用户名: 密码: 验证码:
内流河宽浅变迁河段水沙运动规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河水最终注入海洋的河流称为外流河,河水最终不能注入海洋的,或消失于沙漠,或注入湖泊的河流称为内流河。每一条河流各自具有自己的特性,钱宁把河流按不同的性质分成游荡、分汊、弯曲、顺直四类。一条河流的各个河段也具有各自的特性,我国公路部门根据河段稳定性的特点及变形特点,把全国各地河流概括地划分为7类河段:①深槽稳定河段;②浅槽稳定河段;③宽浅变迁河段;④宽浅游荡河段;⑤边滩微弯河段;⑥宽滩蜿蜒河段;⑦冲积漫流河段。本文主要研究对象是内流河宽浅变迁河段。
     我国河流内流区占全国面积的36%,但径流总量只占全国的4.35%。新疆共有315条河流,除额尔齐斯河最终注入北冰洋外,其余全是内流河。由于我国内流河的径流量所占份额很小,加之历来视西部为荒芜不毛之地,对其多方面的研究、发展甚少关注,这也是同样表现于对内流河的研究长期被忽视,西部大开发战略一经提出,其深远意义和丰富的内涵便立即显示出来。西部大开发应抓住时机,着眼于少数民族地区经济资源可持续发展等战略性目标,对一些带有战略性的建设项目,作出统筹安排。在西部地区的农业、交通、能源等重大开发任务的实施中,无不涉及对这一地区为数不多、十分珍贵的内流河的开发和利用。为此,交通部2001.9立项“新疆宽浅、变迁性河流桥涵设计关键技术研究”(2001-318-365-88),本文结合该项目对内流河的水沙特性作较为系统的研究。
     内流河宽浅变迁河段不同于以往我们所了解的河流,其独特的水沙特性向我们提出了一系列有待研究的新课题。同时,由于以前我们对此类河段研究很少,可查阅和借鉴的资料不多,很多方面还只停留在现象的认识上,对于其水流泥沙运动的本质规律认识还相当不够。为此作者在收集前人研究成果的同时,到南疆和北疆对25条有代表性的宽浅变迁河段进行调研,选取呼图壁河和三屯河作为样本河段进行详细测量,并根据宽浅变迁河段的特性设计了一套
    
    四川大学博士学位论文
    变坡水槽泥沙起动以及输沙试验系统,对内流河的分布、洪水成因、山前平原
    形成、小尺度粗糙临界值、大比降河床的定床阻力和动床阻力、大比降粗颗粒
    泥沙起动、内流河宽浅变迁河段的泥沙输移特性以及动床模型设计等多方面进
    行了理论分析和研究,取得了如下一些研究成果。
     (1)我国内外流区的分界线,北起大兴安岭,沿东北、西南方向,经阴山、
    贺兰山、祁连山、日月山、巴颜喀拉山、念青唐古拉山和冈底斯山,直到西藏
    西部的国境为止。内流河主要分布在新疆、河西走廊、柴达木盆地、内蒙古和
    西藏北部。东北淞嫩地带也有局部内流区。新疆内流河宽浅变迁河段主要位于
    山麓平原的冲击扇或洪积扇上,冲击扇和洪积扇的厚度少则几十米,多达上百
    米。
     (2)内流河多数属于季节性河流,影响宽浅变迁河段水沙特性主要是洪水来
    量。从成因方面概括而言,其洪水可分为五种:暴雨洪水、季节融雪洪水、高
    山融雪洪水、棍合洪水和水利枢纽泄洪及溃堤引起的洪水。
     (3)内流河宽浅变迁河段从平面形态上分为两类:一类是限制性变迁河段,
    另一类是非限制性变迁河段。内流河宽浅变迁河段的河床比降较大,一般在
    10%0以上;在特大洪水时,多为300一500衬/s;在一般洪水时,水流多以股流
    形式存在,且单宽流量一般为2一3ms/s.m,特大洪水时,超过4 ms/s.m:在洪
    水期,悬移质含沙量是月平均含沙量的几倍、几十倍甚至上百倍;河床组成的
    颗粒较粗(D50=16~50rn们以);级配较宽,由细沙、砾石、卵石直至于漂石组成,
    非均匀系数一般为5~9,个别河段超过30。
     (4)采用乒乓球模拟颗粒排列紧密的大比降河床,通过流速分布试验确定内
    流河宽浅变迁河段的小尺度粗糙的临界值。产刃犬:>3为小尺度粗糙,
    2<却犬:<3时,仍然服从对数分布规律,只是精度稍差。小尺度粗糙的临界值
    ~浓*、。廿二。**八去、,体平、UI、__y+0·36K:.八,击工业
    川耳州闪匕刀J。步专名些鱿瓦刃几又犯刀,叩口,刁义J之工、刀:::一=丁in一一一二万一一一一十,·,f。田J川
     U .k式:
    y0二0.36K,>0,可忽略粘性底层,糙率尺寸对水流阻力起主要作用。
     (5)通过流速分布试验确定的定床阻力与通过大比降粗颗粒的泥沙起动所
    确定的定床阻力相比较,尽管两次试验的方法不同,其结果吻合较好。说明大
    比降粗颗粒的定床阻力系数与相对光滑度的1/6成正比,符合曼宁公式形式。’
    
