischer A, Riess W, Seume J R. Performance of strongly bowed stators in a four-Stagehigh-speed compressor[J]. Journal of Turbomachinery,2004,126(3):333-338.
    [51]朱晓峰,袁新.蒸汽透平高压级扭叶片的气动优化设计[J].热力透平,2009,38(4):217-220,268.
    [52] Pullan G, Harvey N W. The influence of sweep on axial flow turbine aerodynamics inthe endwall region[J]. Journal of turbomachinery,2008,130(4):041011.
    [53] Snedden G, Dunn D, Ingram G, et al. The application of non-axisymmetric endwallcontouring in a single stage, rotating turbine[C]. Proceedings of ASME Turbo Expo2009: Power for Land, Sea, and Air, No. GT2009-59169.
    [54] Duden A, Raab I, Fottner L. Controlling the secondary flow in a turbine cascade bythree-dimensional airfoil design and endwall contouring[J]. Journal of Turbomachinery,1999,121(2):191-199.
    [55]钟兢军,王会社,刘慧娟,等.吸力面翼刀控制压气机叶栅二次流的实验研究[J].航空动力学报,2002,17(2):188-191.
    [56]刘艳明,钟兢军,黄洪雁,等.端壁翼刀控制压气机叶栅二次流的机理研究[J].空气动力学学报,2005,23(4):431-436.
    [57]冯国泰顾中华王松涛.具有弯扭掠叶片流场结构分析能力的燃气涡轮三维设计体系——弯扭掠叶片设计体系与设计思想研究之一[J].航空发动机,2002,(3):4,5-8.
    [58]冯国泰,王松涛,顾中华,等.弯扭掠三维叶片综合流型与流场结构优化的设计思想及应用——弯扭掠叶片设计体系与设计思想研究之二[J].航空发动机,2002,(4):5-11.
    [59]张华良.采用叶片弯/掠及附面层抽吸控制扩压叶栅内涡结构的研究[D].哈尔滨工业大学博士学位论文,2007,4:2-3,15-17.
    [60] Wang Z,Lai S,Xu W. Aerodynamic calculation of turbine stator cascades withcurvilinear leaned blades and some experimental results[C].5th InternationalSymposium on Air-Breathing Engines,1981.
    [61]王仲奇,郑严.叶轮机械弯扭叶片的研究现状及发展趋势[J].中国工程科学,2000,2(6):40-48.
    [62]王仲奇,韩万今,徐文远.低展弦比透平叶片弯曲方法研究[J].工程热物理学报,1995,16(1):35-38.
    [63]吴继权,吴国钏,苏杰先,等.设计工况下反弯叶栅出口流场的实验研究[J].推进技术,1998,19(4):83-86.
    [64]苏杰先,王仲奇.叶片的弯扭联合气动成型理论、实验、设计及其应用[J].动力工程,1992,12(6):1-6,54.
    [65]安柏涛,韩万今,王仲奇.弯叶片降低损失机理的实验研究[J].热能动力工程,2000,15(89):498-501,578.
    [66]徐文远,于清,杨弘,等.弯扭静子叶片的环形叶栅试验[J].工程热物理学报,1994,15(3):280-283.
    [67] Tan Chunqing, Zhang Hualiang, Hongde Xia, et al. Blade bowing effect onaerodynamic performance of a highly loaded turbine cascade[J]. Journal of Propulsionand Power,2010,26(3):604-607.
    [68] Tan C, Zhang H, Chen H, et al. Flow fields and losses downstream of an ultra-highlyloaded turbine cascade with bowed blades[J]. Proceedings of the Institution ofMechanical Engineers, Part A: Journal of Power and Energy,2011225(1):131-140.
    [69] Vand M H, Wang Songtao. Numerical study of the effects of bowed blades onaerodynamic characteristics in a high pressure turbine[C]. Proceedings of ASME TurboExpo2005: Power for Land, Sea, and Air, No. GT2005-68214.
    [70] Wingelhofer F, Haselbacher H. New optimization criteria for the design ofthree-dimensional bladings applied to compound lean nozzles of an axial turbine[C].Proceedings of ASME Turbo Expo2004: Power for Land, Sea, and Air, No.GT2004-53830.
