超级电容器及其相关材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器具有充放电速度快、效率高、循环寿命长、工作温度范围宽、可靠性好等诸多优点,近年来已经成为电化学储能领域的研究热点。但是,与传统的二次电池如锂离子电池相比,超级电容器的能量密度较低。根据超级电容器的能量密度公式E=1/2 CU~2,可以通过两种有效的方法来提高电容器的能量密度:一是增大电极材料的比容量(C),二是提高电容器的工作电压(U)。基于这种分析,本论文做了如下工作:为了提高碳电极的比电容,我们首先从多孔材料的结构优化出发,分别合成了不同孔长和不同孔径的有序介孔碳材料,并研究了长径比和孔径大小对碳材料电化学性能的影响;其次,从非多孔材料出发,开发出一种低成本、大容量的新型碳电容材料:高比表面石墨,并获得了比活性炭高得多的体积比容量;再次,通过在碳材料上负载一种有机聚合物自由基材料来提高整个电极的比容量。为了提高电容器的工作电压,我们引入具有高电位平台的5 V锂电材料LiNi_xMn_(2-x)O_4作为正极,与活性炭配对后组成混合电容器,获得了高的能量密度。具体内容介绍如下:
     1.模板法合成反相介孔碳及其长径比对电化学性能的影响
     介孔碳材料(OMC)具有高度有序的孔道结构,且在中孔范围内孔径分布单一,因此引起了人们的广泛关注。我们以介孔氧化硅为硬模板,以蔗糖溶液为碳前驱体,通过浸渍、煅烧、祛除模板等过程合成了两种孔径相同(4 nm)而孔长不同的有序介孔碳材料。其中,以传统的SBA15复制的介孔碳(LOMC)其孔长度超过了2μm,而以横向生长的新型介孔硅作为模板复制的介孔碳(SOMC)其孔长度只有200~300 nm。循环伏安测试表明SOMC在6 M KOH中的表面比电容达14μF/cm~2,而LOMC的表面比电容为10μF/cm~2。交流阻抗研究表明电解液在LOMC中的扩散内阻大于SOMC,且当电解液浓度降低时,LOMC的比容量比SOMC衰减更快。这些结果表明,SOMC能为电解液提供更多的开放性入口,因此其表面浸润程度增加,比表面利用率高;同时短的孔长更有利于电解液离子的快速扩散,因而表现出比长径介孔碳更好的电化学性能。
     2.自组装法合成介孔碳及其孔径大小对电化学性能的影响
     通过有机-有机两相自组装和有机-无机-有机三相自组装法分别合成了孔径为3.1 nm(di-OMC)和6.7 nm(tri-OMC)的两种介孔碳,并对两者的电化学性能进行了详细的研究。作为双电层电容材料,tri-OMC在有机体系中的比容量达117F/g,且在200 mV/s的高扫速下仍能保持良好的电容行为;而di-OMC由于小的孔径和高的微孔比例,其表面无法被离子半径较大的有机电解液浸润,因而无双电层容量。在水系电解液中,di-OMC的比表面可以被有效的利用,因而表现出117 F/g的比容量,tri-OMC在水系中的比容量为211 F/g,且倍率性能明显优于di-OMC。电化学研究结果表明,对倍率性能而言,碳材料的孔径越大越有利,而对表面比电容来说,不同的电解液所要求的最佳孔径不同,只有孔径与溶液离子半径相匹配时,材料的表面利用率才最高。此外,对这两种碳作为锂离子电池负极的电性能进行了研究,tri-OMC的可逆容量可达1048 mAh/g,约为di-OMC的三倍,且循环寿命优于一般的硬碳类材料。
     3.新型高比表面石墨材料的制备及其在电化学电容器中的应用
     以价格低廉的鳞片状天然石墨为原材料,通过高速球磨法制备了一系列高比表面石墨(HSG)材料。球磨前后材料的比表面可从7 m~2/g增至580 m~2/g,比电容则可从0 F/g增至200 F/g以上。过长时间的球磨会造成石墨晶体结构的严重破坏,使材料的导电性下降,从而影响其倍率性能。中等球磨时间下得到的HSG材料,无论在碱性、酸性还是有机体系的电解液中都可以作为双电层电容材料使用,其高的比电容不仅由高的比表面积贡献,同时也与高速球磨所造成的晶格缺陷和丰富的表面含氧官能团有关。由于结构中仍保留了大量的石墨微晶,因此,HSG的导电性能良好,显示出高的功率性能。经过5000次循环充放电,HSG的容量无明显衰减,表现出良好的循环寿命。此外,由于HSG低的孔隙率,它的体积比容量比活性炭要高的多。综合来看,HSG原料便宜,制备简单,电化学性能良好,有望实现商业化。
     4.基于有机自由基-碳复合材料的超级电容器
     通过酯化、聚合和氧化等多步反应合成了一种具有稳定结构的有机聚合物氮氧自由基材料(聚4-甲基丙烯酸-2,2,6,6-四甲基哌啶-1-氮氧自由基酯,PTMA),其容量为82 mAh/g,在倍率50C放电时仍能显示出明显的放电平台,表现出非常高的功率潜力。由于PTMA本身不导电,因此我们创新性地通过溶解-再沉积的过程将其负载在高比表面的活性炭上形成电容-电池复合材料,以复合材料制备的电极比容量比活性炭电极高30%。以该复合材料为正极、活性炭为负极组成的混合电容器表现出了好的功率性能和长的循环寿命。通过复合材料的方式,即可以同时利用有机聚合物自由基和活性炭两者的比容量,又可以利用活性炭本身良好的导电性来解决有机聚合物自由基不导电的问题,从而发挥出自由基材料的高功率性能,这为更多类似的氮氧自由基材料应用于电化学电容器提供了一种有效的途径。
     5.基于高电位锂离子嵌入化合物和活性炭的新型非水体系混合电容器
     首次提出了以高电位的锂离子化合物为正极、以活性炭为负极的非水体系混合电容器。以硝酸盐为前驱体通过溶胶—凝胶法成功合成了尖晶石型LiNi_(0.5)Mn_(1.5)O_4材料,它只在4.7 V左右显示一个放电平台,比容量达123 mAh/g,且循环寿命良好。以该材料为正极,商业活性炭为负极,正、负极质量比为1:3,组装成混合电容器,电解液为1 M LiPF6—EC/DMC溶液。与EDLC相比,该混合体系的工作电压从1.4 V提高到了2.1 V,比容量则从17 mAh/g提高到了26 mAh/g。工作电压和比容量的同时提高使得该混合体系的比能量达到了55Wh/kg,超过了EDLC的两倍。以10C的倍率放电,该混合电容器的容量能维持在初始容量的80%以上;经过1000次循环,其容量损失也小于20%。此外,该体系的充放电过程只涉及Li~+在两极之间的转移,避免了以往电容器如EDLC,Li_4Ti_5O_(12)/AC体系在充电时由于阴、阳离子分离所造成的电解液消耗问题。
In recent years,supercapacitors have attracted global attentions due to its fast charge/discharge,high efficiency,long cycle life,wide temperature range and high reliability.However,its energy density is much lower than that of secondary batteries, e.g.lithium-ion batteries.According to the energy equation of supercapacitor E=1/2 CU~2,two effective approaches can be used to improve the energy density of supercapacitors:One is to increase the specific capacitance of the electrode material (C);the other is to promote the output voltage(U).The present work focuses on improving the capacitance of carbon by the following method:1).Optimize the pore structure of highly ordered mesoporous carbons(OMCs) in both the pore length and pore size,2).Develop a novel non-porous electrode material:high surface-area graphite(HSG),it showed a high volumetric specific capacitance as well as low cost compared to the conventional activated carbon(AC);3).Load an organic polyradical material onto AC to obtain a composite electrode with higher capacitance.Finally,we also developed a novel nonaqueous hybrid capacitor of high work voltage by introducing a 5 V lithium intercalation compound LiNi_xMn_(2-x)O_4 as the positive electrode and AC as the negative electrode.
     1.Synthesis of OMCs with different pore lengths by hard-template method and its capacitance properties
     OMC has attracted much attention due to its highly ordered pore structure and narrow pore size distribution in mesopore range.We synthesized two OMCs with same pore size(4 nm) but different pore length by using highly ordered mesoporous silica as the hard temple and sucrose as the carbon precursor through a successive process of solution impregnation,pyrolysis,and template elimination.The pore length of LOMC derived from the conventional SBA15 template was over 2μm,while SOMC derived from a novel short-axis-oriented-growth SBA template showed a much shorter pore length of 200~300 nm.Shown by the cyclic voltammetry,a maximum specific capacitance of 14μF/cm~2 was obtained for SOMC in 6 M KOH solution compared with a capacitance of 10μF/cm~2 for LOMC.The electrochemical impedance analysis indicated that LOMC accounted for a larger ion diffusion resistance than SOMC.Moreover,the capacitance of LOMC also decayed faster than that of SOMC in the case of low electrolyte concentration.The electrochemical results suggested that SOMC can provide more facility for electrolyte accessibility and rapid ion diffusion thus it exhibited higher surface efficiency and better rate capability than LOMC.
     2.Synthesis of OMCs with different pore sizes by self-assembly and its electrochemical properties
     Di-OMC with a pore diameter of 3.1 nm and tri-OMC with a pore diameter of 6.7 nm were synthesized by organic-organic di-constituent self-assembly and organic-inorganic-organic tri-constituent co-assembly,respectively.As the electrode material for supercapacitor,tri-OMC showed a large specific capacitance of 117 F/g in organic electrolyte as well as a good retention of capacitive characteristic even at a high scan rate of 200 mV/s;while di-OMC showed nearly no capacitance in nonaqueous electrolyte since its surface area was difficult for the accessibility of organic electrolyte due to its small pore size and high proportion of micro-porosity. In aqueous electrolyte whose ion size was quite smaller than that of organic electrolyte,the surface area of di-OMC can be easily accessed by electrolyte thus it showed a high surface efficiency,e.g.a capacitance of 117 F/g was obtained.As for tri-OMC,it showed a specific capacitance as large as 210 F/g in aqueous electrolyte, and its rate capability was much better than that of di-OMC due to its large pore size. The results indicated that larger pore size was helpful to get better rate capability; while for specific capacitance,different electrolyte desired different pore size,a highest surface efficiency can be reached when the pore size was most appropriated for the electrolyte ion.In addition,we also investigated the possibility of these two carbons as the anode material for lithium-ion battery.Tri-OMC exhibited a reversible capacity of 1048 rnAh/g,nearly three times of that of di-OMC,and the cycle performance of tri-OMC was also superior to that of conventional hard carbon materials.
     3.Organic polyradical-carbon composite as the electrode material of supercapacitor
     A quite stable organic nitroxide polyradical material(PTMA, Poly-2,2,6,6-tetramethylpiperidinyloxy methacrylate) was synthesized by a successive process of esterification,polymerization and oxidation。It showed a specific capacity of 82 mAh/g in 1 M LiClO_4/PC electrolyte.When discharged at a high current rate of 50C,it can still exhibit a flat voltage plateau,implying its much higher power potential.However,PTMA was an insulator,which limited its application in supercapacitor.We creatively loaded PTMA onto the high surface activated carbon to prepare a capacitor-battery composite(PTMA-AC) through a dispersing-depositing procedure.The capacity of this composite electrode was 30%larger than that of pure AC electrode.A hybrid capacitor fabricated by a PTMA-AC composite as the positive electrode and AC as the negative electrode exhibited good rate capability as well as long cycle life.AC in the composite served as both active material and electronic conducting support during charge/discharge,by this means,the advantages of AC and PTMA can be well combined.This present work provided an effective approach for the application of other nitroxide polyradical materials in supercapacitor.
     4.HSG obtained by high-energy ball milling and its application in EDLC
     A new kind of electrode material called high surface-area graphite(HSG) was developed for EDLC through a high energy ball milling method using natural graphite as the starting material.The BET surface of HSG can be increased from 7 m~2/g to 580 m~2/g by high energy ball milling.Long time milling led to a much high specific capacitance over 200 F/g but at the same time with deteriorated rate capability due to the decreased conductivity caused by the strong destroy of graphite crystal.HSG sample obtained at a medium milling time can be employed as a good electrode material for EDLC in both aqueous and nonaqueous electrolytes.The large specific capacitance of HSG was demonstrated to derive of not only the high specific surface area but also the high density of lattice defects and surface functional groups produced during high energy ball milling.Attribute to the large quantity of graphite microcrystallines,HSG possessed of a better conductivity than AC thus it can exhibit good power ability.The cycle performance showed that HSG can well maintain its capacitance during 5000 cycles charge/discharge processes.Moreover,the low porosity of HSG promised a high electrode density thus led to a much higher volumetric energy density than AC.The results demonstrated that HSG is hopeful to be commercialized especially take its low cost,simple preparation and good electrochemical properties into consideration.
     5.A novel nonaqueous hybrid capacitor using high voltage lithium intercalation compound as the positive electrode and activated carbon as the negative electrode
     A high voltage lithium intercalation compound LiNi_(0.5)Mn_(1.5)O_4 was first introduced as a positive electrode for a nonaqueous hybrid capacitor combined with an AC negative electrode in 1.0 M LiPF_6 EC/DMC electrolyte.A Ni completely doped compound LiNi_(0.5)Mn_(1.5)O_4 was synthesized by a sol-gel process,it showed a single flat discharge plateau at 4.7 vs.Li~+/Li with a large capacity of 123 mAh/g.The novel hybrid capacitor fabricated by LiNi_(0.5)Mn_(1.5)O_4 positive and AC negative with a weight ratio of positive:negative=1:3 showed a capacity of 26 mAh/g in comparison with 17 mAh/g of an EDLC;and the average work voltage of the hybrid capacitor was also promoted to 2.1 V compared with 1.4 V of an EDLC.Both the increase of average voltage and specific capacity resulted in a much high total energy density of 55 Wh/kg for the hybrid capacitor,approximately twice that of an EDLC. The rate performance showed that the hybrid capacitor can maintain 80%of its initial capacity at a discharge current of 10C.After 1000 cycles charge/discharge,the capacity loss was also lower than 20%,showing a desirable cycling ability. Moreover,the charge/discharge process of this novel hybrid capacitor was associated with the transfer of Li-ion between the two electrode,which overcame the drawback of electrolyte depletion during charge process in conventional EDLC and other hybrid systems such as Li_4Ti_5O_(12)/AC.
引文
[1]J.O'.M.Bockris,A.K.N.Reddy,Modern Electrochemistry,New York,Plenum Press,1970.
    [2]H.L.Becker,Low voltage electrolytic capacitor,U.S.Patent,1957-07-23,2800616.
    [3]B.E.Conway,Electrochemical Supercapacitors,New York,Kluwer Academic/Plenum Publishers,1999.
    [4] B. E. Conway, Transition from "Supercapacitor" to "Battery" behavior in electrochemical energy storage, J. Electrochem. Soc, 1991, 138, 1539.
    [5] J. P. Zheng, T. R. Jow, A new charge storage mechanism for electrochemical capacitors, J. Electrochem. Soc, 1995, 142, L6.
    [6] R. A. Huggins, Supercapacitors and electrochemical pulse sources, Solid State Ionics, 2000, 134, 179.
    [7] 南俊民,杨勇,林祖赓,电化学容器及其研究进展,电源技术,1996,20(4),152.
    
