生物催化电解工艺强化偶氮染料茜素黄R的脱色效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偶氮染料是染料中最大的化学分类,由于其廉价、稳定并且比自然染料颜色多样等特点,偶氮染料被广泛用于印染、造纸等工业生产中。但是,偶氮染料具有毒性大、难生物降解、色度高的特点,若直接排放到自然水体,不仅会造成视觉污染,其颜色还会阻碍光线和氧气的进入,严重影响水生生物的生存。我国是印染工业大国,印染废水日益增多,因此偶氮染料废水的脱色脱毒处理一直是我国工业废水处理的重点目标。近年来,生物催化电解系统已经发展成一种很有前景的水处理技术,它利用微生物在阳极催化氧化反应,驱动阴极电子受体的还原,从而将化学能转化为电能,其应用已经拓展到不同领域,例如生物产氢、有机物合成、金属还原、脱盐、以及多种废水处理等。
     围绕生物电化学系统的构型改进,以偶氮染料为处理目标,选取茜素黄R(AYR)为模式染料,开发了无隔膜的生物催化电解反应器,并将其与厌氧工艺耦合,在此基础上,构建了放大规模的厌氧折流板-生物催化电解一体式工艺(ABR-UBER)。
     为了解决传统双极室生物电化学系统成本高、难以放大的问题,设计了无隔膜的升流式生物催化电解反应器(UBER)用来强化偶氮染料的脱色。通过考察偶氮染料AYR对阳极电极微生物活性的影响,确定了当AYR浓度达到40mg/L时,阳极微生物失活,产电过程停止。因此,为了保护生物阳极的活性,UBER采用阴极在下,阳极在上的电极排布方式,阴极对生物阳极起到有效的保护作用,并采用无隔膜的结构,大大降低了工艺成本。在外加0.5V电压条件下,UBER对水中AYR(100mg/L)的脱色率达到94.8±1.5%,当水力停留时间(HRT)大于6h时,基于AYR在阴极区的去除量来计算的UBER的电子回收率接近100%,表明AYR的去除是阴极电化学还原的结果。当HRT小于2.5h时,AYR的脱色率降低,高浓度AYR废水流经阳极,使阳极微生物活性受到抑制,本研究中,UBER能够承受的最大进水AYR负荷为680g/m3·d(HRT:2.5h)。
     以阴极体积为研究对象,通过固定阳极大小,改变阴极体积的方式来考察阴极对UBER效能的影响。偶氮染料AYR在UBER中的脱色率、去除速率和电流密度随着阴极体积的放大而提高,但提高倍数远远小于阴极的放大倍数,说明放大的阴极无法被有效利用,但阴极体积较小时,反应器不稳定,能够处理的染料负荷较低。当阴极体积与阳极体积比例为2:1时,UBER的内阻最小(电荷传递阻力为39.5Ω),反应器效能最好。利用生物接触氧化反应器(ABOR)处理UBER的出水,AYR的还原脱色产物对苯二胺(PPD)和5-氨基水杨酸(5-ASA)在ABOR中被有效去除,当UBER-ABOR联合工艺的HRT缩短到6h时,末端出水的脱色率和COD去除率分别达到93.8±0.7%和93.0±0.5%,色度为80倍,满足我国染料废水排放的II级标准,最后分析了AYR在联合工艺中的转化代谢途径。
     基于UBER的设计,开发了厌氧-生物催化电解耦合工艺(AD-UBER),在UBER的下部引入厌氧污泥床,利用厌氧生物过程和生物电催化过程的优势,协同去除偶氮染料,脱色率达到90%以上,通过比较UBER、AD和AD-UBER对AYR的去除效果,分析了AD-UBER耦合系统去除偶氮染料AYR的过程原理,并得到当电极体系置于水相中时,更利于反应器效能的发挥。
     在AD-UBER的基础上,将多个AD-UBER组合放大,开发了厌氧折流板-生物催化电解一体式工艺(ABR-UBER),将UBER置于厌氧折流板反应器的每个格室中,生物电催化过程的引入,强化了偶氮染料的脱色,外加0.5V电压时,出水脱色率由开路的86.9±6.3%提高到95.1±1.5%,同时,乙酸的积累量减小,脱色率和电流密度随着UBER外加电压的提高(0.3、0.5、0.7V)而提高,分别达到96.4±1.8%和24.1A/m3·TCV(0.7V)。缩短HRT使ABR-UBER的脱色率降低,但各格室对AYR的去除速率随着HRT的缩短而提高,这表明ABR-UBER每个格室都具有较大的处理负荷,前面格室的处理能力是反应器整体性能的限制因素,后续格室在HRT较短时(4h)仍表现出较高的处理效能。ABR-UBER这种放大的无隔膜设计为生物电化学系统高效经济地去除偶氮染料及工艺放大应用提出了新的概念。
Azo dyes are the largest chemical class of dyes and are frequently used for textile dying and paper printing industries due to cheap costs, firmness, and a variety of colors compared to natural dyes. However, azo dyes are highly toxic and persistent to biodegradation. Besides, the intensive color of dye-containing wastewater leads to severe aesthetic problems and obstructs light penetration and oxygen transfer into water bodies, adversely affecting aquatic life. For these reasons, the color removal from dye-containing wastewater is one of major concerns in China where textile industry has grown exponentially in recent years. Azo dyes should be removed from wastewater before being discharged to water body. More recently, Bioelectrochemical system (BES) is emerging as a promising technology in which microorganisms function as catalysts to convert chemical energy into electrical energy. BES has been tested for many potential applications besides electricity generation, including biohydrogen prodution, metal reduction and recovery, desalination, organic products synthesis and treatment of various wastewaters.
     This study focused on the configuration improvement of BES. Aliarin Yellow R (AYR) was selected as a model azo dye and was removed from wastewater using BES. A novel up-flow biocatalyzed electrolysis reactor (UBER) was developed. Then, anaerobic process was coupled with UBER to establish a process named AD-UBER. Basing on this, a small pilot scale anaerobic baffled reactor coupled with UBER (ABR-UBER) was developed.