    四川大学博士学位论文
    这一结果给谢才一曼宁公式可确定急流状态下的定床阻力提供很好的例证。
     (6)综合室内水槽试验和呼图壁河现场资料进行分析,大比降粗颗粒河床的
    动床阻力为:碑了一6.01(H/D),‘6习‘’。从拟合结果来看,相关系数达到O·”“7,
    该公式有较好的可靠性。说明内流河宽浅变迁河段的动床阻力不但与相对光滑
    度有关,还与水流状态(弗汝德数成)有关。对于卵砾石河床的动床阻力的问
    题,现有成果很少涉及,属于比较新的泥沙问题。作者关于这方面研究具有探
    索性,起抛砖引玉的作用。
     (7)分析现有各种起动标准,通过泥沙起动判别试
Rivers are classified into two types. One is called outer river which flows into ocean and the other is called inner river which can not flow into the ocean but into the desert or lakes. Each river has its own characteristics. Prof. Qian Ning categorizes rivers into four types according to their different features, i.e., migrating bed river, divaricating river, curved river, and straight river, each with it's own distinct features. On the basis of the stability and shifting of rivers, the Ministry of Communications(MOC) generally divides rivers into seven types: (1)deep pool stable reach; (2)shallow pool stable reach; (3)broad-shallow shifting reach; (4)board-shallow migrating reach; (5)slightly curved reach; (6)meandering reach; (7)flood plain reach. This dissertation attempts to study the feature of the inner river's broad-shallow shifting reach(IRBS reach).
    The whole area of all the inner river accounts for 36% of China's.But its runoff occupies only 4.35%. There are 315 river in Sinkiang Region. All the river are inner river except the Eerqisi River which flows into the Arctic Ocean. The western region are often regarded as infertile, little attention had been paid on the studies and exploitation of the western region, to say nothing of the inner rivers. As soon as the Western Region Development project was brought forth the far-reaching influence of the inner rivers gradually became more important than ever before. The Western Region Development should grasp the great opportunity to enhance the sustainable development in this region. In order to development the agriculture, communications and energy resources, the exploitations of the few but precious inner rivers should be put on the agenda. Therefore MOC has
    
    
    established the plan of the "study on the key technology of the bridge and culvert design in the IRBS reach of the Sinkiang Region" in September 2001(Contract No:2001-318-365-88). The paper presents results and findings of the study on the characteristics of flow and sediment transport in IRBS reach.
    The characteristics of the IRBS reach are different with river we have known before. The unique properties of the rivers has brought out many new problems needed to be resolved. Unfortunately few studies has been performed to deal with the concered problems and therefore the collection of the related data was very difficult. Based on the study of the previous scholars, the author had investigated 25 typical IRBS reach in the South Sinkiang and the North Sinkiang, and sampled the Hutubi river and Santun river to measuremnet. According to the survey data and the features of IRBS reach, a variable-slope flume experiment system was established for the sediment incipent motion and transportation in high slope bed. The problems were studied and analyzed as follows: (1)the distribution of the inner river, (2)the mechanism of flood forming, (3)the plain at the foot of mountains, (4) the critical value of small scale roughness, (5)static bed resistance and moveable bed resistance in the IRBS reach, (6)coarse sediment incipent motion in the high gradient bed, (7)sediment transportation features in the IRBS reach, and (8)the physical model design of the movable bed rivers. The major conclusions are as follows:
    (1)The divided line of the outer river and the inner river starts north from Daxinganling to the east-north, west-south direction, passes through the Yin Mountain, the Helan Mountain, the Qilian Mountain, the Riyue Mountain, the Bayankala Mountain, the Lianqingtanggula Mountain and the Gangdisi Mountain, and finally reches China's west, Tibet border. Most inner rivers are located in Sinkiang,, Hexi aisle, Caidamu basin, Inner Mongolia and the north Tibet. Some local inner rivers locate in the Song Nen area. The IRBS reach mostly lie on the erosion and sedimentation fan plain at the foot of mountain. The depth of the fan usually is measured tens of or even hundreds
    