    [8] B. E. Conway, V. Birss, J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitors, J. Power Sources, 1997, 66,1.
    
    [9] L. T. Lam, R. H. Newnham, H. Ozgun, F. A. Fleming, Advanced design of valve-regulated lead-acid battery for hybrid electric vehicles, J. Power Sources, 2000, 88(1), 92.
    
    [10] K. V. Schaller, C. Gruber, Fuel cell drive and high dynamic energy storage systems- Opportunities for the future city bus, Fuel Cells Bulletin, 2000, 3(27), 9.
    [11] G. Gutmann, Hybrid electric vehicles and electrochemical storage systems-a technology push-pull couple, J. Power Sources, 1999, 84(2), 275.
    [12] J. Gamby, P. L. Taberna, P. Simon, J. F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors,J. Power Sources, 2001, 101(1), 109.
    
    [13] J. P. Zheng, P. J. Cyqan, T. R. Jow, Hydrous Ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc, 1995, 142(8), 2699.
    
    [14] J. P. Zheng, T. R. Jow, Q. X. Jia, X. D. Wu, Proton insertion into ruthenium oxide film prepared by pulsed laser deposition, J. Electrochem. Soc, 1995, 143(3), 1068.
    
    [15] K. Gurunathan, A. V. Murugan, R. Marimuthu, U. P. Mulik, D. P. Amalnerkar, Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices, Mater. Chem. Phys., 1999, 61(3), 173.
    