     Firstly, we developed an economical BES lacking membrane (an up-flow biocatalyzed electrolysis reactor (UBER) for azo dye removal. This design avoided the problems of traditional bioelectrochemical reactor, such as high cost and difficult scaling-up. The toxic inhibition of azo dye (AYR) to the bioelectrochemical microoganisms was tested in a dual-chamber biocatalyzed electrolysis reactor to identify that AYR was highly toxic to the anodic bacteria. Anodic bacteria lost activity when AYR concentration reached40mg/L in the culture and current generation stopped. Thus, the cathode of UBER was placed at the bottom of the reactor to well protect the bioanode that set above the cathode. The elimination of membrane decreased the cost greatly. With the supply of external power source0.5V in the UBER, AYR decolorization efficiency reached up to94.8±1.5%. Electron recovery efficiency based on AYR removal in cathode zone was nearly100%at HRT longer than6h. Relatively high concentration of AYR accumulated at higher AYR loading rates (>780g/m3·d) likely inhibited acetate oxidation of anode-respiring bacteria on the anode, which decreased current density in the UBER; optimal AYR loading rate for the UBER was680g/m3·d (HRT2.5h).
     To optimize the performance of UBER, the effect of cathde volume, which was a key parameter of UBER, was investigated at a constant andoe volume. Decolorization efficiency was improved with increasing cathode size in UBERs, but AYR removal rate and current density did not increase in proportion to cathode size indicating that bigger cathode was more efficient for azo dye removal while most of the cathode could not be utilized effectively. However, smaller cathode volume was disbenefit to the stable operation of UBER. The best performance of UBER was obtaind when the volume ratio of cathode to anode was2:1where the charge transfer resistance Rct (39.5Ω) was minimal. AYR and its reductive products were further mineralized in the subsequent aerobic bio-contact oxidation reactor (ABOR). Decolorization efficiency and COD removal efficiency was93.8±0.7%and93.0±0.5%in the combined process of UBER and ABOR in overall HRT6h (HRT2.5h in UBER+HRT3.5h in ABOR). The Chroma in ABOR effluent was80times, which was satisfied with the texile wastewater discharge standard II. A possible AYR tranfermaion pathway was aproposed.
     Based on the design of UBER, we developed an anaerobic digestion-up-flow biocatalyzed electrolysis reactor (AD-UBER). A sludge bed was set below the UBER. Bioelectrochemical reaction was cooperated with anaerobic biological reaction for azo dye removal and the decolorization efficiency was higher than90%. The mechanism of AD-UBER was analyzed by comparing with the process of UBER and AD. The best performance of AD-UBER was obtained when the eletrodes were placed in the aqueous phase.
     Finally, we intended to combined several AD-UBERs together and enlarge the reacor. Therefore, a small pilot scale system that integrated UBER with ABR by installing UBER module into each compartment of ABR (called, ABR-UBER) was established for azo dye wastewater treatment. The ABR-UBER was operated without and with external power supply to examine AYR reduction process and reductive intermediates with different external voltages (0.3,0.5and0.7V) and hydraulic retention times (HRT:8,6and4h). The decolorization efficiency in the ABR-UBER (8h HRT,0.5V) was higher than that in ABR-UBER without electrolysis, i.e.95.1±1.5%versus86.9±6.3%. Higher power supply (0.7V) enhanced AYR decolorization efficiency (96.4±1.8%), VFAs removal, and current density (24.1A/m3·TCV). Shorter HRT increased volumetric AYR decolorization rates, but decreased AYR decolorization efficiency. This indicated that each compartment of ABR-UBER could endure a high AYR loading rate, while the capalities of former compartements were the limit fact to the overall performance. The latter compartments still worked well at shorter HRT of4h. The novel ABR-UBER with membrane-free provided a new concept for BES scaling-up to energy-efficient treatment of azo dye wastewater.
引文
[1] Austin G T. Shreve’s chemical process industries [M]. McGraw Hill, New York.1984.
    [2] SBP Board of Consultants and Engineers. Handbook of exported oriented dyesand intermediate industries [M]. SBP Consultants and Engineers Pvt Ltd,India,1994.
    [3] Walker G M, Weatherley L R. Biodegradation and biosorption of acidanthraquinone dye [J]. Environmental Pollution,2000,108(2):219-223.
    [4] Gordon P F, Gregory P. Organic chemistry in colour [M]. Springer, New York,1983.
    [5] Zollinger H. Color chemistry-synthesis, properties and application of organicdyes and pigments [M]. V C H, New York,1987.
    [6] Moreira F C, Garcia-Segura S, Vilar V J P, et al. Decolorization andmineralization of Sunset Yellow FCF azo dye by anodic oxidation,electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fentonprocesses [J], Applied Catalysis B, Environmental,2013,142:877-890.
    [7] Sandhya S. Biodegradation of Azo Dyes under Anaerobic Condition: Role ofAzoreductase [M]. Springer,2010.
    [8] Ollgaad H, Frost L, Galster J, et al. Survey of azo-colorant on Denmark:Milgoproject [M]. Danish Environmental Protection Agency,1999.
    [9] Stolz A. Basic and applied aspects in the microbial degradation of azo dyes [J].Applied Microbiology and Biotechnology,2001,56(1-2):69-80.
    [10]Ishikawa Y, Ester T, Leader A. Chemical economics hand book: dyes [M].Chemical and Health Business Services, Menlo Park, CA,2000.
    [11]Will R, Ishikawa Y, Leader A. Synthetic dyes. In: Chemical economicshandbook, synthetic dyes [M]. Chemical and Health Business Services,Menlo Park CA,2000.
    [12]O’Neill C, Hawkes F R, Hawkes D W, et al. Colour in textile effluents-sources,measurement, discharge consents and simulation: a review [J]. Journal ofChemical Technology and Biotechnology,1999,74(11):1009-1018.
    [13]Ayed L, Mahdhi A, Cheref A, et al. Decolorization and degradation of azo dyeMethyl Red by an isolated Sphingomonas paucimobilis: Biotoxicity andmetabolites characterization [J]. Desalination,2011,274(1):272-277.
    [14]Collins T F X, McLaughlin J, Gray G C. Teratology studies on food colorings.Part1: embryo toxicity of Amaranth (FD&C Red no.2) in rats [J]. Foodand Cosmetics Toxicology,1972,10(5):619-624.