    
    of meters.
    (2) The inner rivers are mostly seasonal ones. The factors which influence the characteristics of the IRBS reach
引文
[1] 陈秀万著.洪水灾害损失评估系统—遥感与GPS系统研究.1999.2,P1~5.
    [2] 新疆维吾尔自治区公路学会.新疆1996年公路水毁论文集.1997.8.
    [3] 倪晋仁,马蔼乃.河流动力地貌学.北京:北京大学出版社,1998.
    [4] 胡向阳.三峡工程泥沙问题研究综述.人民长江.Vol.31,No.1,2001.22~24.
    [5] 新疆水文水资源局.干旱区水文水资源研究成果汇编.新疆:新疆大学出版社.1996.
    [6] 钱宁,万兆惠.泥沙运动力学.北京:科学出版社,1983.
    [7] Leopold, L. B., M. G. Wolman and J. P. Miller, Fluvial Processes in Geomorphology, W. H. Freeman and Co., 1964.
    [8] 大中桥孔设计研究汇总工作会议编.大中桥孔设计研究报告.1976.12
    [9] Report No. FHWA-RD_162, Countemeasures for Hydraulic Problems at Bridges, Vol.Ⅰ, Analysis and Assessment, Final Report, Prepared for Federal Highway Addminstration, Washington D.C.20590. 1978.
    [10] 苏联运输工程部运输设计总局.桥渡勘测设计规程(交通部公路规划设计院节译).公路技术资料(7).北京:人民交通出版社,1976.
    [11] 蒋焕章.公路水文勘测设计与水毁防治.北京:人民交通出版社,2001.7.
    [12] Hooke,R. L. and W. L. Rohrer, Geometry of Alluvial Fans:Effect of Discharge and sediment Size, Earth surface Process, Vol.5, 1979, pp. 147-166.
    [13] Gole, C. V. and S. V. Chitale, Inland Delta Bulidings Activity of Kosi River, J. Hyd. Div., Proc. Amer. Soc. Civil Engrs., Vol. 92, No. HY2, 1966, pp. 111-126.
    [14] Klingeman, P. C. and W. W. Emmett, Gravel Bed-Load Transport Processes, in Gravel -Bed Rivers, ed. By R. D. Hey et al., John Wiley and Sons, 1982. pp. 141-179.
    [15] Keulegan, G.H. 1938. Laws of Turbulent Flow in Open Channels, Journal of Research of the National Bureau of Standards, Research Paper 1151, Vol.21, pp.707-741, Washington DC,December.
    [16] Powell, R.W. 1944. Flow in a channel of Definite Roughness,Transactions, ASCE, paper No 2276, pp.531-566.
    
    
    [17] Powell, R.W. 1949. Resistance to Flow in Smooth Channels, Transactions, AGU,Vol.30(6) , pp.875-878.
    [18] Powell, R.W.1950. Resistance to Flow in Rough Channels, Transactions, AGU,Vol.31(4) ,pp.575-582.
    [19] Colebrook, C.F., & White, C.M.1937. Experiments with fluid friction in roughened pipes, Proc. Roy. Soc., A, 161, pp.367-381.
    [20] Ackers, P. 1958. Resistance to Fluids Flowing in Channels and Pipes, J of Hydraulic Research, IAHR, Paper No.1, Her Majesty's Stationary Office, London.
    [21] ASCE Task Force Committee of the Hydraulic Division. 1963. Friction Factors in Open Channels: Progress Report of the Task Force on Friction factors in Open Cxhannels of the Committee of the Hydranlic Div., ASCE, Vol.97, HY1, January.
    [22] Engelund, F. 1964. Flow Resistance and Hydraulic Radius, ACTV, Civ. Engg. No.24,UDC 532. 543. 1, Copenhagen.
    [23] Jayaraman, V.V. 1970. Resistance Studies on Smooth Open Channels, J. Hydraulic Div., ASCE, Vol.96, No.HY5, May.
    [24] Pillai, N.N. 1970. On Uniform Flow through Smooth Rectangular Open Channels, J. Hydraulic Research, IAHR, Vol.1, paper A5, pp.288-296,Sept.
    [25] Pillai, N.N. 1977. Effects of Shape on Uniform Flow through Smooth Rectangular Open Channels, J.Hydraulic Eng., ASCE, Vol.123, No.7, July.
    [26] Rehme,K. 1972. Pressure Drop Performance of Rod Bundles in Hexagonal Arrangements, Int. J. Heat Mass Transfer, Vol.15, pp.2499-2517, Pergamon Press, Printed In UK.
    [27] Nalluri, C. & Adepoju, B.A. 1985. Shape effects on Resistance to Flow in Smooth Channels of Circular Cross-section, J.Hydraulic Research, IAHR, Vol.23, NO.1, pp.37-46.
    [28] Knight, D.W. & Brown, F.A 2001. Resistance Studies of Overbank Flow in Rivers with Sediment Using the Flood Channel Facility, J. of Hydraulic Research, IAHR, Vol.39, No.3, March.
    [29] Mohammadi,M. 1998. Resistance to Flow and the Influence of Boundary Shear
    