    [16] C. Arbizzani, M. Mastragostino, L. Meneghello, Polymer-based redox supercapacitors: A comparative study, Electrochim. Acta, 1996, 41(1), 21.
    [17]唐致远,徐国祥,电子导电聚合物在电化学电容器中的应用,化工进展,2002,21(9),652.
    [18]P.J.Cygan,T.B.Atwter,L.P.Jarvis,Hybrid power sources for military application,Battery Conference on applications and Advances,13~(th),1998,13-16,85.
    [19]S.M.Halpin,R.M.Nelms,J.E.Schatz,Characterization of double-layer capacitor application issues for commercial and military applications,IECON,23~(th) international,1997,3,1074.
    [20]X.Andrieu,J.F.Fauvarque,Supercapacitor for telecommunication applications,INTELEC,15th international,1993,1(27-30),79.
    [21]I.B.Weinstock,Recent advances in the US Department of Energy's energy storage technology research and development programs for hybrid electric and electric vehicles,J.Power Sources,2002,110(2),471.
    [22]D.Y.Jung,Y.H.Kim,S.W.Kim,S.H.Lee,Development of ultracapacitor modules for 42-V automotive electrical systems,J.Power Sources,2003,114(2),366.
    [23]L.P.Jarvis,T.B.Atwater,P.J.Cygan,Fuel cell/electrochemical capacitor hybrid for intermittent high power applications,J.Power Sources,1999,79(1),60.
    [24]程夕明,孙逢春,电动汽车能量储存技术概况,电源技术,2001,25(1),47.
    [25]E.Faggioli,P.Rena,V.Danel,X.Andrieu,R.Mallant,H.Kahlen,Supercapacitors for the energy management of electric vehicles,J.Power Sources,1999,84,261.
    [26]李凯,利用超大容量电容器改善内燃机柴油发电机组的电启动性能,机车电传动,2002,2,37.
    [27]薛洪发,超大容量电容器在内燃机车起动中的作用,内燃机车,2000,319,8.
    [28]韦文生,梁吉,徐才录等,碳纳米管超大容量电容器在光伏系统中的应用,太阳能学报,2002,23(2),223.
    [29]S.Nomoto,H.Nakata,K.Yoshioka,A.Yoshida,H.Yoneda,Advanced capacitors and their application,J.Power Sources,2001,97-98,807.
    [30]王永刚,高比能量电化学电容器的研究[博士学位论文],上海:复旦大学,2007.
    [31]B.Andrew,Ultracapacitors:why,how,and where is the technology,J.Power Sources,2000,91(1),37.
    [32] Kinoshita K. Carbon: Electrochemical and Physicochemical Properties [M]. New York: Kodansa Press, 1988. 326.
    [33] G. Salitra, A. Soffer, L. Eliad, Y. Cohen, D. Aurbach, Carbon electrodes for double-layer capacitance. I. Relations between ion and pore dimensions, J Electrochem. Soc, 2000, 147(7), 2486.
    
    [34] L. Eliad, G. Salitra, A. Soffer, D. Aurbach, Ion sieving effects in the electrical double layer of porous carbon electrodes: estimating effective ion size in electrolytic solutions. J. Phys. Chem. B, 2001, 105(29), 6880.
    [35] L. Eliad, G.Salitra, A. Soffer, D. Aurbach, Proton selective environment in the pores of activated molecular sieving carbon electrodes. J. Phys. Chem. B, 2002, 106(39), 10128.
    [36] H. Shi, Activated carbons and double layer capacitance, Electrochim. Acta, 1996, 41, 1633.
    [37] D. Y. Qu, H. Shi, Studies of activated carbons used in double-layer capacitors, J. Power Sources, 1998, 74, 99.
    [38] K. Kim, X. Chu, Carbon for supercapacitors in electrochemical capacitors [A], The electrochemical Society Proceedings Serious [C], Pennington, 1996, 135, 121.
    
    [39] 杨红生,周啸,冯天富,汤孝平,电化学电容器最新研究进展I.双电层电容器,电子元件与材料,2003,22(2),14.
    
