洞庭湖区土壤微生物生物量氮及其与外源氮转化的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮在土壤中的形态、周转和损失等均是土壤学家、植物营养学家和环境学家多年来经久不衰的研究热点。目前湿地作为土壤活性养分库和环境保护的作用越来越受到重视。洞庭湖区是我国湖泊地区中面积最大的湿地类型和重要的农产品生产基地,同时也是氮素化肥施用量较大的区域之一。因此,研究洞庭湖区自然与人工湿地土壤的微生物生物量氮状况与分布特点,揭示土壤微生物对外源无机和有机氮的同化和转化过程,对于正确评价土壤供氮水平,提高氮素的利用率,减少环境污染都具有十分重要的意义。
     本论文以洞庭湖区湿地土壤为研究对象,采用野外调查、模拟培养试验、盆栽试验、定位试验与~(15)N同位素示踪技术相结合的方法,研究了洞庭湖区土壤微生物生物量氮及其与外源氮素转化的关系。主要研究结果如下:
     (1)洞庭湖区不同类型湿地(湖草洲滩地、芦苇洲滩地、垦殖水田)表层土壤(0-10 cm)微生物生物量氮含量为57.90-259.47 mg/kg,土壤微生物生物量氮占全氮的比例为3.1-6.4%。不同类型湿地土壤碳、氮和微生物生物量碳(B_C)、氮(B_N)差异明显,而且均随深度的增加而降低。湖草滩地表层有机碳、全氮含量明显高于芦苇滩地和垦殖水田,B_C与垦殖水田接近,而远大于芦苇湿地,B_N高于芦苇滩地和垦殖水田。土壤表层B_C占有机碳的比例:垦殖水田高于湖草滩地,高于芦苇滩地。土壤B_C、全氮、B_N与有机碳之间存在极显著的线性相关关系;土壤容重与有机碳、全氮、B_C、B_N之间呈现极显著的指数负相关关系;<0.001mm土壤粘粒与有机碳、全氮和B_C、B_N之间呈现极显著的指数或对数正相关关系。
     (2)洞庭湖区不同利用方式的农田土壤B_N平均含量为115.47 mg/kg,主要分布区间在70-160 mg/kg,B_N占全氮的比例为1.0-7.4%,平均3.8%。农田不同利用方式的土壤碳、氮和B_C、B_N存在差异,水田土壤碳、氮和B_C、B_N明显高于旱地(苎麻为主的旱地、油菜为主的旱地),双季稻高于一季稻。较高的碳、氮投入量是导致双季稻土壤碳、氮和B_C、B_N高于其它三种利用方式的主要原因。土壤B_C、B_N能够很好地反映洞庭湖区农田土壤碳、氮水平。
     (3)水稻土长期田间定位试验结果证明,有机无机肥料长期配合施用显著提高了土壤全氮和B_N水平,也提高了土壤B_N占全氮的比例,同时也显著增加酸解性氮含量。土壤有机氮以酸解性氮为主,酸解性氮中氨基酸态氦占优势,氨基糖态氮所占份额最低。土壤酸解性氮及其组分均与B_N存在极显著的正相关关系。氨基酸氮和酸解未知氮对B_N的影响最大。
     (4)淹水培养条件下,B_N先迅速上升到一定峰值后逐渐下降,最后趋于稳定。其峰值大小为:稻草硫铵配施>硫铵>对照。微生物同化的标记底物硫铵氮,红黄泥为0.15-20.6%,紫潮泥为2.9-15.9%。化肥和秸秆配合施用能增强微生物对无机氮的同化,而紫潮泥微生物对硫铵氮的同化和固持快于红黄泥。红黄泥粘土矿物固定的标记底物氮最高为10.6%,紫潮泥30.0%。微生物同化的氮和粘土矿物固定的氮在试验期间均随时间的延长而减少。有机无机配施处理提高了标记底物氮的有机氮形态残留率,降低了无机氮形态(固定态铵和矿质氮)残留率。
     (5)盆栽条件下,B_N在水稻不同生育期有明显变化。在水稻孕穗期出现较低值,到成熟期有所回升。红黄泥微生物同化的标记底物氮最高为8.3%,紫潮泥为19.2%,尿素和秸秆配合施用能增强微生物对无机氮的同化。红黄泥粘土矿物固定的标记底物氮最高为2.0%,紫潮泥为18.7%。有机无机配施提高了微生物对尿素氮的竞争能力,降低了粘土矿物的固氮能力。尿素氮和秸秆氮的残留以有机氮形态为主,红黄泥为80%以上,紫潮泥72%,酸解氮是尿素和秸秆氮残留主要有机氮形态。红黄泥尿素氮残留的主要无机形态是矿质氮,占总残留的15%,而紫潮泥为固定态铵,占总残留的20%。尿素配合施用秸秆提高了化肥的利用率和残留率,降低了尿素氮的无机氮形态残留。
The wetland and paddy soil have been recognized for importance in the retention ofactive nutrition and the environment protection nowadays. Studies on the forms and theturnover of N and the loss of N added in soil have been permanent research topics by soil,plant nutrition, and environmental scientists since nitrogen is distinguished to be one ofthe essential macronutrients for plant growth. The Dongting Lake plain is one of thelargest areas of wetland in lake regions in China and it is the important output area offarm production. Meanwhile, it is one of the districts where the input of chemicalfertilizer N is more excessive and the environmental pollution is more serious. Therefore,it is significant to evaluate the capacity of soil