    Stress on Sediment Trandport in Smooth Rigid Boundary Channels, PhD Thesis, School of Civil Engineering, The University of Birmingham, England.
    [30] Sterling,M. 1997. The Distribution of Boundary Shear Stress in a Open Channel Circular Conduit Running Part full, PhD Thesis, University of Birmingham, Birmingham, England.
    [31] A.R.Maxwell and A.N.Papanicolaou. Step-pool morphology in high-gradient streams. International Journal of Sediment Research, Vol.16. No.3, 2001,pp.380-390.
    [32] Bathurst, J.G.. Flow Resistanc Estimation in Mountain Rivers. J. Hyd. Engrg., ASCE, Vol.111, No,4, pp.625-643.
    [33] Kanale and Geschlossene Leitungen",Mitt. No. 16 des Eidgenossische Amtes fur WasserWirtschaft, bern, Switzenland.
    [34] Engelund,F. and E.Hansen, "A Monograph on sediment Transport in Alluvial Streams",Teknisk Forlag, Copenhagen, 1972,p.62.
    [35] Limerinos, J.T., "Ditermnination of Manning Coefficient from measured Bed Roughness in Natural Channenl", Water Supply Paper 1898-B, U.S.Geol. Survey, 1970.
    [36] Bray, D.I., "Estimating Average Velocity in Gravel bed Rivers ", J.Hyd. Div.,Proc., Amer. Soc.Civil Engrs., Vol.105, No.Hy9, 1979, pp.1103-1127.
    [37] Lewis, C.P. and B.C. MeDonald, "Rivers of the Yukon North Slope", Proc. Hydrology Symp.on Fluvial Processes and Sedimentation , Univ. Alberta, 1973, pp.251-271.
    [38] Bathurst,J.G. Flow resistance of large scale Roughness [J]. J Hydr Div, ASCE, 1978, 104: (HY12) :1587-1603.
    [39] Yu Bangyi. Flow resistance of large scale Roughness in open channel [R]. Wuhan: Internations Symposium on Hydrolic Research in Nature and Laboratory, Wuhan,China,1992,(l 1) : 17-20.
    [40] 王晋军.粗糙床面明槽紊流水力特性[博士论文][D].北京:清华大学,1993.
    [41] Flammer G H, el, al. Free surface,velocity gradient flow past hemishere[J]. J Hydr,
    
    Div, ASCE, 1970,96(HY7):1485-1502
    [42] 苏萍、李强.大尺度粗糙水流特性的研究进展(综述)[J].石河子大学学报.第四卷第3期.2000年9月.pp.253-258.
    [43] 钱宁、麦乔威、洪柔嘉、毕慈芬,“黄河下游的糙率”,泥沙研究,4卷1期,1959年,1-19页.
    [44] Einstein. H.A. and Barbarossa. N. River channei roughness. Trans. Am. Soc.Civ.Engrs. Vol. 117,1952, pp. 1121-46.
    [45] Raudkivi, A. J, Analysis of resistance in alluvial channels, HY5, ASCE, 1967,pp.73-84.
    [46] Alam, A.M.Z. and J.F. Kennedy, "Friction Factors Flow in Sand Bed Channels",J.Hyd. Div., Proc., Amer. Soc. Civil. Engrs., Vol.95, No.HY6, 1969,pp.1973-1992
    [47] Yalin, M. S, Mechanics of sediment transport, Pergamon Press, Oxford, 1977.
    [48] Yalin, M. S. River Mechanics, Pergamon Press, Oxford, 1992.
    [49] 喻国良、敖汝庄、郑丙辉、方铎.冲积河床的河床阻力.水利学报.1999年第4期,1999年4月,pp.1-8.
    [50] Engelund, Fand. Fredsoe. J, Sediment, tipples and dunes, Annual Review of Fluid Mechanics, Vol. 14,1982, pp. 13-38.
    [51] 周国栋、刘琼轶、王桂仙等.非均匀沙床面阻力特性的试验研究.泥沙研究.1999年第3期.1999年6月.pp.40-47.
    [52] Bathust J.G., et al, Resistance equation for Large-scale Roughness. J Hydy Div,ASCE,1981,107(12), 1593-1613.
    [53] Strickler, K., "Beitrāge Zur Frage der Geschwindigkeitsformel und der Raukigeitszahlen Fūr Strom Kanāle und Geschlossene Leitungen" , Mitt.No. 16 des Eidgennōssische Amtes fūr Wasser Wirtschaft, Bern, Switzerland.
    [54] Engelund, F. and E. Hansen, "A Monograph on Sedment Transport In Alluvial Streams",Teknisk Forlag, Copenhagen, 1972, p.62.
    