    [40] S. Shiraishi, H. Kurihara, A. Oya, Preparation and elevtronic double layer capacitance of mesoporous carbon, Carbon Science, 2001, 1(3), 133.
    [41] T. Momma, X. J. Liu, T. Osaka, Y. Ushio, Y. Sawada, Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor, J. Power Sources, 1996, 60(2), 249.
    [42] Y. R. Nian, H. Teng, Nitric acid modification of activated carbon electrodes for improvement of electrochemical capacitance, J. Electrochem. Soc, 2002, 149(8), A1008
    [43] C. H. Kim, S. Pyun, H. C. Shin, Kinetics of double-layer charging/discharging of activated carbon electrodes: role of surface acidic functional groups, J. Electrochem. Soc, 2002, 149(2), A93
    [44] M. Ishikawa, A. Sakamoto, M. Monta, Y. Matsuda, K. Ishida, Effect of treatment of activated carbon fiber cloth electrodes with cold plasma upon performance of electric double-layer capacitors, J. Power Sources, 1996, 60(2), 233.
    [45] D. Y. Qu, Studies of the activated carbons used in double-layer supercapacitors, J. Power Sources, 2002, 109(2), 403.
    [46] A. Y. Rychagov, Electrochemical characteristics and properties of the surface of activated carbon electrodes in a double-layer capacitor, Russian J. Electrochem., 2001,37(11), 1172.
    [47] A. Yoshida, I. Tanahashi, A. Nishino, Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers, Carbon, 1990, 28(5), 611.
    [48] M. Nakamura, M. Nakanishi, K. Yamamoto, Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors, J. Power Sources, 1996, 60(2), 225.
    [49] X. Chu, K. Kinoshitain, Electrochemical capacitors, Electrochemical society proceedings, vol.96-25, F. Delnick and M. Tomkiewicz, eds., 1995, 171.
    [50] Y. Maletin, P. Novak, E. Shembe, V. Izotov, N. Strizhakova, A. Mirronora, V. Danilin, S. Podmogilny, Matching the nanoporous carbon electrodes and organic electrolytes in double layer capacitors, Appl. Phys. A, 2006, 82, 653.
    [51] B. Kastening, M. Heins, Properties of electrolytes in the micropores of activated carbon, Electrochim. Acta, 2005, 50(12), 2487.
    [52] S. Yata, E. Okamoto, H. Satake, H. Kubota, M. Fujii, T. Taguchi, H. Kinoshita, Polyacence capacitors, J. Power Sources, 1996, 60(2), 207.
    [53] M. G. Sullivan, R. Kotz, O. Haas, Thick active layers of electrochemically modified glassy carbon. electrochemical impedance studies, J. Electrochem. Soc., 2000, 147(1), 308.
    [54] J. Chmiola, G. Yushin, R. Dash, Y. Gogotsi, Effect of pore size and surface area of carbide derived carbons on specific capacitance, J. Power Sources, 2006, 158(1), 765.
    [55] J. Chmiola, G. Yushin, R. K. Dash, E. N. Hoffman, J. E. Fischer, M. W. Barsoum, Y. Gogotsi, Double-layer capacitance of carbide derived carbons in sulfuric acid, Electrochem. Solid State Lett., 2005, 8, A357.
    [56] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science, 2006, 313,1760.
    [57] Y. Gogotsi, A. Nikitin, H. H. Ye, W. Zhou, J. E. Fischer, Y. Bo, H. C. Foley, M. W. Barsoum, Nanoporous carbide-derived carbon with tunable pore size, Nature Mater., 2003,2,591.
    [58] R. Dash, J. Chmiola, G. Yushin, Y. Gogotsi, G. Laudisio, J. Singer, J. Fischer, S. Kucheyev, Titanium carbide derived nanoporous carbon for energy-related applications, Carbon, 2006, 44, 2489.
    [59] A. Janes, L. Permann, M. Arulepp, E. Lust, Electrochemical characteristics of nanoporous carbide-derived carbon materials in non-aqueous electrolyte solutions, Electrochem. Commun., 2004, 6, 313.
    [60] L. Permann, M. Latt, J. Leis, M. Arulepp, Electrical double layer characteristics of nanoporous carbon derived from titanium carbide, Electrochim. Acta, 2006, 51, 1274.
    [61] V. Subramanian, C. Luo, A. M. Stephan, K. S. Nahm, S. Thomas, B. Q. Wei, Supercapacitors from activated carbon derived from banana fibers, J. Phys. Chem. C, 2007, 111,7527.
    [62] E. Raymundo-Pinero, F. Leroux, F. Beguin, A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer, Adv. Mater., 2006, 18, 1877.
    [63] H. F. Yang, D. Y. Zhao, Synthesis of replica mesostructures by the nanocasting strategy, J. Mater. Chem., 2005, 15, 1217.
    [64] J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of porous carbon materials, Adv. Mater., 2006, 18, 2073.
    [65] A. B. Fuertes, F. Pico, J. M. Rojo, Influence of pore structure on electric double-layer capacitance of template mesoporous carbons, J. Power Sources, 2004, 133,329.
    [66] H. Y. Liu, K. P. Wang, H. S. Teng, A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation, Carbon, 2005, 43, 559.
    [67] S. Alvarez, M. C. Bianco-Lopez, A. J. Miranda-Ordieres, A. B. Fuertes, T. A. Centeno, Carbon, 2005, 43, 866.
    [68] S. Yoon, J. W. Lee, T. Hyeon, S. M. Oh, Electric double-layer capacitor performance of a new mesoporous carbon, J. Electrochem.Soc, 2000, 147, 2507.
    [69] W. Xing, S. Z. Qiao, R. G. Ding, F. Li, G. Q. Lu, Z. F. Yan, H. M. Cheng, Superior electric double layer capacitors using ordered mesoporous carbons, Carbon,2006,44,216.
    [70]H.S.Zhou,S.M.Zhu,M.Hibino,I.Honma,Electrochemical capacitance of self-ordered mesoporous carbon,J.Power Sources,2003,122,219.
    [71]J.Lee,S.Yoon,T.Hyeon,S.M.Oh,K.B.Kim,Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors,Chem.Commun.,1999,2177.
    [72]A.B.Fuertes,G.Lota,T.A.Centeno,E.Frackowiak,Templated mesoporous carbons for supercapacitor application,Electrochim.Acta,2005,50,2799.
    [73]H.Q.Li,J.Y.Luo,Y.Y.Xia,A new ordered mesoporous carbon with short pore length and its electrochemical performances in supercapacitor application,J.Electrochem.Soc.,2007,154,A731.
    [74]W.R.Li,D.H.Chen,Z.Li,Y.F.Shi,Y.Wan,J.J.Huang,J.Yang,D.Y.Zhao,Z.Y.Jiang,Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor,Electrochem.Commun.,2007,9,569.
    [75]Y.Zhao,M.B.Zheng,J.M.Cao,X.F.Ke,J.S.Liu,Y.P.Chen,J.Tao,Easy synthesis of ordered meso/macroporous carbon monolith for use as electrode in electrochemical capacitors,Mater Lett.2008,62,548.
    [76]吴海芳,胡中华,活性炭纤维制备双电层电容器,炭素技术,2004,23(1),12.
    [77]C.T.Hsieh,H.S.Teng,Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics,Carbon,2002,40(5),667.
    [78]K.Miura,H.Nakagawa,H.Okamoto,Production of high density activated carbon fiber by a hot briquetting method,Carbon,2000,38(1),119.
    [79]C.Kim,Electrochemical characterization of electrospun activated carbon nanoflbres as an electrode in supercapacitors,J.Power Sources,2005,142,382.
    [80]I.Tanahashi,A.Yoshida,A.Nishino,Electrochemical characterization of activated carbon-fiber cloth polarizable electrodes for electric double-layer capacitors,J.Electrochem.Soc.,1990,137(10),3052.
    [81]F.Severini,L.Formaro,M.Pegoraro,L.Posca,Chemical modification of carbon fiber surfaces,Carbon,2002,40(5),735.
    [82]朱磊,吴伯荣,陈晖,刘明义,超级电容器研究及其应用,稀有金属,2003,27(3),385.
    [83]R.W.Pekala,Organic acrogels from the polycondensation of resorcinol with formaldehyde,J.Mater Sci.,1989,24(9),3221.
    [84]S.T.Mayer,R.W.Pekala,The Aerocapacitor:An electrochemical double-layer energy-storage device,J.Electrochem.Soc.,1993,140(2),446.
    [85]R.Saliger,U.Fischer,C.Herta,J.Fricke,High surface area carbon aerogels for supercapacitors,J.Non-Cryst.Solids,1998,225(1),81.
    [86]T.D.Tran,D.Leni,Effect of processing conditions on the physics and electrochemical properties of carbon aerogel composites,J.Mat.Res.Symp.Proc.,1998,496,607.
    [87]P.Petricevic,M.Glora,J.Fricke,Planar fibre reinforced carbon aerogels for application in PEM fuel cells,Carbon,2001,39,857.
    [88]C.Schmitt,H.Probstle,J.Fricke,Carbon cloth-reinforced and activated aerogel films for supercapacitors,J.Non-Cryst.Solids,2001,285,277.
    [89]S.T.Mayer,Method of low pressure and/or evaporation drying of aerogel,WO patent,1994,94/22943.
    [90]H.Tamon,H.Ishizaka,T.Yamamoto,T.Suzuki,Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors,Carbon,2000,38(7),1099.
    [91]S.Iijima,Helical microtubules of graphic carbon,Nature,1991,354,56.
    [92]C.Niu,E.K.Sichiel,R.Hoch,D.Moy,H.Tennent,High power electrochemical capacitors based on carbon nanotube electrodes,Appl.Phys.Lett.,1997,70,1480.
    [93]E.Frackowiak,K.Metenier,V.Bertagna,F.Beguin,Supercapacitor electrodes from multiwalled carbon nanotubes,Appl.Phys.Lett.,2000,77(15),2421.
    [94]H.Zhang,G.P.Cao,Y.S.Yang,Electrochemical properties of ultra-long,aligned,carbon nanotube array electrode in organic electrolyte,J.Power Sources,2007,172,476.
    [95]H.Zhang,G.P.Cao,Y.S.Yang,Using a cut-paste method to prepare a carbon nanotube fur electrode,Nanotechnology,2007,18,195607.
    [96]H.Zhang,G.P.Cao,Y.S.Yang,Z.N.Gu,Comparison between electrochemical properties of aligned carbon nanotube array and entangled carbon nanotube electrodes,J.Electrochem.Soc.,2008,155,K19.
    [97]马仁志,魏秉庆,徐才录,梁吉,吴德海,应用于超级电容器的碳纳米管电极的几个特点,清华大学学报(自然科学版),2000,40(8),7.
    [98]E.Frackowiak,F.Beguin,Carbon materials for the electrochemical storage of energy in capacitors,Carbon,2001,39(6),937.
    [99]W.C.Chen,C.C.Hu,C.C.Wang,C.K.Min,Electrochemical characterization of activated carbon-ruthenium oxide nanoparticles composites for supercapacitors,J.Power Sources,2004,125(2),292.
    [100]王晓峰,王大志,梁吉,氧化钌/活性炭超级电容器电极材料的研制,稀有金属材料与工程,2003,32(6),424.
    [101]马仁志,魏秉庆,徐才录,梁吉,吴德海,基于碳纳米管的超级电容器,中国科学(E辑),2000,30(2),112.
    [102]T.Liu,T.V.Streekumar,S.Kumar,R.H.Hauge,R.E.Smalley,SWNT/PAN composite film-based supercapacitors,Carbon,2003,41(12),2440.
    [103]V.Gupta,N.Miura,Polyaniline/single-wall carbon nanotube(PANI/SWCNT)composites for high performance supercapacitors,Electrochim.Acta,2006,52(4),1721.
    [104]Y.G.Wang,H.Q.Li,Y.Y.Xia,Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance,Adv.Mater.,2006,18(19),2619.
    [105]T.C.Girija,M.V.Sangaranarayanan,Polyaniline-based nickel electrodes for electrochemical supercapacitors-Influence of Triton X-100,J.Power Source,2006,159(2),1519.