    [15]Andrianova M M. Carcinogenic properties of the red food dyes Amaranth,Ponceau SX and Ponceau4R.[J]. Voprosy Pitaniya.1970,29(5):61-66.
    [16]Hildenbrand S, Schmahl F W, Wodarz R, et al. Azo dyes and carcinogenicaromatic amines in cell culture [J]. International Archives of Occupationaland Environmental Health,1999,72(3):52-56.
    [17]Grover I S, Kaur A, Mahajan R K. Mutagenicity of some dye effluents [J].National Academy Science Letters-India,1996,19(7-8):149-158.
    [18]Bonser G M, Bradshaw L, Clayson D B, et al. A further study on thecarcinogenic properties of ortho-hydroxyamines and related compounds bybladder implantation in the mouse [J]. British Journal of Cancer,1956(3),10:539-546.
    [19]Jafari N, Soudi M R, Kasra-Kermanshahi R. Biodecolorization of textile azodyes by isolated yeast from activated sludge: Issatchenkia orientalis JKS6[J].Annals of Microbiology,2014,64(2):475-482.
    [20]Saratale R G, Saratale G D, Chang J S, et al. Bacterial decolorization anddegradation of azo dyes: a review [J]. Journal of the Taiwan Institute ofChemical Engineers,2011,42(1):138-157.
    [21]Pagga U, Brown D. The degradation of dyestuffs. Part II. Behaviour ofdyestuffs in aerobic biodegradation test [J]. Chemosphere,1986,15(4):479-491.
    [22]Shaul G M, Holsdworth T J, Dempsey C R, et al. Fate of water soluble azo dyesin the activated sludge process [J]. Chemosphere,1991,22(1-2):107-119.
    [23]Brown D, Hamburger B. The degradation of dyestuffs. Part III. Investigationsof their ultimate degradability [J]. Chemosphere,1987,16(7):1539-1553
    [24]Chung K T, Stevens S E, Cerniglia C E. The reduction of azo dyes by theintestinal microflora [J]. Critical Reviews in Microbiology,1992,18(3):175-190.
    [25]Weber E J, Wolfe N L. Kinetic studies of the reduction of aromatic azocompounds in anaerobic sediment/water systems [J]. EnvironmentalToxicology and Chemistry,1987,6(12):911-919.
    [26]Rafii F, Freankalin W, Cerniglia C E. Azoreductase activity of anaerobicbacteria isolated from human intestinal microflora [J]. Applied andEnvironmental Microbiology,1990,56(7):2146-2151.
    [27]Pearce C I, Christie R, Boothman C, et al. Reactive azo dye reduction byShewanella strain J18143[J]. Biotechnology and Bioengineering,2006,95(4):692-703.
    [28]Chen H. Recent advances in azo dye degrading enzyme research [J]. CurrentProtein and Peptide Science,2006,7(2):101-111.
    [29]Blumel S, Knackmuss H J, Stolz A. Molecular cloning and characterization ofthe gene coding for the aerobic azoreductase from xenophilus azovoransKF46F [J]. Applied and Environmental Microbiology,2002,68(8):3948-3955.
    [30]Russ R, Rau J, Stolz A. The function of cytoplasmic flavin reductases in theReduction of Azo Dyes by bacteria [J]. Applied and EnvironmentalMicrobiology,2000,66(4):1429-1434.
    [31]Keck A, Klein J, Kudlich M, et al. Reduction of azo dyes by redox mediatorsoriginating in the naphthalenesulfonic acid degradation pathway ofSphingomonas sp. strain BN6[J]. Applied and Environmental Microbiology,1997,63(9):3684-3690.
    [32]Kudlich M, Keck A, Klein J, et al. Localization of the enzyme system involvedin anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6andeffect of artificial redox mediators on the rate of azo dye reduction [J].Applied and Environmental Microbiology,1997,63(9):3691-3694.
    [33]Rau J, Knackmuss HJ, Stolz A. Effects of different quinoid redox mediators onthe anaerobic reduction of azo dyes by bacteria [J]. Environmental Scienceand Technology,2002,36(7):1497-1504.
    [34]Brige A, Motte B, Borloo, et al. Bacterial decolorization of textile dyes is anextracellular process requiring a multicomponent electron transfer pathway[J]. Microbial Biotechnology,2008,1(1):40-52.
    [35]Khalid A, Arshad M, Crowley D E. Accelerated decolorization of structurallydifferent azo dyes by newly isolated bacterial strains [J]. AppliedMicrobiology and Biotechnology,2008,78(2):361-369.
    [36]Pearce C I, Lloyd J R, Guthrie J T. The removal of colour from textilewastewater using whole bacterial cells: a review [J]. Dyes and Pigments,2003,58(3):179-196.
    [37]Walker R, Ryan A J. Some molecular parameters influencing rate of reductionof azo compounds by intestinal microflora [J]. Xenobiotica,2003,1971,1(4-5):483-486.
    [38]Bras R, Gomes M, Ferra M I A, et al. Monoazo and diazo dye decolourisationstudies in a methanogenic UASB reactor [J]. Journal of Biotechnology,2005,115(1):57-66.
    [39]Guo J, Zhou D, Wang C, et al. Biocalalyst effects of immobilized anthraquinoneon the anaerobic reduction of azo dyes by the salt-tolerant bacteria [J]. WaterResearch,2007,41(2):426-432.
    [40]Mendez-Paz D, Omil F, Lema J M. Anaerobic treatment of azo dye Acid Orange7under fed-batch and continuous conditions [J]. Water Research,2005,39(5):771-778.
    [41]Rajaguru P, Kalaiselvi K, Palanival M, et al. Biodegradation of azo dyes in asequential anaerobic-aerobic system [J]. Applied Microbiology andBiotechnology,2000,54(2):268-273.
    [42]Singh P, Saghi R, Pandey A, Decolorization and partial degradation of monoazodyes in sequential fixed-film anaerobic batch reactor (SFABR)[J].Bioresource Technology,2007,98(10):2053-2056.
    [43]Chinrelkitvanich S, Tuntoolvest M, Panswad T. Anaerobic decolorization ofreactive dyebath effluents by a two-stage UASB system with tapioca as aco-substrate [J]. Water Research,2000,43(8):2223-2232.