    [71] Bagshaw D A, Ingram G L, Gregory-Smith D G, et al. An experimental study of reversecompound lean in a linear turbine cascade[J]. Proceedings of the Institution ofMechanical Engineers, Part A: Journal of Power and Energy,2005,219(6):443-449.
    [72]王仲奇,苏杰先,钟兢军.弯扭叶片栅内减少能量损失机理研究的新进展[J].工程热物理学报,1994,15(2):147-152.
    [73] Denton J D, Xu L. The exploitation of three-dimensional flow in turbomachinerydesign[J]. Journal of Mechanical Engineering Science,1998,213(2):125-137.
    [74] Friedrichs J, Baumgarten S, Kosyna G, et al. Effect of stator design on stator boundarylayer flow in a highly loaded single-stage axial-flow low-speed compressor[C].Proceedings of ASME Turbo Expo2000, No.2000-GT-616.
    [75] Gümmer V, Wenger U, Kau H-P. Using sweep and dihedral to controlthree-dimensional flow in transonic stators of axial compressors[J]. Journal ofTurbomachinery,2001,123(1):40-48.
    [76]张永军,王会社,徐建中,等.扩压叶栅中弯叶片作用气动机理的探讨[J].工程热物理学报,2008,29(9):1471-1474.
    [77]孙鹏,钟兢军,冯国泰.跨声速风扇流场中弯叶片抗畸变能力研究[J].工程热物理学报,2008,29(7):1111-1116.
    [78]袁仲文.轴流风机采用变环量设计的研究[J].机械设计与研究,1984,(6):1-7.
    [79]王企鲲,陈康民.一种微型轴流风扇扭叶片设计方法及其气动特性的数值研究[J].力学季刊,2008,29(1):92-101.
    [80]王企鲲,陈康民.微型轴流风扇中变环量指数对扭叶片气动性能的影响特点[J].机械工程学报,2009,45(4):76-82.
    [81] NUMECA International. Fine/Turbo V7(including Euranus) flow integratedenvironment[K]. Belgique: User Manual,2006.
    [82]吴子牛.计算流体力学基本原理[M].北京:科学出版社,2001:223-232.
    [83]杨策,蒋滋康,索沂生.时间推进方法在叶轮机械内部流场计算中的进展[J].力学进展,2000,30(1):83-94.
    [84] Jameson A, Schmidt W, Turkel E. Numerical solution of the Euler equations by finitevolume methods using Rung-Kutta time stepping schemes[C]. AIAA14th Fluid andPlasma Dynamics Conference, No. AIAA81-1259.
    [85] Baldwin B S, Lomax H. Thin layer approximation and algebraic model for separatedturbulent flows[C]. AIAA16th Aerospace Sciences Meeting, No. AIAA78-257.
    [86] Spalart P R, Allmaras S R. A one equation turbulence model for aerodynamic flows[C].30th Aerospace Science Meeting&Exhibit, AIAA-92-0439.
    [87] Yang Z, Shih T H. A k-epsilon model for turbulent and transitional boundary layers[J].Near-Wall Turbulent Flows,1993:165-175.
    [88] Ashford G A, Powell K G. An unstructured grid generation and adaptive solutiontechnique for high-Reynolds-number compressible flows[Z]. Lecture series-vanKareman Institute for fluid dynamics,1996,6:1-110.
    [89] Denton J D. The calculation of three-dimensional viscous flow through multistageturbomachines[J]. Journal of turbomachinery,1992,114(1):18-26.
    [90] Brost V, Ruprecht A, Maih fer M. Rotor/stator interactions in an axial turbine, acomparion of transient and steady state frozen rotor simuations[C]. Conference on CaseStudies in Hydraulic Systems,2003.
    [91]刘大响.对加快发展我国航空动力的思考[J].航空动力学报,2001,11(1):1-7.
    [92] Denton J D, Dawes W N. Computational fluid dynamics for turbomachinery design[J].Proceedings of the Institution of Mechanical Engineers, Part C: Journal of MechanicalEngineering Science,1998,213(2):107-124.