    [106]V.Gupta,N.Miura,Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites,J.Power Sources,2006,157(1),616.
    [107]T.C.Girija,M.V.Sangaranarayanan,Analysis of polyaniline-based nickel electrodes for electrochemical supercapacitors,J.Power Sources,2006,156(2),705
    [108]E.Frackowiak,V.Khomenko,K.Jurewicz,K.Lota,F.Beguin,Supercapacitors based on conducting polymers/nanotubes composites,J.Power Sources,2006,153(2),413.
    [109]J.Jang,J.Bae,M.Choi,S.H.Yoon,Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor,Carbon,2005,43(13),2730.
    [110]C.F.Zhou,S.Kumar,C.D.Doyle,J.M.Tour,Functionalized Single Wall Carbon Nanotubes Treated with Pyrrole for Electrochemical Supercapacitor Membranes,Chem.Mater.,2005,17(8),1997.
    [111]K.H.An.K.K.Jeon,J.K.Heo,S.C.Lim,D.J.Bae,Y.H.Lee, High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole, J. Electrochem. Soc, 2002, 149(8), A1058.
    [112] G. G. Amatucci, F. Badway, A. Du Pasquier, T. Zheng, An asymmetric hybrid nonaqueous energy storage cell, J. Electrochem. Soc, 2001, 148, A930.
    [113] A. D. Pasquier, I. Plitz, S. Menocal, G. Amatucci, A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications, J. Power Sources, 2003, 115, 171.
    [114] A. D. Pasquier, I. Plitz, J. Gural, S. Menocal, G. Amatucci, Characteristics and performance of 500 F asymmetric hybrid advanced supercapacitor prototypes, J. Power Sources, 2003, 113, 62.
    [115] I. Plitz, A. DuPasquier, F. Badway, J. Gural, N. Pereira, A. Gmitter, G.G. Amatucci, The design of alternative nonaqueous high power chemistries, Appl. Phys. A, 2006, 82, 615.
    [116] H. Q. Li, L. Cheng, Y. Y. Xia, A hybrid electrochemical supercapacitor based on a 5V Li-ion battery cathode and active carbon, Electrochem. Solid State Lett., 2005, 8,A433.
    [117] Y. G. Wang, Y. Y. Xia, A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system, Electrochem. Commun., 2005, 7(11), 1138.
    [118] Y. G.Wang, Y. Y. Xia, Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds I. The C/LiMn2O4 system, J. Electrochem. Soc, 2006, 153(2), A450.
    [119] Y. G. Wang, J. Y. Luo, C. X. Wang, Y. Y. Xia, Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds IL Comparison of LiMn2O4, LiCo1/3Ni1/3Mn1/3O2, and LiCoO2 positive electrodes, J: Electrochem. Soc, 2006, 153(8), A1425.
    [120] Y. G.Wang, J. Y. Luo, W. Wu, C. X. Wang, Y Y. Xia, Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds III. Capacity fading mechanism of LiCo1/3Ni1/3Mn1/3O2 at different pH electrolyte solutions, J. Electrochem. Soc, 2007, 154(3), A228.
    [121] Y. M. Vol'fkovich, T. M. Serdyuk, Electrochemical capacitors, Russian J. Electrochem., 2002, 38, 935.
    [122] S. M. Lipka, D. E. Reisner, J. Dai, R. Cepulis, in proceedings of the 11th International Seminar on Double Layer Capacitors, Florida Educational Seminars Inc. 2001.
    [123] A. Laforgue, P. Simon, J. F. Fauvarque, J. F. Sarrau, P. Lailler, Hybrid supercapacitors based on activated carbons and conducting polymers, J. Electrochem. Soc, 2001, 148, A1130.
    [124] A. Laforgue, P. Simon, J. F. Fauvarque, M. Mastragostino, F. Soavi, J. F. Sarrau, P. Lailler, M. Conte, E. Rossi, S. Saguatti, Activated carbon/conducting polymer hybrid supercapacitors, J. Electrochem. Soc, 2003, 150,A645.
    [125] H. Y. Wang, M. Yoshio, A. K. Thapa, H. Nakamura, From symmetric AC/AC to asymmetric AC/graphite, a progress in electrochemical capacitors, J. Power Sources, 2007, 169,375.
    [126] H. Y. Wang, M. Yoshio, Graphite, a suitable positive electrode material for high-energy electrochemical capacitors, Electrochem. Commun., 2006, 8, 1481.
    [127] M. Yoshio, H. Nakamura, H. Y. Wang, Novel megalo-capacitance capacitor based on graphitic carbon cathode, Electrochem. Solid State Lett., 2006, 9, A561.
    [128] H. Wang, M. Yoshio, Performance of AC/graphite capacitors at high weight ratios of AC/graphite, J. Power Sources, 2008,177, 681.
    [129] H. Y. Wang, M. Yoshio, Effect of cation on the performance of AC/graphite capacitor, Electrochem. Commun., 2008, 10, 382.
    [130] M Okamura, Introducing the "nanogate" capacitors, IEEE Power Electronics Society NEWS LETTER, 2004, 16(10), 9.
    [131] M Okamura, The 15th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Deerfield Beach, 2005, Proceedings of the 15th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, P203.
    [1]马礼敦,高等结构分析,复旦大学出版社:上海,2001.
    [2]严风霞,王筱敏,现代光学仪器分析选论,华东师范大学出版社:上海,1992.
    [3]黄惠忠,纳米材料分析,化学工业出版社:北京,2003
    [4]陈国珍,黄贤智,刘文远,分光光度法(上册),原子能出版社:北京,1980.
    [5]周伟舫,电化学测量,上海科学技术出版社,1983
    [6]吴浩青,李永舫,电极过程动力学,高等教育出版社:北京,1998.
    [7]查全性等,电极过程动力学导论,科学出版社:北京,1984.
    [8]田昭武,电化学研究方法,科学出版社:北京,1984.
    [9]藤岛昭,相泽益男,井上撤著,陈震,姚建年译,电化学测定方法,北京大学出版社:北京,1995,p204.
    [1]R.Ryoo,S.H.Joo,S.Jun,Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation,J.Phys.Chem.B,1999,103,7743
    [2]Y.Wan;.H.F.Yang,D.Y.Zhao,"Host-Guest" Chemistry in the Synthesis of Ordered Nonsiliceous Mesoporous Materials,Acc.Chem.Res.,2006,39.423.
    [3]J.Lee,J.Kim,T.Hyeon,Recent Progress in the Synthesis of Porous Carbon Materials,Adv.Mater.,2006,18,2073.
    [4]S.N.Che,K.Lund,T.Tatsumi,S.Iijima,S.H.Joo,R.Ryoo,O.Terasaki,Direct Observation of 3D Mesoporous Structure by Scanning Electron Microscopy,Angew.Chem.Int.Ed.,2003,42,2182
    [5]A.H.Lu,F.Schuth,Nanocasting:A Versatile Strategy for Creating Nanostructured Porous Materials,Adv.Mater.,2006,18,1793.
    [6]M.Inagaki,K.Kaneko,T.Nishizawa,Nanocarbons-recent research in Japan,Carbon,2004,42,1401
    [7]F.Schuth,Non-siliceous Mesostructured and Mesoporous Materials,Chem.Mater.,2001,13,3184
    [8]H.F.Yang,D.Y.Zhao,Synthesis of replica mesostructures by the nanocasting strategy,J.Mater.Chem.,2005,15,1217
    [9]M.Kruk,M.Jaroniec,R.Ryoo,S.H.Joo,Characterization of MCM-48 Silicas with Tailored Pore Sizes Synthesized via a Highly Efficient Procedure, Chem. Mater,2000,12,1414.
    [10] R. Ryoo, S. H. Joo, M. Kruk, Ordered mesoporous carbons, Adv. Mater., 2001,13, 677.
    [11] X. W. Liu, L. Zhou, J. W. Li, Y. Sun, W. Su, Y. P. Zhou, Methane sorption on ordered mesoporous carbon in the presence of water, Carbon, 2006, 44, 1386.
    [12] C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, F. Beguin, Electrochemical energy storage in ordered porous carbon materials, Carbon, 2005, 43, 1293.
    [13] A. Vinu, K. Z. Hossain, G. S. Kumar, K. Ariga, Adsorption of L-histidine over mesoporous carbon molecular sieves, Carbon, 2006, 44, 530.
    [14] D. J. Kim, H. I. Lee, J. E. Yie, S. J. Kim, J. M. Kim, Ordered mesoporous carbons: Implication of surface chemistry, pore structure and adsorption of methyl mercaptan, Carbon, 2005, 43, 1868.
    [15] S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature, 2001, 412, 169.
    [16] F. B. Su, J. H. Zeng, X. Y. Bao, Y. S. Yu, J. Y. Lee, X. S. Zhao, Preparation and characterization of highly ordered graphitic mesoporous carbon as a Pt catalyst support for direct methanol fuel cells, Chem. Mater, 2005, 17, 3960.
    [17] A. B. Fuertes, F. Pico, J. M. Rojo, Influence of pore structure on electric double-layer capacitance of template mesoporous carbons, J. Power Sources, 2004, 133, 329.
    [18] H. Y. Liu, K. P. Wang, H. S. Teng, A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation, Carbon, 2005, 43, 559.
    [19] S. Alvarez, M. C. Bianco-Lopez, A. J. Miranda-Ordieres, A. B. Fuertes, T. A. Centeno, Electrochemical capacitor performance of mesoporous carbons obtained by templating technique, Carbon, 2005, 43, 866.
    [20] S. Yoon, J. W. Lee, T. Hyeon, S. M. Oh, Electric double-layer capacitor performance of a new mesoporous carbon, J. Electrochem. Soc, 2000, 147, 2507
    [21] J. Lee, S. Yoon, S. M. Oh, C. H. Shin, T. Hyeon, Development of a new mesoporous carbon using an HMS aluminosilicate template, Adv. Mater., 2000, 12,359.
    [22] W. Xing, S. Z. Qiao, R. G. Ding, F. Li, G. Q. Lu, Z. F. Yan, H. M. Cheng, Superior electric double layer capacitors using ordered mesoporous carbons, Carbon, 2006,44, 216.
    [23] H. S. Zhou, S. M. Zhu, M. Hibino, I. Honma, Electrochemical capacitance of self-ordered mesoporous carbon, J. Power Sources, 2003, 122, 219.
    [24] J. Lee, S. Yoon, T. Hyeon, S. M. Oh, K. B. Kim, Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors, Chem. Commun., 1999,2177.
    [25] A. B. Fuertes, G. Lota, T. A. Centeno, E. Frackowiak, Templated mesoporous carbons for supercapacitor application, Electrochim. Acta, 2005, 50, 2799
    [26] Kinoshita K. Carbon: Electrochemical and Physicochemical Properties [M]. New York: Kodansa Press, 1988. 326.
    [27] S. Yoon, J. H. Jang, B. H. Ka, S. M. Oh, Complex capacitance analysis on rate capability of electric-double layer capacitor (EDLC) electrodes of different thickness, Electrochim. Acta, 2005, 50, 2255.
    [28] H. Zhang, J. M. Sun, D. Ma, X. H. Bao, A. Klein-Hoffmann, G. Weinberg, D. S. Su, R. Schlogl, Unusual Mesoporous SBA-15 with Parallel Channels Running along the Short Axis, J. Am. Chem. Soc, 2004, 126, 7440.
    [29] D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science, 1998, 279, 548.
    [30] R. de Levie, On porous electrodes in electrolyte solutions: I. Capacitance effects, Electrochim. Acta, 1963, 8, 751.
    [31] H. Keiser, K. D. Beccu, M. A. Gutjahr, Abschatzung der porenstruktur poroser elektroden aus impedanzmessungen, Electrochim. Acta, 1976, 21, 539
    [32] H. K. Song, Y. H. Jung, K. H. Lee, L. H. Dao, Electrochemical impedance spectroscopy of porous electrodes: the effect of pore size distribution, Electrochim. Acta, 1999, 44, 3513
    [33] H. K. Song, H. Y. Hwang, K. H. Lee, L. H. Dao, The effect of pore size distribution on the frequency dispersion of porous electrodes, Electrochim. Acta, 2000,45,2241
    [1] S. Yoon, J. W. Lee, T. Hyeon, S. M. Oh, Electric double-layer capacitor performance of a new mesoporous carbon, J. Electrochem. Soc, 2000, 147, 2507
    