    [44]Bras R, Ferra I A, Pinheiro H M, et al. Batch tests for assessing decolourisationof azo dyes by methanogenic and mixed cultures [J]. Journal ofBiotechnology,2001,89(2-3):155-162.
    [45]Plumb T T, Bell J, Stuckey D C. Microbial Populations Associated withTreatment of an Industrial Dye Effluent in an Anaerobic Baffled Reactor [J].Applied and Environmental Microbiology,2001,67(7):3226-3235.
    [46]Yoo E S, Libra J, Adrian L. Mechanism of Decolorization of Azo Dyes inAnaerobic Mixed Culture [J]. Journal of Environmental Engineering,2001,127(9):844-849.
    [47]Isik M, Sponza D T. Substrate removal kinetics in an upflow anaerobic sludgeblanket reactor decolorising simulated textile wastewater [J]. ProcessBiochemistry,2005,40(3-4):1189-1193.
    [48]Talarposhti A M, Donnelly T, Anderson G K. Colour removal from a simulateddye wastewater using a two-phase anaerobic packed bed reactor [J]. WaterResearch,2001,35(2):425-432.
    [49]Coughlin M F, Kinkle B K, Bishop P L. High performance degradation of azodye Acid Orange7and sulfanilic acid in a laboratory scale reactor afterseeding with cultured bacterial strains [J]. Water Research,2003,37(11):2757-2763.
    [50]Li J, Bishop P L. Adsorption and biodegradation of azo dye in biofilm processes[J]. Water Science and Technology,2004,49(11-12):237-245.
    [51]Hai F I, Yamamoto K, Nakajima F, et al. Degradation of azo dye acid orange7in a membrane bioreactor by pellets and attached growth of Coriolusversicolour [J]. Bioresource Technology,2013,141:29-34.
    [52]Mezohegyi G, Kolodkin A, Castro U I, et al. Effective anaerobic decolorizationof azo dye Acid Orange7in continuous upflow packed-bed reactor usingbiological activated carbon system [J]. Industrial and Engineering ChemistryResearch,2007,46(21):6788-6792.
    [53]Buitron G, Quezada M, Moreno G. Aerobic degradation of the azo dye Acid Red151in a sequencing batch biofilter [J]. Bioresource Technology,2004,92(2):143-149.
    [54]Ong S A, Toorisaka E, Hirata M, et al. Treatment of azo dye orange II in asequential anaerobic and aerobic-sequencing batch reactor system [J].Environmental Chemistry Letters,2005,2(4):203-207.
    [55]Ong S A, Toorisaka E, Hirata M, et al Decolorization of azo dye (Orange II) ina sequential UASB-SBR system [J]. Separation and Purification Technology,2005,42(3):297-302.
    [56]Ong SA, Toorisaka E, Hirata M, et al. Treatment of azo dye Orange II in aerobicand anaerobic-SBR systems [J]. Process Biochemistry,2005,40(8):2907-2914.
    [57]Razo-Flores E, Luijten M, Donlon BA et al. Complete biodegradation of the azodye azodisalicylate under anaerobic conditions [J]. Environmental Scienceand Technology,1997,31(7):2098-2103.
    [58]O’Neill C, Hawkes F R, Hawkes D Letal. Anaerobic-aerobic biotreatment ofsimulated textile effluent containing varied ratios of starch and azo dye [J].Water Research,2000,34(8):2355-2361.
    [59]Wu J Y, Hwang S C J, Chen C T, et al. Decolorization of azo dye in a FBRreactor using immobilized bacteria [J]. Enzyme and Microbial Technology,2005,37(1):102-112.
    [60]Mezohegyi G, Bengoa C, Stuber F, et al. Novel bioreactor design fordecolourisation of azo dye effluents [J]. Chemical Engineering Journal,2008,143(1-3):293-298.
    [61]Nicolella C, van Loosdrecht M C M, Heijnen J J. Wastewater treatment withparticulate biofilm reactors [J]. Journal of Biotechnology,2000,80(1):1-33.
    [62]Qureshi N, Annous B A, Ezeji T C, et al. Biofilm reactors for industrialbioconversion processes: employing potential of enhanced reaction rates [J].Microbial Cell Factories,2005,4(24):1-21.
    [63]Jiang H, Bishop P L. Aerobic biodegradation of azo dyes in biofilms [J]. WaterScience and Technology,1994,29(10-11):525-530.
    [64]Zhang T C, Fu Y C, Bishop P L, et al. Transport and biodegradation of toxicorganics in biofilms [J]. Journal of Hazardous Materials,1995,41(2-3):267-285.
    [65]O’Connor O A, Young L Y. Toxicity and anaerobic biodegradability ofsubstituted phenols under methanogenic conditions [J]. EnvironmentalToxicology and Chemistry,1989,8(10):853-862.
    [66]Razo-Flores E, Donlon B, Field J, Lettinga G. Biodegradability of N-substitutedaromatics and alkylphenols under methanogenic conditions using granularsludge [J]. Water Science and Technology,1996,33(3):47-57.
    [67]Schnell S, Bak F, Pfennig N. Anaerobic degradation of aniline anddihydroxybenzenes by newly isolated sulfate-reducing bacteria anddescription of Desulfobacterium anilini [J]. Archives of Microbiology,1989,152(6):556-563.
    [68]De, M A, O’Connor O A, Kosson D S. Metabolism of aniline under differentanaerobic electron-accepting and nutritional conditions [J]. EnvironmentalToxicology and Chemistry,1994,13(2):233-239.
    [69]Georgiou D, Hatiras J, Aivasidis A. Microbial immobilization in a two-stagefixed-bed-reactor pilot plant for on-site anaerobic decolorization of textilewastewater [J]. Enzyme and Microbial Technology,2005,37(6):597-605.
    [70]Georgiou D, Aivasidis A. Decoloration of textile wastewater by means of afluidized-bed loop reactor and immobilized anaerobic bacteria [J]. Journalof Hazardous Materials,2006,135(1-3):372-377.
    [71]任随周,郭俊,曾国驱等.处理印染废水的厌氧折流板反应器中的微生物种群组成及分布规律[J].生态学报,2005,25(9):2297-2303.