    [93] Fottner L. Test cases for computation of internal flows in aero engine components[M].Virginia: Defense Technical Information Center,1990:365-375.
    [94] Atkins N R, Miller R J, Ainsworth R W. The development of aerodynamic performancemeasurements in a transient test facility[C]. Proceedings of ASME Turbo Expo2004:Power for Land, Sea, and Air, No. GT2004-53813.
    [95] Haldeman C W, Dunn M G, Barter J W, et al. Experimental investigation of vaneclocking in a one and1/2stage high pressure turbine[C]. Proceedings of ASME TurboExpo2004: Power for Land, Sea, and Air, GT2004-53477.
    [96]周勇,赵晓路,徐建中.短周期试验台涡轮机匣换热实时测量初探[J].工程热物理学报,2008,29(2):208-302.
    [97] Reinm ller U, Stephan B, Schmidt S, et al. Clocking effects in a1.5stage axial turbine-steady and unsteady experimental investigations supported by numerical simulations[C].Proceedings of ASME Turbo Expo2001, No.2001-GT-0304.
    [98] Schennach O, Woisetschlager J, Fuchs A, et al. Experimental investigations of clockingin a one and a half stage transonic turbine using laser-doppler-velocimetry and a fastresponse aerodynamic pressure probe[C]. Proceedings of ASME Turbo Expo2006:Power for Land, Sea and Air, No. GT2006-90264
    [99] Sell M, Schlienger J, Pfau A, et al. The2-stage axial turbine test facility “LISA”[C].Proceedings of ASME Turbo Expo2001, No.2001-GT-0492.
    [100] Erhard J, Gehrer A. Design and construction of a transonic test-turbine facility[C].Proceedings of ASME Turbo Expo2000, No.2000-GT-480.
    [101] Erhard J. Design, Construction and commissioning of a transonic test-turbine facility[D].Doctoral Thesis at the Institute of Thermal Turbomachinery and Machine DynamicsGraz University of Technology, Austria,2000,5:27-45.
    [102] Haller B, Anderson J. Development of new high load/high lift transonic shrouded HPgas turbine stage design–a new approach for turbomachinery[C]. Proceedings ofASME Turbo Expo2002, No. GT-2002-30363.
    [103] Ma Ruolong, Morris S C, Corke T C. Design of a transonic research turbine facility[C].44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA2006-1311.
    [104]王仲奇,秦仁.透平机械原理[M].北京:机械工业出版社,1988:93-103.
    [105] Arnone A, Bonaiuti D, Focacci A, et al. Parametric optimization of a high-lift turbinevane[C]. Proceedings of ASME Turbo Expo2004, Power for Land, Sea, and Air, No.GT2004-54308.
    [106] Hoschek J, Müller R. Turbine blade design by lofted B-spline surfaces[J]. Journal ofComputational and Applied Mathematics,2000,119(1):235-248.
    [107] Burman J, Gebart B, Martensson H. Development of a blade geometry definition withimplicit design variables[C].38th Aerospace Sciences Meeting&Exhibit, No.AIAA2000-0671.
    [108] Briasco G, Bruna D, Cravero C. A NURBS-based optimization tool for axial compressorcascades at design and off-design conditions[C]. Proceedings of ASME Turbo Expo2008: Power for Land, Sea and Air, No. GT2008-50622.
    [109] Sieverding F, Ribi B, Casey M, et al. Design of industrial axial compressor bladesections for optimal range and performance[C]. Proceedings of ASME Turbo Expo2003: Power for Land, Sea, and Air, No. GT2003-38036.
    [110]陈波,高学林,袁新.基于的叶片全三维气动优化设计[J].工程热物理学报,2006,27(5):763-765.
    [111]宋彦萍,芦文才,王仲奇,等.新型的汽轮机后加载叶型的研究[J].哈尔滨工业大学学报,1999,31(2):55-57.
    [112]周逊,韩万金.后加载叶型叶栅的三维压力场及其对损失发展的影响[J].推进技术,2003,24(6):537-542.
    [113] Gier J, Franke M, Hubner N, et al. Designing LP turbines for optimized airfoilloading[C]. Proceedings of ASME Turbo Expo2008: Power for Land, Sea and Air, No.GT2008-51101.