    [2] H. S. Zhou, S. M. Zhu, M. Hibino, I. Honma, Electrochemical capacitance of self-ordered mesoporous carbon, J. Power Sources, 2003, 122, 219.
    [3] S. Alvarez, M. C. Bianco-Lopez, A. J. Miranda-Ordieres, A. B. Fuertes, T. A. Centeno, Electrochemical capacitor performance of mesoporous carbons obtained by templating technique, Carbon, 2005, 43, 866.
    [4] T. A. Centeno, M. Sevilla, A. B. Fuertes, F. Stoeckli, On the electrical double-layer capacitance of mesoporous templated carbons, Carbon, 2005, 43, 3012.
    [5] A. B. Fuertes, G. Lota, T. A. Centeno, E. Frackowiak, Templated mesoporous carbons for supercapacitor application, Electrochim. Acta, 2005, 50, 2799
    [6] W. Xing, S. Z. Qiao, R. G. Ding, F. Li, G. Q. Lu, Z. F. Yan, H. M. Cheng, Superior electric double layer capacitors using ordered mesoporous carbons, Carbon, 2006, 44,216.
    [7] C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, F. Beguin, Electrochemical energy storage in ordered porous carbon materials, Carbon, 2005, 43,1293.
    [8] H. S. Zhou, S. M. Zhu, M. Hibino, I. Honma, M. Ichihara, Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance, Adv. Mater., 2003, 15, 2107.
    [9] S. Jun, S. H. Hoo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 2000, 122, 10712
    