    [72]Wu H, Wang S, Kong H, et a1. Performance of combined process of anoxicbaffled reactor biological contact oxidation to treat printing and dyeingwastewater [J]. Bioresource Technology,2007,98(7):1501-1504.
    [73]贾洪斌,赵大传,王力民.挡板式水解酸化法处理印染废水的中试试验研究[J].工业水处理,2001.21(1):39-41.
    [74]Brown D, Laboureur P. The aerobic biodegradability of primary aromaticamines [J]. Chemosphere,1983,12(3):405-414.
    [75]Haug W, Schmidt A, Nortermann B, et al. Mineralization of the sulfonated azodye Mordant Yellow3by a6-aminonaphthalene-2-sulfonate-degradingbacterial consortium [J]. Applied and Environmental Microbiology,1991,57(11):3144-3149.
    [76]Kato M T, Field J A, Lettinga G. High tolerance of methanogens in granularsludge to oxygen [J]. Biotechnology and Bioengineering,1993,42(11):1360-1366.
    [77]Shen C F, Guiot S R. Long term impact of dissolved O2on the activity ofanaerobic granules [J]. Biotechnology and Bioengineering,1995,49(6):611-620.
    [78]Shen C F, Miguez C B, Borque D, et al. Methanotroph and methanogencoupling in granular biofilm under O2-limited conditions [J]. BiotechnologyLetters,1996,18(5):495-500.
    [79]Tan N C G, Lettinga G, Field J A. Reduction of the azo dye Mordant Orange1by methanogenic granular sludge exposed to oxygen [J]. BioresourceTechnology,1999,67(1):35-42.
    [80]Tan N C G, Prenafeta-Boldu F X, Opsteeg J L, et al. Biodegradation of azo dyesin cocultures of anaerobic granular sludge with aerobic aromatic aminedegrading enrichment cultures [J]. Applied Microbiology and Biotechnology,1999,51(6):865-871.
    [81]Tan NCG. Integrated and sequential anaerobic-aerobic biodegradation of azodyes. PhD Thesis, Agri-technology and Food Sciences, Sub-department ofenvironmental technology, Wageningen University, Wageningen, TheNetherlands2001.
    [82]Kalyuzhnyi S, Sklyar V. Biomineralisation of azo dyes and their breakdownproducts in anaerobic-aerobic hybrid and USAB reactor [J]. Water Scienceand Technology,2000,41:23–30.
    [83]Harmer C, Bioshop P. Transformation of azo dye AO7by wastewater biofilms[J]. Water Science and Technology,1992,26:627–636.
    [84]Gottlieb A, Shaw C, Smith A et al. The toxicity of textile reactive azo dyes afterhydrolysis and decolourisation [J]. Journal of Biotechnology,2003,101:49–56.
    [85]Murali V, Ong S A, Ho L N, et al. Evaluation of integrated anaerobic-aerobicbiofilm reactor for degradation of azo dye methyl orange [J]. BioresourceTechnology,2013,143:104-111.
    [86]Torrijos M, Cerro R M, Capdeville B, et a1. Sequencing Batch Reactor: A Toolfor Wastewater Characterization for the IAWPRC Model [J]. Water Scienceand Technology,1994,29(7):81-90.
    [87]Irvine R L, Wilderer P A, Flemming H C. Controlled unsteady state processesand technologies-An overview [J]. Water Science and Technology,1997,35(1):1-10.
    [88]Hosseini Koupaie E, Alavi Moghaddam M R, Hashemi S H. Evaluation ofintegrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor fordecolorization and biodegradation of azo dye Acid Red18: Comparison ofusing two types of packing media [J]. Bioresource technology,2013,127:415-421.
    [89]Lourenco N D, Novais J M, Pinheiro H M. Reactive textile dye colour removalin a sequencing batch reactor [J]. Water Science and Technology,2000,42(5-6):321-328.
    [90]Lourenco N D, Novais J M, Pinheiro H M. Effect of some operationalparameters on textile dye biodegradation in a sequential batch reactor [J].Journal of Biotechnology,2001,89(2-3):163-174.
    [91]Lourenco N D, Novais J M, Pinheiro H M. Analysis of secondary metabolitefate during anaerobic-aerobic azo dye biodegradation in a sequential batchreactor [J]. Environmental Technology,2003,24(6):679-686.
    [92]Albuquerque M G E, Lopes A T, Serralheiro M L, et al. Biological sulphatereduction and redox mediator effects on azo dye decolourisation inanaerobic-aerobic sequencing batch reactors [J]. Enzyme and MicrobialTechnology,2005,36(5-6):790-799.
    [93]Goncalves I C, Penha S, Matos M, et al. Evaluation of an integratedanaerobic/aerobic SBR system for the treatment of wool dyeing effluents [J].Biodegradation,2005,16(1):81-89.
    [94]Panswad T, Iamsamer K, Anotai J. Decolorisation of azo-reactive dye bypolyphosphate and glycogen-accumulating organisms in ananaerobic-aerobic sequencing batch reactor [J]. Bioresource Technology2001,76(2):151-159.
    [95]Panswad T, Iamsamer K, Anotai J. Comparison of dye wastewater treatment bynormal and anoxic+anaerobic/aerobic SBR activated sludge processes [J].Water Science and Technology,2001,43(2):355-362.
    [96]Shaw C B, Carliell C M, Wheatley A D. Anaerobic-aerobic treatment ofcoloured textile effluents using sequencing batch reactors [J]. WaterResearch,2002,36(8):1993-2001.
    [97]O’Neill C, Lopez A, Esteves S, et al. Azo-dye degradation in ananaerobic-aerobic treatment operating on simulated textile effluents [J].Applied Microbiology and Biotechnology,2000,53(2):249-254.
    [98]Sponza D T, Isik M. Decolorization and inhibition kinetic of Direct Black38azo dye with granulated anaerobic-aerobic sequential process [J]. WaterScience and Technology,2002,45:271-278.
    [99]Sponza D T, Isik M. Reactor performances and fate of aromatic amines throughdecolorization of Direct Black38dye under anaerobic/aerobic sequentials [J].Process Biochemistry,2005,40(1):35-44.