    
    [55] Limerinos, J. T.,"Deterination of Manning Coefficient from Measured Bed Roughness in Natural Channels", Water Supply Paper 1898-B, U. S. Geol. Survey, 1970.
    [56] Lewis. C. P. and B. C. McDonald, "Rivers of the Yukon North Slope", Proc. Hydrology Syrup. On Fluvial Processes and Sedimentation, Univ. Alberta, 1973,pp. 251-271.
    [57] Bray, D. L., "Estimating Average Velocity in Gravel Bed Rivers", J. Hyd. Div., Proc., Amer. Soc. Civil Engrs., Vol. 105, No. HY9, 1979, pp. 1103-1127.
    [58] Bathust J.G., et al, Hydraulic of Mountain Rivers. Civil Engineering Department, 1979.
    [59] Day T.J. Discussion of Resistance Equation for Alluvial-Channel Flow. J Hydr Div, ASCE, 1977,103(HY5):582-584.
    [60] Hey R.D. Flow Resistance in Gravel-bed Rivers. J Hydr Div, ASCE.1979,105(HY4):365-379.
    [61] 王仕强,张仁.泥沙运动机理的水槽试验研究.长江三峡工程泥沙与航运关键技术研究专题研究报告集,下册.1990:1301-1336.
    [62] Ryckoczi, L., "Experiment Study of Flume Bed Roughness", Proc., 12th Cong., Intern. Assoc. Hyd. Res., Vol. 1, 1967, pp. 181-186.
    [63] 李保如.泥沙起动流速的计算方法.泥沙研究.Vol.4,No.1,1959.
    [64] 窦国仁.论泥沙起动流速.水利学报,No.4,1960.
    [65] 唐存本.泥沙起动规律.水利学报,No.2,1963.
    [66] 华国祥.泥沙起动流速.成都工学院学报,1965,No.1,1965.
    [67] 沙玉清.泥沙运动学引论.北京:中国工业出版社,1965.
    [68] 张瑞瑾.河流泥沙工程.北京:水利出版社,1981.
    [69] 韩其为,何明民.泥沙运动统计理论.北京:科学出版社,1984.
    [70] Shields, A., "Anwendung der Aechlichkeitsmechanik und der turbulenzforschung auf die Geschiebewegung", Mitt. Preussische Versuchsanstalt fūr Wasserbau und Schiffbau, Berlim, 1936.
    [71] Miller, M. C., I. N. MeCave and P. D. Komar, "Threshold of Sediment Motion
    
    Under Unidirectional Currents", Sedimentology, Vol. 24, No.4, 1977, pp.507-527.
    [72] Tison, L. J., "Etude des Conditions dans Lesquelles les Particules Solides sont Transportees dans les Courants a Lit Mobiles", Proc., Assoc. Intern. Sci. Hydro., Assemblee Generate d'Oslo, Tome 1,1948, pp.293-310.
    [73] Meyer-Peter, E. and R. Muller, "Formula for Bed Load Transport", Proc., 2nd. Meeting, Intern. Assoc. Hyd. Res., Vol.6 ,1948.
    [74] 韩其为,何明民。泥沙起动规律及起动流速.北京:科学出版社,1999.
    [75] Billi, P., D'Agostino, V, Lenzi, M.A. and Marchi, L.1998, Bedload slope and Slope and channel processes in a high-altitude alpine torrent. Gravel-bed Rivers in the Enviroment. Ed. P.C. Klingeman et al. Water Research Publications, LLC. HighLands ranch, Co.
    [76] Whittaker, J. G, 1987, Sediment Transport in Step-Pool Streams, Sediment Transport in Gravel-Bed Rivers, eds. C. R. Thorne, J. C. Bathurst and R. D. Hey, John WiLey & Sons, Ltd., pp.545-579.
    [77] Padmore, C. L., Newson, M. D. and Charlton, E. 1998, Instream habitat in gravel-bed rivers:identification and characterization of biotopes. Gravel-bed rivers in the enviroment, ed. P. C. Klingeman et al., Water Research Publications, LLC. HighLands ranch, Co.
    [78] Bettess, R. 1999, Flow resistence equation for gravel bed rivers, Proc. Of the IAHR, Graz, Austria, pp. 179-188.
    [79] Suszka, L. 1991, Modification of transport rate formula for steep channels. Lecture Notes in Earth Sciences, ed. A. Armanini and G Disilvio, Springer-Verlag, Berlin, pp. 545-579.
    [80] Bathurst, J. C. 1985, Flow Resistence Estimation in Mountain Rivers, J.Hyd., Engrg., ASCE, Vol.111,No.4, pp. 625-643.
    [81] Pcakall., J., Ashworth, P., and Best, J. 1996,Physical morphology in fluvial geomorphology: Principles, applications and unresolved issues, Proc, 27th Binghamton Symposium in geomorphology. John Wiley & Sons, Ltd.
    [82] Kilgore, R. T. and Young, G. K. 1993, Riprap Incipient motion and Shields
    