    [10] Y. Wan, H. F. Yang, D. Y. Zhao, "Host-Guest" Chemistry in the Synthesis of Ordered Nonsiliceous Mesoporous Materials, Acc. Chem. Res., 2006, 39, 423.
    
    [11] H. Q. Li, J. Y. Luo, X. F. Zhou, C. Z. Yu, Y. Y. Xia, An ordered mesoporous carbon with short pore length and its electrochemical performances in supercapacitor applications, J. Electrochem. Soc, 2007, 154, A731
    
    [12] C. D. Liang, K. L. Hong, G. A. Guiochon, J. W. Mays, S. Dai, Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers, Angew. Chem. Int. Ed, 2004, 43, 5785
    
    [13] C. D. Liang, S. Dai, Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction, J. Am. Chem. Soc, 2006, 128, 5316
    [14] S. Tanaka, N. Nishiyama, Y. Egashira, K. Ueyama, Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite, Chem. Commun., 2005,2125.
    [15] F. Q. Zhang, Y. Meng, D. Gu, Y. Yan, C. Z. Yu, B. Tu, D. Y. Zhao, A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia(3)over-bard bicontinuous cubic structure, J. Am. Chem. Soc, 2005, 127,13508.
    [16] Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, H. F. Yang, Z. Li, C. Z. Yu, B. Tu, D. Y. Zhao, Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation, Angew. Chem. Int. Ed, 2005,44, 7053
    [17] Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, L. Cheng, D. Feng, Z. X. Wu, Z. X. Chen, Y. Wan, A. Stein, D. Y. Zhao, A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly, Chem. Mater., 2006,18,4447.
    [18] R. L. Liu, Y. F. Shi, Y. Wan, Y. Meng, F. Q. Zhang, D. Gu, Z. X. Chen, B. Tu, D. Y. Zhao, Triconstituent Co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas, J. Am. Chem. Soc, 2006, 128, 11652.
    [19] K. Kim, X. Chu, Carbon for supercapacitors in electrochemical capacitors [A], The Electrochemical Society Proceedings Series [C], Pennington, 1996, 135, 121.
    [20] Salitra G, Soffer A, Eliad L, Cohen Y, Aurbach D. Carbon electrodes for double-layer capacitance. I. Relations between ion and pore dimensions, J. Electrochem. Soc 2000, 147, 2486
    [21] L. Eliad, G. Salitra, A. Soffer, D. Aurbach, Ion sieving effects in the electrical double layer of porous carbon electrodes: estimating effective ion size in electrolytic solutions. J. Phys. Chem. B 2001, 105, 6880.
    [22] L. Eliad, G. Salitra, A. Soffer, D. Aurbach, Proton selective environment in the pores of activated molecular sieving carbon electrodes, J. Phys. Chem. B 2002, 106, 10128
    [23] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Anormaous increase in carbon capacitance at pore size less than 1 nanometer, Science, 2006, 313, 1760.
    [24] E. Raymundo-Pinero, K. Kierzek, J. Machnikowski, F. Beguin, Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes, Carbon, 2006, 44, 2498.
    [25] E. Frackowiak, F. Beguin, Electrochemical storage of energy in carbon nanotubes and nanostructured carbons, Carbon, 2002, 40, 1775.
    [26] I. Mochida, C. H. Ku, Y. Korai, Anodic performance and insertion mechanism of hard carbons prepared from synthetic isotropic pitches, Carbon, 2001, 39, 399.
    [27] H. Fujimoto, A. Mabuchi, K. Tokumitsu, T. Kasuh, Relationship between the charge capacity of a turbostratic carbon anode for a Li secondary battery and its structure, Carbon, 2000, 38, 871.
    [28] M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, Recent development of carbon materials for Li ion batteries, Carbon, 2000, 38, 183.
    [29] Y. S. Han, J. S. Yu, G. S. Park, J. Y. Lee, Effects of synthesis temperature on the electrochemical characteristics of pyrolytic carbon for anodes of lithium-ion secondary batteries, J. Electrochem. Soc, 1999, 146, 3999
    [30] W. Xing, R. A. Dunlap, J. R. Dahn, Studies of lithium insertion in ballmilled sugar carbons,.J Electrochem. Soc, 1998, 145, 62
    [31] W. Xing, A. M. Wilson, K. Eguchi, G. Zank, J. R. Dahn, Pyrolyzed polysiloxanes for use as anode materials in lithium-ion batteries, J. Electrochem. Soc, 1997, 144,2410
    [32] W. Xing, J. S. Xue, J. R. Dahn, Optimizing pyrolysis of sugar carbons for use as anode materials in lithium-ion batteries, J. Electrochem. Soc, 1996, 143, 3046
    [33] W. Xing, J. R. Dahn, Study of irreversible capacities for Li insertion in hard and graphitic carbons, J. Electrochem. Soc, 1997, 144, 1195
    [34] W. Xing, J. S. Xue, T. Zheng, A. Gibaud, J. R. Dahn, Correlation between lithium intercalation capacity and microstructure in hard carbons, J. Electrochem. Soc, 1996, 143, 3482
    [35] Y. Liu, J. S. Xue, T. Zheng, J. R. Dahn, Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins, Carbon, 1996, 34, 193.
    [36] E. Buiel, J. R. Dahn, Reduction of the irreversible capacity in hard-carbon anode materials prepared from sucrose for Li-ion batteries, J. Electrochem. Soc, 1998, 145, 1977
    [37] H. S. Zhou, D. L. Li, M. Hibino, I. Honma, A self-ordered, crystalline-glass, mesoporous nanocomposite for use as a lithium-based storage device with both high power and high energy densities, Angew. Chem. Int. Ed, 2005,44, 797.
    [38] E. Frakowiak, S. Gautier, H. Gaucher, S. Bonnamy, and F. Beguin, Electrochemical storage of lithium in multiwalled carbon nanotubes, Carbon, 1999,37,61.
    [39] M. Winter, J. O. Besenhard, M. E. Spahr, P. Novak, Insertion electrode materials for rechargeable lithium batteries, Adv. Mater, 1998, 10, 725.
    [40] T. Iijima, K. Suzuki, Y. Matsuda, Electrodic Characteristics of Various Carbon Materials for Lithium Rechargeable Batteries, Synthetic Met., 1995, 73, 9.
    [1]S.Yoon,J.W.Lee,T.Hyeon,S.M.Oh,Electric double-layer capacitor performances of a new mesoporous carbon,J.Electrochem.Soc.,2000,147,2507
    [2]H.S.Zhou,S.M.Zhu,M.Hibino,I.Honma,Electrochemical capacitance of self-ordered mesoporous carbon,J.Power Sources,2003,122,219.
    [3]A.B.Fuertes,G.Lota,T.A.Centeno,E.Frackowiak,Templated mesoporous carbons for supercapacitor application, Electrochim. Acta, 2005, 50,2799.
    [4] H. Y. Liu, K. P. Wang, H. S. Teng, A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation, Carbon, 2005, 43, 559.
    [5] S. Alvarez, M. C. Blanco-Lopez, A. J. Miranda-Ordieres, A. B. Fuertes, T. A. Centeno, Electrochemical capacitor performance of mesoporous carbons obtained by templating technique, Carbon, 2005, 43, 866.
    [6] W. Xing, S. Z. Qiao, R. G. Ding, F. Li, G.Q. Lu, Z. F. Yan, H. M. Cheng, Superior electric double layer capacitors using ordered mesoporous carbons, Carbon, 2006, 44,216.
    [7] Kinoshita K. Carbon: Electrochemical and Physicochemical Properties [M]. New York: Kodansa Press, 1988, 326.
    [8] J. Randin, E. Yeager, Differential capacitance study of stress-annealed pyrolytic graphite electrodes, J. Electrochem. Soc. 1971, 118, 711
    [9] F. Disma, L. Aymard, L. Dupont, J. M. Tarascon, Effect of mechanical grinding on the lithium intercalation process in graphites and soft carbons, J. Electrochem. Soc. 1996,143,3959
    
    [10] Y. Huang, H. Yasuda, H. Mori, Chem. Phys. Lett., Highly curved carbon nanostructures produced by ball-milling, 1999, 303, 130.
    
    [11] 陈小华,成奋强,王健雄,谢中,彭景翠,吴国涛,机械球磨下石墨结构的畸变,无机材料学报,2002,17(3),579.
    [12] C. S. Wang, G. T. Wu, W. Z. Li, Lithium insertion in ball-milled graphite, J. Power Sources, 1998, 76, 1.
    [13] F. Salver-Disma, A. Du Pasquier, J. M. Tarascon, J. C. Lassegues, J. N. Rouzaud, Physical characterization of carbonaceous materials prepared by mechanical grinding, J. Power Sources, 1999, 82, 291.
    [14] F. Disma, L. Aymard, L. Dupont, J. M. Tarascon, Effect of mechanical grinding on the lithium intercalation process in graphites and soft carbonsl, J. Electrochem. Soc, 1996, 143,3959
    [15] F. Chevallier, L. Aymard, J. M. Tarascon, Influence of oxygen and hydrogen milling atmospheres on the electrochemical properties of ballmilled graphite, J. Electrochem. Soc, 2001, 148, A1216
    [16] L. G. Austin, E. G. Gagnon, The triangular voltage sweep method for determining double-layer capacity of porous electrodes, J. Electrochem. Soc, 1973, 120, 251
    [17] E. G. Gagnon, The triangular voltage sweep method for determining double-layer capacity of porous electrodes, J. Electrochem. Soc, 1973,120,1052
    [18] T. S. Ong, H. Yang, Effect of atmosphere on the mechanical milling of natural graphitel, Carbon, 2000, 38,2077.
    [19] M. Francke, H. Hermann, R. Wenzel, G. Seifert, K. Wetzig, Modification of carbon nanostructures by high energy ball-milling under argon and hydrogen atmospherel, Carbon, 2005, 43, 1204.
    [20] X. Chu, K. Kinoshitain, Electrochemical capacitors, Electrochemical society proceedings, vol.96-25, F. Delnick and M. Tomkiewicz, eds., 1995, 171
    [21] F. Salver-Disma, J. M. Tarascon, C. Clinard, J. N. Rouzaud, Transmission electron microscopy studies on carbon materials prepared by mechanical milling, Carbon, 1999,37, 1941.
    [1]T.Brousse,M.Toupin,D.Belanger,A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte,J.Electrochem.Soc.,2004,151,A614
    [2]J.H.Park,O.O.Park,Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes,J.Power Sources,2002,111,185.
    [3]C.Arbizzani,M.Mastragostino,F.Soavi,New trends in electrochemical supercapacitors,J.Power Sources,2001,100,164
    [4]A.D.Pasquier,I.Plitz,J.Gural,S.Menocal,G.Amatucci.Characteristics and performance of 500 F asymmetric hybrid advanced supercapaeitor prototypes J.Power Sources,2003,113,62.
    [5]A.D.Pasquier,A.Laforgue,P.Simon,Li_4Ti_5O_(12)/poly(methyl)thiophene asymmetric hybrid electrochemical device,J.Power Sources,2004,125,95.
    [6]L.Kavan,J.Prochazka,T.M.Spitler,M.Kalbac,M.Zukalova,T.Drezen,M.Gratzel,Li insertion into Li_4Ti_5O_(12)(Spinel),J.Electrochem.Soc.,2003,150,A1000.
    [7]H.S.Zhou,D.L.Li,M.Hibino,I.Honma,A self-ordered,crystalline-glass,mesoporous nanocomposite for use as a lithium-based storage device with both high power and high energy densities,Angew.Chem.Int.Ed.,2005,44,797.
    [8]E.M.Sorensen,S.J.Barry,H.K.Jung,J.M.Rondinelli,John T.Vaughey,K.R.Poeppelmeier,Three-dimensionally ordered macroporous Li_4Ti_5O_(12):effect of wall structure on electrochemical properties,Chem.Mater.,2006,18,482.
    [9]K.Nakahara,S.Iwasa,M.Satoh,Y.Morioka,J.Iriyama,M.Suguro,E.Hasegawa,Rechargeable batteries with organic radical cathodes,Chem.Phys.Lett.2002,359,351.
    [10]H.Nishide,S.Iwasa,Y.J.Pu,T,Suga,K.Nakahara,M.Satoh,Organic radical battery:nitroxide polymers as a cathode-active material,Electrochim.Acta,2004,50,827
    [11]J.Iriyama,K.Nakahara,S.Iwasa,Y.Morioka,M.Suguro,M.Satoh,IEICE Trans.2002,E85-C6,1256.
    [12]M.Satoh,K.Nakahara,J.Iriyama,S.Iwasa,M.Suguro,IEICE Trans.2004,E87-C12,2076.
    [13]K.Nakahara,J.Iriyama,S.Iwasa,M.Suguro,M.Satoh,E.J.Cairns,Al-laminated film packaged organic radical battery for high-power applications,J.Power Sources,2007,163,1110.
    [14]K.Nakahara,J.Iriyama,S.Iwasa,M.Suguro,M.Satoh,E.J.Cairns,Cell properties for modified PTMA cathodes of organic radical batteries,J.Power Sources,2007,165,398.
    [15]K.Nakahara,J.Iriyama,S.Iwasa,M.Suguro,M.Satoh,E.J.Cairns,High-rate capable organic radical cathodes for lithium rechargeable batteries,J.Power Sources,2007,165,870.
    [16]邓凌峰,李新海,肖立新,张云河,聚合物自由基锂二次电池正极材料的合成与电化学性能,,高分子学报,2004,1,8.
    [17]邓凌峰,李新海,肖立新,张云河,自由基聚合物锂二次电池正极材料,电池,2004,34,93.
    [18]T.Kurosaki,O.Takahashi,M.Okawara,J.Polym Sci:Polym Chem.,1972,10,3295.
    [19]T.Kurosaki,O.Takahashi,M.Okawara,J.Polym Sci:Polym Chem.,1974,12,1407.
    [20]E.Breuer,H.G.Aurich,A.Nielsen,Nitroenes,Nitronates,Nitroxides,John Wiley & Sons,New York,1989
    [21]L.B.Volodarsky,V.A.Reznikov,Synthetic Chemistry of Stable Nitroxides,CRC Press,Florida,1993
    [22] M. L. Liu, S. J. Visco, L. C. D. Jonghe, Elecrtode kinetics of organodisulfide cathodes for storage batteries, J. Electrochem. Soc. 1990, 137, 750
    