    [100] FitzGerald S W, Bishop P L. Two stage anaerobic-aerobic treatment ofsulfonated azo dyes [J]. Journal of Environmental Science and Health. Part A:Environmental Science and Engineering and Toxicology.1995,30(6):1251-1276.
    [101] Sosath F, Libra J A. Purification of wastewaters containing azo dyes [J]. ActaHydrochim Hydrobiol,1997,25:259-264.
    [102] Wiesmann U, Sosath F, Borchert M, et al. Attempts to the decolorization andmineralization of the azo dye C.I. Reactive Black5[J]. Wasser Abwasser,2002,143:329-336.
    [103]白端超,阳运河.水解-好氧-氯氧化工艺处理染整废水的探讨[J].环境工程,1994,12(1):7-17.
    [104] Shuang S, Fan J, He Z, et al. Electrochemical degradation of azo dye C.I.Reactive Red195by anodic oxidation on Ti/SnO2-Sb/PbO2electrodes [J].Electrochimica Acta,2010,55(11):3606-3613.
    [105] Kariyajjanavar P, Narayana J, Nayaka Y A. et al. Electrochemicaldegradation and cyclic voltammetric studies of textile reactive azo dyecibacron navy WB [J]. Portugaliae Electrochimica Acta,2010,28(4):265-277.
    [106] Rabaey K, Rodriguez J, Blackall L L, et al. Microbial ecology meetselectrochemistry: electricity-driven and driving communities [J]. ISMEJournal,2007,1(1):9-18.
    [107] Mu Y, Rozendal R A, Rabaey K, et al. Nitrobenzene removal inbioelectrochemical systems [J]. Environmental Science and Technology,2009,43(22):8690-8695.
    [108] Wang A J, Cheng H Y, Liang B, et al. Efficient reduction of nitrobenzene toaniline with a biocatalyzed cathode [J]. Environmental science andtechnology,2011,45(23):10186-10193.
    [109] Jie L, Liu G, Zhang R D, Luo Y, et al. Electricity generation by two types ofmicrobial fuel cells using nitrobenzene as the anodic or cathodic reactants [J].Bioresource technology,2010,101(11):4013-4020.
    [110]崔丹.升流式生物电化学反应器还原废水中硝基苯的效果研究[D].哈尔滨工业大学硕士论文.2010.
    [111] Wang A J, Sun D, Cao G L, et al. Integrated hydrogen production processfrom cellulose by combining dark fermentation, microbial fuel cells, and amicrobial electrolysis cell [J]. Bioresource Technology,2011,102(5):4137-4143.
    [112] Kulkarni M, Chaudhari A. Biodegradation of p-nitrophenol by P. putida [J].Bioresource Technology,2006,97(8):982-988.
    [113] Shen J Y, Feng C C, Zhang Y Y, et al. Bioelectrochemical system forrecalcitrant p-nitrophenol removal [J]. Journal of Hazardous Materials,2012,209(30):516-519.
    [114] Zhu X P, Ni J R. Simultaneous processes of electricity generation andp-nitrophenol degradation in a microbial fuel cell [J]. ElectrochemistryCommunications,2009,11(2):274-277.
    [115] Feng C H, Li F B, Sun K W, et al. Understanding the role of Fe (III)/Fe (II)couple in mediating reductive transformation of2-nitrophenol in microbialfuel cells [J]. Bioresource Technology,2011,102(2):1131-1136.
    [116] Liang B, Cheng H Y, Kong D Y, et al. Accelerated reduction of chlorinatednitroaromatic antibiotic chloramphenicol by biocathode [J]. EnvironmentalScience and Technology,2013,47(10),5353-5361.
    [117] Mu Y, Radjenovic J, Shen J Y. et al. Dehalogenation of iodinated X-raycontrast media in a bioelectrochemical system [J]. Environmental Scienceand Technology,2011,45(2):782-788.
    [118] Aulenta F, Andrea C, Mauro M, et al. Trichloroethene dechlorination and H2evolution are alternative biological pathways of electric charge utilization bya dechlorinating culture in a bioelectrochemical system [J]. Environmentalscience and technology,2008,4(16):6185-6190.
    [119] Strycharz S M, Sarah M G, Amber R B et al. Reductive dechlorination of2-chlorophenol by Anaeromyxobacter dehalogenans with an electrodeserving as the electron donor [J]. Environmental microbiology reports,2010,2(2):289-294.
    [120] Gu H Y, Zhang X W, Li Z J, et al. Studies on treatment ofchlorophenol-containing wastewater by microbial fuel cell [J]. ChineseScience Bulletin,2007,52(24):3448-3451.
    [121] Huang L P, Chai X L, Quan X, et al. Reductive dechlorination andmineralization of pentachlorophenol in biocathode microbial fuel cells [J].Bioresource technology,2012,111:167-174.
    [122] Wang G, Huang L P, Zhang Y F. Cathodic reduction of hexavalent chromium
    [Cr (VI)] coupled with electricity generation in microbial fuel cells [J].Biotechnology letters,2008,30(11):1959-1966.
    [123] Huang L P, Chen J W, Quan X. Enhancement of hexavalent chromiumreduction and electricity production from a biocathode microbial fuel cell [J].Bioprocess and biosystems engineering,2010,33(8):937-945.
    [124] Huang L P, Chai X L, Cheng S A, et al. Evaluation of carbon-based materialsin tubular biocathode microbial fuel cells in terms of hexavalent chromiumreduction and electricity generation [J]. Chemical Engineering Journal,2011,166(2):652-661.
    [125] Tandukar M, Huber S J, Onodera T, et al. Biological chromium(VI) reductionin the cathode of a microbial fuel cell [J]. Environmental Science andTechnology,2009,43(21):8159-8165.
    [126] Huang L P, Li T C, Liu C, et al. Synergetic interactions improve cobaltleaching from lithium cobalt oxide in microbial fuel cells [J]. BioresourceTechnology,2013,128:539-546.
    [127] Liu Y X, Shen J Y, Huang L P, et al. Copper catalysis for enhancement ofcobalt leaching and acid utilization efficiency in microbial fuel cells [J].Journal of Hazardous Materials,2013,262(15):1-8.