    Parameter, Proc. Nat'l Conf. On Hyd. Engrg., ASCE, New York, NY, pp. 1552-1557.
    [83] Maxwell, A. R. 2000, geomorphologic Characteristics of High Gradient Gravel Bed Streams. MS Thesis, Washington State University, Pullman WA, May.
    [84] Lane, E.W., "Progress Report of Studies on the Design of Stable Channels by the Bureau of Reclamation", Proc., Amer. Soc. Civil. Engrs., Vol.79, No.280,1953.
    [85] Stevens, M. A. and D. B. Simons, "Sability Analysis for Coarse Granular Material on Slopes", in River Mechanics, by H. W.zzsdQED Shen(ed.), Vol.1, 1971.
    [86] Christensen, B. A.,"
    [87] Ikeda, S. 1982, Incipient motion of sand Particles on side slopes. J.Hydr.Div., ASCE, Vol. 108, No.1,pp 95-114.
    [88] Chiew, Y. M. and Parker, G 1994a, Basic dataon incipient sediment motion on non-horizontal slopes in closed conduit flow. Tech. Memo. 234, st. Anthony Falls Hydr. Lab., Univ. of Minnesota.
    [89] Chiew, Y. M. and Parker, G. 1994b, Incipient sediment motion on non-horizontal slopes. J. Hydr. Res., Vol.32, No.5, pp.649-660.
    [90] Dey, S. 1999,Sediment Threshold. Appl. Math. Model., Vol.23, No.5, pp. 399-417.
    [91] Dey, S., Bose, S. K. and Sastry, G. L. N. 1995, Clear water scour at circular Piers:A model. J. Hydr. Engrg., ASCE, Vol.121, No. 12, pp. 869-876.
    [92] Einstein, H. A., A. G Anderson and J. W. Johnson, "A Distinction Between Bed Load and Supended Load In Natural Streams",Trans. Amer. Geophys, Union, Pt.2, 1940, pp. 628-633.
    [93] Partheniades, E. "Unified View of wash Load and Bed Material Load", J. Hyd. Div., Proc. Amer. Soc. Civil Engrs., Vol.103, No.Hy9,Sept., 1977, pp.1037-1058.
    [94] Duboys, P, "Etudes du Regime du Rhone et 1' Action Exercee par les Laux sur un Lit a fond de Graviers Undefmiment Affouillable", Annales des Ponts et Chausses, Sen 5, Vol.18, 1879, pp.141-195.
    [95] Gibert, G. K. 1914, The transportation of debiris by running water, U.S.
    
    Geological Survey, Professional Paper 86.
    [96] Einstein, H.A. 1950, The bed=load function for sediment tansportation in open channel flow, U.S. Department of Agriculture, Technical Bulletin 1026.
    [97] Bagnold, R. A. 1966, A approach yo the sediment transport problem from general physics, U.S. Geological Survey, Professional Paper422-J.
    [98] Engelund, R, and Hansen, E. 1967, A Monograph on sediment transport in alluvial streams, Danish Technical Press, Teknisk Forlag, Cobenhagen.
    [99] Yalin, M. S., Mechanics of Sediment Transport, Pergamon Press, 1972, pp.290.
    [100] Ackers, P., and White, W.R. 1973, Sediment transport-new apporach and analysis, Journal of the Hydraulics Division, ASCE, Vol.99, No.HY 11, pp. 2041-2060.
    [101] Yang. C.T. and 1979, Unit stream power equations for total load, Journal of the Hydrology, Vol.40, pp. 123-138.
    [102] Yang, C. T. 1984, Unit stream power equations for Gravel, Journal of Hydraulic engineering, ASCE, Vol. 110, No.HY12,1783-1797.
    [103] Alonso, C. V. 1980, Selecting a formula to estimate sediment transport capacity in nonvegetated channels CREAMS, U.S. Department of Agriculture Conservation Research Report No.26, Ch.5, pp. 426-439.
    [104] Brownlie, W.R. 1981, Prediction of flow depth and sediment discharge in open channels W.M. Keck Laboratory of Hydraulics and Water Resources, Report No.KH-R-43A,California Institute of Technology, Pasadena, California.
    [105] ASCE Task Committee on ralations Between Morphology of Small Stream and Sediment Yield 1982, Relationships between morphology of small stream and sediment Yield, Journal of the Hydraulics Division, Asce,Vol.108, No. Hy11, pp. 1328-2365.
    [106] Vetter, M.1989, Total sediment transport in open channels,Report No.26, Institute of Hydrology, University of the German Federal Army, Munich, Germany (Translated from "Gesamttransport von sedimenten in offenen Gerinnen"into English by the U.S. Bureau of Reclamation, Denver, Colorado).
    