    [23] I. Plits, A. Dupasquier, F. Badway, J. Gural, N. Pereira, A. Gmitter, G.G. Amatucci, the design of alternative nonaqueous high power chemistries, App. Phys. A., 2006, 82, 615.
    [1]V.Paladini,T.Donateo,A.de Risi,D.Laforgia,Super-capacitors fuel-cell hybrid electric vehicle optimization and control strategy development,Energ.Convers.Manage.,2007,48,3001
    [2]M.Mastragostino,F.Soavi,Strategies for high-performance supercapacitors for HEV,J.Power Sources,2007,174,89
    [3]E.Karden,S.Ploumen,B.Fricke,T.Miller,K.Snyder,Energy storage devices for future hybrid electric vehicles,J.Power Sources,2007,168,2.
    [4]A.Rudge,J.Davey,I.Raistrick,S.Gottesfeld,Conducting polymers as active materials in electrochemical capacitors,J.Power Sources,1994,47,89
    [5]B.E.Conway,Electrochemical Supercapacitors,Plenum,New York,1999.
    [6]R.Kotz,M.Carlen,Principles and applications of electrochemical capacitors,Electrochim.Acta,2000,45,2483
    [7]B.E.Conway,Transition from "Supercapacitor" to "Battery" behavior in electrochemical energy storage,J.Electrochem.Soc.,1991,138,1539
    [8]S.T.Mayer,R.W.Pekala,J.L.Kaschmitter,The aerocapacitor:an electrochemical double-layer energy-storage device,J.Electrochem.Soc.,1993,140,446
    [9]A.Yoshida,S.Nonaka,I.Aoki,A.Nishino,Electric double-layer capacitors with sheet-type polarizable electrodes and application of the capacitors,J.Power Sources,1996,60,213.
    [10]Y.Kibi,T.Saito,M.Kurata,J.Tabuchi,A.Ochi,Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors,J.Power Sources,1996,60,225.
    [11]J.P.Zheng,The limitations of energy density of battery/double-layer capacitor asymmetric cells,J.Electrochem.Soc.,2003,150,A484
    [12]G.G.Amatucci,F.Badway,A.D.Pasquier,T.Zheng,An asymmetric hybrid nonaqueous energy storage cell,J.Electrochem.Soc.,2001,148,930
    [13]A.Du Pasquier,I.Plitz,J.Gural,S.Menocal,G.Amatucci,Characteristics and performance of 500 F asymmetric hybrid advanced supercapacitor prototypes,J.Power Sources,2003,113,62.
    [14] A. Du Pasquier, I. Plitz, S. Menocal, G. Amatucci, A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications, J. Power Sources, 2003,115,171.
    [15] I. Plitz, A. DuPasquier, F. Badway, J. Gural, N. Pereira, A. Gmitter, G. G. Amatucci, The design of alternative nonaqueous high power chemistries, Appl. Phys. A-Mater, 2006, 82, 615
    [16] H. Q. Li, L. Cheng, Y. Y. Xia, A hybrid electrochemical supercapacitor based on a 5V Li-ion battery cathode and active carbon, Electrochem. Solid State Lett., 2005, 8, A433
    [17] Y. G. Wang, Y. Y. Xia, A new concept hybrid electrochemical supercapacitor: Carbon/LiMn_2O_4 aqueous system, Electrochem. Commun., 2005, 7, 1138
    [18] Y. G. Wang, Y. Y. Xia, Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds I. The C/LiMn_2O_4 system, J. Electrochem. Soc, 2006, 153, A450
    [19] Y. G.Wang, J. Y. Luo, G. X. Wang, Y. Y. Xia, Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds II. Comparison of LiMn_2O_4, LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2, and LiCoO_2 positive electrodes, J. Electrochem. Soc, 2006, 153, A1425
    [20] Y. G. Wang, J. Y. Luo, J. Y. Luo, W. Wu, C. X. Wang, Y. Y. Xia, Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds III. Capacity fading mechanism of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 at different pH electrolyte solutions, J. Electrochem. Soc, 2007, 154, A228
    [21] Y. Terada, K. Yasaka, F. Nishikawa, T. Konishi, M.Yoshio, I. Nakai, In situ XAFS analysis of Li(Mn, M)_2O_4 (M=Cr, Co, Ni) 5V cathode materials for lithium-ion secondary batteries, J. Solid State Chem. 2001, 156, 286.
    [22] Q. M. Zhong, A. Bonakdarpour. M. J. Zhang, Y. Gao, J. R. Dahn, Synthesis and electrochemistry of LiNi_xMn_(2-x)O_4, J. Electrochem. Soc, 1997, 144, 205
    [23] Y. Y. Xia, T. Sakai, T. Fujieda, M. Wada, H. Yoshinaga, Flake Cu-Sn alloys as negative electrode materials for rechargeable lithium batteries, J. Electrochem. Soc, 2001,148, A471
    [24] S. Mukerjee, X. Q. Yang, X. Sun, S. J. Lee, J. McBreen, Y. Ein-Eli, In situ synchrotron X-ray studies on copper-nickel 5 V Mn oxide spinel cathodes for Li-ion batteries, Electrochem. Acta 2004, 49, 3373
    [25] K. Takahashi, M. Saitoh, M. Sano, M. Fujita, K. Kifune, Electrochemical and structural properties of a 4.7 V-class LiNi_(0.5)Mn_(1.5)O_4 positive electrode material prepared with a self-reaction method, J. Electrochem. Soc, 2004, 151, A173
    [26] Y. Todorov, C. Wang, B. I. Banov, M. Yoshio, in Batteries for Portable Applications and Electric Vehicles, C. F. Holmes and A. R. Landgrebe, Editors, PV 97-18 p. 176, The Electrochemical Society Proceedings Series, Pennington, NJ(1997).
    [27] H. Kawai, M. Ngata, H. Tsukamoto, A. R. West, A new lithium cathode LiCoMnO_4: toward practical 5 V lithium batteries, Electrochem. Solid State Lett., 1998,1,212.
    [28] J. H. Kim, S. T. Myung, C. S. Yoon, S. G. Kang, Y. K. Sun, Comparative study of LiNi_(0.5)Mn__(1.5)O_4-delta and LiNio.5Mn1.5O4 cathodes having two crystallographic structures: Fd(3)over-barm and P4(3)32, Chem. Mater., 2004, 16, 906.
    [29] J. H. Kim, S. T. Myung, Y. K. Sun, Molten salt synthesis of LiNi_(0.5)Mn_(1.5)O_4 spinel for 5 V class cathode material of Li-ion secondary battery, Electrochim. Acta, 2004,49,219

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700