    [114]陈海生,谭春青.叶轮机械内部流动研究进展[J].机械工程学报,2007,43(2):1-11.
    [115]李军,孙奇,晏鑫,等.前加载和后加载叶片气动性能的数值研究[J].动力工程,2007,27(6):835-839.
    [116] Pullan G, Denton J, Curtis E. Improving the performance of a turbine with low aspectratio stators by aft-loading[C]. Proceedings of ASME Turbo Expo2005: Power for Land,Sea and Air, No. GT2005-68548.
    [117]杜连庆,王松涛.海豚叶型的初步尝试[J].汽轮机技术,2006,48(2):112-113.
    [118] Mack S, Brehm C, Heine B, et al. Experimental investigation of separation andseparation control on a laminar airfoil[C].4th AIAA Flow Control Conference, No.AIAA-2008-3766.
    [119] Beauchamp P P, Seebass A R. Shock-free turbomachinery blade design[J]. AIAAJournal,1985,23(2):249-253.
    [120] Behlke R F. The development of a second generation of controlled diffusion airfoils formultistage compressors[J]. Journal of turbomachinery,1986,108(1):32-41.
    [121]王仲奇,苏杰先,钟兢军.弯扭叶片栅内减少能量损失机理研究的新进展[J].工程热物理学报,1994,15(2):147-152.
    [122] Bergner J, Kablitz S, Hennecke D K, et al. Influence of sweep on the3d shock structurein an axial transonic compressor[C]. Proceedings of ASME Turbo Expo2005: Powerfor Land, Sea, and Air, No. GT2005-68835.
    [123] Ji Lucheng, Chen Jiang, Lin Feng. Review and understanding on sweep in axialcompressor design[C]. Proceedings of ASME Turbo Expo2005: Power for Land, Seaand Air, No. GT2005-68473.
    [124] Hah C, Puterbaugh S L, Wadia A R. Control of shock structure and secondary flow fieldinside transonic compressor rotors through aerodynamic sweep[C]. ASME paper, No.98-GT-561.
    [125] Boletis, E. Effect of tip endwall contouring on the three dimensional flow-field in anannular turbine nozzle guide vane: part1—experimental investigation[J]. Journal ofEngineering for Gas Turbines and Power,1985,107(4):983-990.
    [126] Bohn D E, Sürken N, Qing Yu, et al. Axisymmetric endwall contouring in a four-stageturbine: comparison of experimental and numerical results[C]. Proceedings of ASMETurbo Expo2002: Power for Land, Sea, and Air, GT2002-30351.
    [127]高怡秋.涡轮三维设计及性能优化[D].哈尔滨工程大学硕士学位论文,2008,3:11-39,71-97.
    [128]安柏涛,韩万金,王松涛,等.子午扩张流道中叶片积叠线形式对损失的影响[J].推进技术,2002,23(2):100-104.
    [129]唐洪飞,颜培刚,黄洪雁,等.大子午扩张涡轮的分离控制[J].航空学报,2009,30(5):825-831.
    [130]张秋鸿.涡轮大扩张过渡段的流动分离与控制数值研究[J].汽轮机技术,2006,48(4):272-274.
    [131]唐洪飞,黄洪雁,王振峰,等.大子午扩张涡轮的根部型线研究[J].航空动力学报,2010,25(7):1602-1608.
    [132]安柏涛,韩万金,王松涛,等.大扩张角子午流道型线对损失的影响[J].推进技术,2001,22(3):211-214.
    [133] Anderson S, Trollheden S. Aerodynamic design and development of a two-stagesupersonic turbine for rocket engines[C].35th AIAA/ASME/SAE/ASEE JointPropulsion Conference&Exhibit, No. AIAA99-2192.
    [134] Rubechini F, Schneider A, Arnone A, et al. A redesign strategy to improve the efficiencyof a17-stage steam turbine[C]. Proceedings of ASME Turbo Expo2009: Power forLand, Sea and Air, No. GT2009-60083.
    [135]赵洪雷,韩万金,谭春青,等.高负荷低压涡轮的多级气动优化设计[J].工程热物理学报,2008,29(9):1479-1482.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700