    
    [107] 钱宁,“推移质公式的比较”,水利学报,1980年第4期,1-11页.
    [108] Wilson, K. C., "Bed Load Transport at High Shear Stress", J.Hud. Div. Proc., Amer. Soc. Civil Engrs., Vol.92, No.Hy6, 1966, pp.49-59.
    [109] Chih Ted Yang and Caian HUANG,2001, Applicability of sediment transport formulas,International Journal of sediment research, Vol. 16, No.3, pp. 335-353.
    [110] Schoklitsch, A, 1934, Der Geschiebetrieb und die Geschiebefracht, Wasserkraft und Wasserwirschaft, Vd.29, No.4, pp.37-43.
    [111] 钱宁、张仁、周志德.河床演变学.北京:科学出版社,1987.
    [112] 冯起,陈广庭,李振山.塔里木河现代河道冲淤变化的探讨.中国沙漠,第17卷第1期,1997年3月,39-43.
    [113] 田万荣,杜刚.新疆昌吉州三屯河、呼图壁河大桥水文测验及计算分析报告.新疆维吾尔自治区昌吉水文水资源勘测局,2002年9月.
    [114] 陈亚宁,李卫红,汪雄祥,张新太.新疆头屯河流域水沙特性与减沙治理.干旱区地理,第19卷第2期,1996年6月,37-42.
    [115] 范向阳,由系尧,吴贵武.玛纳斯河泥沙特征概述.干旱区地理,第19卷第3期,1996年9月,31-36.
    [116] Leliavsky S., An Introduction to Fluvial Hydraulics, Constable, London, 1955.
    [117] Nikurads, J., Strǒmungsgesetze In Rouhen Rohren, Ver. Deut. Ing.,Forschungsfeft 361,1933.
    [118] 吴持恭,水力学(上册),北京:高等教育出版社,1982.
    [119] Richardson E V. Measurement of Turbulence in Water. Proc. ASCE, J. of Hydraulics Division, 1968, HY2.
    [120] Dong Z, Ding Y. Turbulence Characteristics in Smooth Open Channel Flow. Science in China (Series A), 1990, 33.
    [121] 董曾南,孙厚均,宋传琳,陶晓峰.明流光滑平板边界层特性.力学学报,1982,(6).
    [122] Dong Z, Ding Y. Turbulence Characteristics in Smooth Open Channel Flow. Science in China (Series A), 1990, 33.
    [123] Einstein, H. A. and EI-Samni. Hydrodynamic Forces on A Rough Wall. Rev,
    
    Modern Phys. Vol, 21, No.3, 1949.
    [124] 卞华,李福田,刘长辉,蒋赋敏.二维加糙明渠紊流结构的试验研究.河海大学学报,Vol.26,1998,No.1.
    [125] 董曾南,陈长植,李新宇.明槽均匀紊流的水力特性.水动力学研究与进展,Ser.A,Vol.9,1994,No.1.
    [126] Yalin, M.S. & Karahan. E., Inception of Sediment Transport. ASCE, J. of Hydraulics Division, Vol 105, No. HY2.1978 1433-1444.
    [127] Hinze O. Turbulence. MacGrill,1976.
    [128] Tennekes H. Lumley JL. A First Course in Turbulence. Mit Press, 1972.
    [129] Einstein, H. A. and A. Ei-Samni, "Hydrodynamic Forces on a Rough Wall", Rev. Modern. Phys., Vol.212, No.3, 1949.
    [130] Lane. E. W. and E. J. Carlson, "Some Factors Affecting the Stabilities of Canals Constructed in Coarse Granilar Materials", Proc., Minnesota Intern. Hyd. Conf., 1953, pp.37-48.
    [131] Bayazit, M., "Free Surface Flow in a Channel of Large Relative Reoughness", J. Hyd. Res., Intern, Assoc, Hyd. Res., Vol. 14, No.2, 1976, pp, 115-125.
    [132] 何文社.非均匀沙运动特性研究.四川大学博士学位论文,2002.4.
    [133] Tu H. Velocity Distribution in Unsteady Flow Over Rough Beds. Ph. D. thesis, Ecole Polytechnique Federale de Lousanne. 1991.
    [134] Dong Z, Wang J, Chen C, Xia Z, Turbulence Characteristics of Open Channel Flows Over Rough Beds. Proceedings ofXXIV, IAHR Congress, 1991. Madrid.
    [135] Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number. JFM, 1987,177:133.
    [136] Nezu I. & Rodi W. Open channel flow masurements with a laser Doppler anemometer,J.of Hydraolic Engineering, Proc. ASCE, Vol. 112, No.5,1986,335-355.
    [137] Von Karman, Th., "Turburlence and Skin Friction", J. Aeronautical Science, Vol.1, No.1, 1934.
    [138] 阿波诺夫,天津大学水利系水文教研室译.河流学(下册).北京:高等教育
    