    [128] Huang L P, Guo R, Jiang L J, et al. Cobalt leaching from lithium cobalt oxidein microbial electrolysis cells [J]. Chemical Engineering Journal,2013,220(15):72-80.
    [129] Tao H C, Liang M, Li W, et al. Removal of copper from aqueous solution byelectrodeposition in cathode chamber of microbial fuel cell [J]. Journal ofHazardous Materials,2011,189(1):186-192.
    [130] Tao H C, Li W, Liang M, et al. A membrane-free baffled microbial fuel cellfor cathodic reduction of Cu (II) with electricity generation [J]. Bioresourcetechnology,2011,102(7):4774-4778.
    [131] Tao H C, Zhang L J, Gao Z Y, et al. Copper reduction in a pilot-scalemembrane-free bioelectrochemical reactor [J]. Bioresource technology,2011,102(22):10334-10339.
    [132]陶虎春,王俊彦,张丽娟等.应用一种无膜生物电化学系统还原冶铋废水中Cu (II)的研究[J].应用基础与工程科学学报,2013,21(4):626-637.
    [133] Tao H C, Lei T, Shi G, et al. Removal of heavy metals from fly ash leachateusing combined bioelectrochemical systems and electrolysis [J]. Journal ofHazardous Materials,2014,264(15):1-7.
    [134] Tao H C, Gao Z Y, Ding H, et al. Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors [J]. Bioresourcetechnology,2012,111:92-97.
    [135] Van der Zee F P, Bisschops I A E, Lettinga G. Activated carbon as an electronacceptor and redox mediator during the anaerobic biotransformation of azodyes [J]. Environmental Science and Technology,2003,37(2):402-408.
    [136] Cardenas-Robles A, Martinez E, Rendon-Alcantar I, et al. Development ofan activated carbon-packed microbial bioelectrochemical system for azo dyedegradation [J]. Bioresource technology,2013,127:37-43.
    [137] Solanki K, Subramanian S, Basu S. Microbial fuel cells for azo dyetreatment with electricity generation: a review [J]. Bioresource technology,2013,131:564-571
    [138] Mu Y, Rabaey K, Rozendal R A, et al. Decolorization of azo dyes inbioelectrochemical process [J]. Environmental Science and Technology,2009,43(13):5137-5143.
    [139] Dos Santos A B, Cervantes F J, Yaya-Beas R E, et al. Effect of redoxmediator, AQDS, on the decolourisation of a reactive azo dye containingtriazine group in a thermophilic anaerobic EGSB reactor [J], Enzyme andMicrobial Technology,2003,33(7):942-951.
    [140] Kalathil S, Lee J, Cho M H. Granular activated carbon based microbial fuelcell for simultaneous decolorization of real dye wastewater and electricitygeneration [J]. New Biotechnology,2011,29(1):32-37.
    [141] Liu R H, Sheng G P, Sun M, et al. Enhanced reductive degradation of methylorange in a microbial fuel cell through cathode modification with redoxmediators [J]. Applied microbiology and biotechnology,2011,89(1):201-208.
    [142] Kong F Y, Wang A J, Liang B, et al. Improved azo dye decolorization in amodified sleeve-type bioelectrochemical system [J]. Bioresource technology,2013,143:669-673.
    [143] Sun J, Bi Z, Hou B, et al. Further treatment of decolorization liquid of azodye coupled with increased power production using microbial fuel cellequipped with an aerobic biocathode [J]. Water Research,2011,45(1):283-291.
    [144] Kong F Y, Wang A J, Cheng H Y, et al. Accelerated decolorization of azo dyeCongo red in a combined bioanode-biocathode bioelectrochemical systemwith modified electrodes deployment [J]. Bioresource technology,2014,151:332-339.
    [145] Wang Y Z, Wang A J, Liu W Z, et al. Accelerated azo dye removal bybiocathode formation in single-chamber biocatalyzed electrolysis systems [J].Bioresource technology,2013,146:740-743.
    [146] Li Z, Zhang X, Lin J, et al. Azo dye treatment with simultaneous electricityproduction in an anaerobic-aerobic sequential reactor and microbial fuel cellcoupled system [J]. Bioresource technology,2010,101(12):4440-4445.
    [147] Fan Y, Hu H, Liu H. Enhanced Coulombic efficiency and power density ofair-cathode microbial fuel cells with an improved cell configuration [J].Journal of Power Sources,2007,171(2):348-354.
    [148] Torres C I, Marcus A K, Rittman B E. Kinetics of consumption offermentation products by anode-respiring bacteria [J]. Applied Microbiologyand Biotechnology,2007,77(3):689-697.
    [149] Rozendal R A, Hamelers H V M, Rabaey K, et al. Towards practicalimplementation of bioelectrochemical wastewater treatment [J]. Trends inBiotechnology,2008,26(8):450-459.
    [150] Liu H, Cheng S, Huang L, et al. Scale-up of membrane-free singlechambermicrobial fuel cells [J]. Journal of Power Sources,2008,179(1):274-279.
    [151] Logan B E, Cheng S, Watson, et al. Graphite fiber brush anodes for increasedpower production in air-cathode microbial fuel cells [J]. EnvironmentalScience and Technology,2007,41(9):3341-3346.
    [152] Rabaey K, Clauwaert P, Aelterman P, et al. Tubular microbial fuel cells forefficient electricity generation [J]. Environmental Science and Technology,2005,39(20):8077-8082.
    [153] Keller J, Rabaey K. Experiences from MFC Pilot Plant Operation [M]. PennState University, USA,2008.
    [154] Wang X, Feng Y, Lee J H. Electricity production from beer brewerywastewater using single chamber microbial fuel cell [J]. EnvironmentalScience and Technology,2008,57(7):1117-1121.
    [155] Aelterman P, Freguia S, Keller J, et al. The anode potential regulatesbacterial activity in microbial fuel cells [J]. Applied Microbiology andBiotechnology.2008,78(3):409-418.
    [156] Cheng S, Liu H, Logan B E. Increased power generation in a continuousflow MFC with advective flow through the porous anode and reducedelectrode spacing [J]. Environmental Science and Technology,2006,40(7):2426-2432.
    [157] Logan B E, Hamelers B, Rozendal R, et al. Microbial fuel cells:methodology and technology [J]. Environmental Science and Technology,2006,40(17):5181-5192.