    出版社,1956.479-483。
    [139] Kramer, H., Sand Mixtures and Sand Movementin Fluvial Model. Trans., ASCE,Vol.100,1935, 798-838.
    [140] 窦国仁.泥沙运动理论.南京水利科学研究所.1963.
    [141] Taylor, B.D.,Temperature Effects in Alluvial Streams, Report KH-R-27, W. M.Keck Lab. Of Hyd. And Water Resources, Calif., Inst. Tech., 1971.
    [142] He, M. M. and Han, Q. W., Stochastic Model Of Incipient Sediment,J.Vol.108,No.Hy2, 1982, 211-224.
    [143] Parker, G.,and Kiingeman, P.C., On why Gravel Bed Streams Are Pave,. Water Resour. Res.,18.1409-1423.
    [144] Roger A. Kunhnle,Incipition motion of Sand-Gravel Sediment Mixtures. ASCE,J. Hydr Div, Vol. 119, No.2, 1993.
    [145] 冷魁.非均匀沙卵石起动流速及输沙率的试验研究.武汉水利电力大学博士论文.1993.
    [146] 彭凯,陈远信.非均匀沙的起动问题.成都科技大学学报,No.2,1986.
    [147] Bagnold, R.A., An apporoach to the sediment transport problem from general physics. U.S. Geological Survey Profession Paper 422-J.
    [148] Einstein, H.A.,The bed load function of sediment transportation in open channel flows, U.S.Dept.Agri.,Tech. Bull.1026,1950. P71
    [149] Dey, S., Bose, S.K.and Sastry, G.L.N. Clear water scour at circular piers:amodel. J.Hydr. Engrg., ASCE, Vol.121, No.12, 1995.869-876
    [150] Nitin, I.K.,Turbulent open channel flow and and processes near the boundry (in Russian), Academy of Sci.,Kiev, USSR, 1963.
    [151] Kamphuis, J.W., Determination of sand roughness for fixed beds, J. Hyd. Res.,intern. Assoc. hyd. Res.,Vol.12, No.2,1974,193-1127
    [152] 曹叔尤等.长江上游卵石推移质输沙量时空分布初探,四川联合大学研告,1996.
    [153] 刘兴年,方铎,陈远信等.宽级配推移质输沙随机过程的分维研究,四川联合大学研告,1996.
    
    
    [154] 姚令侃,方铎.非均匀沙自组织临界性及其应用研究,四川联合大学研究报告.1996.
    [155] Wilson, K.C., Bed load transport at high shear stress, J.Hyd. Div. Proc., Amer.Soc. Civil Engrs.,Vol.92, No.HY6,1966, 49-56.
    [156] 杨胜发,董玉文等.新疆拜城大桥桥位段水力计算.重庆交通学院研究报告,2002.
    [157] 惠遇甲,王桂仙.河工模型试验.北京:中国水利水电出版社.,1998.
    [158] H.斯科巴.水力模拟.北京:清华大学出版社,1988.
    [159] 张洪武.不同河型冲积河流的模拟方法.I.G.V.1990亚太区域地理大会.
    [160] 白世录.漳卫新河下东王险工段河工模型试验研究.泥沙研究.1992(3),85-94.
    [161] Lovera, E and J.F.Kennedy. Friction Factors for Flat-bed Floes in Sand Channels, J. Hyd. Div. Proc., Amer.Soc.Civil Engrs., Vol. 95. No. HY4,1969,1227-1234.
    [162] Thore C.R., et al. Estimating Mean Velocity in Mountain River.J Hydr Engrg, ASCE, 1985,111(4):612-624.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700