    [158] Liu H, Cheng S, Logan B E. Power generation in fed-batch microbial fuelcells as a function of ionic strength, temperature, and reactor configuration[J]. Environmental Science and Technology,2005,39(14):5488-5493.
    [159] Taylor B, Gardner T. Southeast Queensland recycled water aspects and soilimpacts [M]. Australian Water Association, Sunshine Coast, Australia.2007.
    [160] Hu H, Fan Y, Liu H. Hydrogen production using single-chambermembrane-free microbial electrolysis cells [J]. Water Research.2008,42(15):4172-4178.
    [161] Fan Y, Hu H, Liu H. Sustainable power generation in microbial fuel cellsusing bicarbonate buffer and proton transfer mechanisms [J]. EnvironmentalScience and Technology,2007,41(23):8154-8158.
    [162] Heijne T A, Hamelers, H V M, De Wilde, et al. A bipolar membranecombined with ferric iron reduction as an efficient cathode system inmicrobial fuel cells [J]. Environmental Science and Technology,2006,40(17):5200-5205.
    [163] Rozendal R A, Sleutels T H J A, Hamelers H V M, et al. Effect of the type ofion exchange membrane on performance, ion transport, and pH inbiocatalyzed electrolysis of wastewater [J]. Environmental Science andTechnology,2008,57(11):1757-1762.
    [164] Clauwaert P, Ha H V D, Boon N, et al. Open air biocathode enables effectiveelectricity generation with microbial fuel cells [J]. Environmental Scienceand Technology,2007,41(21):7564-7569.
    [165] He Z, Angenent L T. Application of bacterial biocathodes in microbial fuelcells [J]. Electroanalysis,2006,18(19-20):2009-2015.
    [166] Lide R L. CRC Handbook of Chemistry and Physics [M]. CRC Press, BocaRaton,2008-2009.
    [167] Logan B E. Microbial Fuel Cells [M]. John Wiley and Sons, Inc., Hoboken,New Jersey,2008.
    [168] Call D, Logan B E. Hydrogen production in a single chamber microbialelectrolysis cell lacking a membrane [J]. Environmental Science andTechnology,2008,42(9):3401-3406.
    [169] Liu H, Logan B E. Electricity generation using an air-cathode single chambermicrobial fuel cell in the presence and absence of a proton exchangemembrane [J]. Environmental Science and Technology,2004,38(14):4040-4046.
    [170] Rabaey K. Bioelectrochemical systems: from extracellular electron transferto biotechnological application [M]. IWA publishing,2010.
    [171] Shin S H, Choi Y J, Na S H, et al. Development of bipolar plate stack typemicrobial fuel cells [J]. Bulletin of the Korean Chemical Society,2006,27(2):281-285.
    [172] Oh S E, Logan B E. Voltage reversal during microbial fuel cell stackoperation [J]. Journal of Power Sources,2007,167(1):11-17.
    [173] Zhou J, Bruns M A, Tiedje J M. DNA recovery from soils of diversecomposition [J]. Applied and Environmental Microbiology,1996,62(2):316-332.
    [174] Caporaso J G, Lauber C L, Walters W A, et al. Ultra-high-throughputmicrobial community analysis on the Illumina HiSeq and MiSeq platforms[J]. Isme Journal,2012,6(8):1621-1624.
    [175] Wang Q, Garrity G M, Tiedje J M, et al. Naive Bayesian classifier for rapidassignment of rRNA sequences into the new bacterial taxonomy [J]. Appliedand Environmental Microbiology,2007,73(16):5261-5267.
    [176] Donlon B, Razo-Flores E, Luijten M, et al. Detoxification and partialmineralization of the azo dye mordant orange1in a continuous upflowanaerobic sludge-blanket reactor [J]. Applied Microbiology andBiotechnology,1997,47(1):83-90.
    [177] Almeida E J R, Corso C R. Comparative study of toxicity of azo dye ProcionRed MX-5B following biosorption and biodegradation treatments with thefungi Aspergillus niger and Aspergillus terreus [J]. Chemosphere,2014,112:317-322.
    [178] Govindwar S P, Kurade M B, Tamboli D P, et al. Decoloraztion anddegradation of xenobiotic azo dye Reactive Yellow-84A and textile effluentby Galactomyces geotrichum [J]. Chemosphere,2014,109:234-238.
    [179] Flores E R, Luijten M, Donlon B A, Letinga G, Field J A. Completebiodegradation of the azo dye azo disalicylate under anaerobic conditions [J].Environmental Science and Technology.1997,31:2098–2103.
    [180] Lee H S, Torres C I, Rittmann B. Effects of substrate diffusion and anodepoten-tial on kinetic parameters for anode-respiring bacteria [J].Environmental Science and Technology.2009,43:7571–7577.
    [181] Torres C I, Marcus A K, Rittmann B E. Kinetics of consumption offermentation products by anode-respiring bacteria [J]. Applied MicrobiologyBiotechnology.2007,77:689–697.
    [182] IsiK M, Sponza DT. Aromatic amine degradation in a USAB/CSTRsequential system treating Conge red dye [J]. Journal of EnvironmentalScience and Health. Part A: Environmental Science and Engineering andToxicology,2003,38:2301-2315.
    [183] Libra J A, Borchert M, Vigelahn L, et al. Two stage biological treatment of adiazo reactive textile dye and the fate of the dye metabolites [J].Chemosphere,2004,56(2):167-180.
    [184] Kapdan I K, Tekol M, Sengul F. Decolorization of simulated textilewastewater in an anaerobic-aerobic sequential treatment system [J]. ProcessBiochemistry,2003,38(7):1031-1037.
    [185] Naimabadi A, Attar H M, Shahsavani A. Decolorization and biologicaldegradation of azo dye reactive red2by anaerobic/aerobic sequential process[J]. Iranian Journal of Environmental Health Science&Engineering,2009,6(2):67-72.
    [186] Bechtold, T., Burtscher, E., Turcanu, A. Cathodic decolourisation of textilewaste water containing reactive dyes using a multi‐cathode electrolyser.Journal of chemical Technology and Biotechnology,2001,76(3):303-311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700