N-supplying, increase the recovery of Nand reduce the environmental pollution through revealing the situation and distribution ofsoil microbial biomass N (B_N) in natural and the artificial wetland, reveal the relationshipbetween B_N transformation and soil organic nitrogen components as well as the effect oforganic and inorganic fertilizers on soil N transformation and so on.
     Based on field investigation, long-term field experiments, laboratory-floodedincubation and pot experiment, the content of soil organic carbon(T_C), total nitrogen (T_N),microbial biomass carbon (B_C), B_N, mineral N, mineralizable N, amino acid N (AAN),ammonium N (AN), amino sugar N (ASN), hydrolysable unidentified N (HUN), totalhydrolysable N (THN), nonhydrolysable N(NHN) and fixed ammonium were measured.The main results were as following:
     (1) There are eight profiles of three types of wetland, including Carexspp-dominated,Phragmites-dominated and paddy soil, for field investigation in Dongting floodplainwetland. Results showed that content of B_N in the top layer (0-10 cm) is 57.90-259.47mg/kg, the proportion of microbial biomass nitrogen in soil total nitrogen in DongtingLake is 3.1-6.4%. Vertical distribution of soil C, N, B_C and B_N were very similar in soil profiles (0~100 cm) of the three types, and decreasing gradually with the increase indepth. The soil organic C, N and B_N in the Carexspp-dominated floodplain were higherthan those of paddy soil and the Phragmites-dominated floodplain at 0~10 cm; The B_C inCarexspp-dominated floodplain and paddy soil were higher than that ofPhragmites-dominated floodplain at 0~10 cm. There were significant logarithmcorrelations between organic carbon, soil N, B_C, B_N, and soil clay granules(<0.001mm) inour studied three type of soil (p<0.01). There was also significant power correlationbetween organic carbon, soil N, B_C, B_N, and bulk density in our studied soil (p<0.01).
     (2) Field investigation on the farming soil derived from wetlands (purple alluvial soil)were conducted in a selected landscape unit (112°16′- 112°56′E, 28°42′- 29°11′N) in theDongting lake region of Hunan province. The results showed that the content of B_Nranges from 70 to 160 mg/kg (average of 115.47 mg/kg) in different land-use types andcropping systems, and approximately, the percent of B_N in soil total nitrogen in DongtingLake was 3.1-6.4%. The amount of soil C, N were significant different in variousland-use types and cropping systems, such as paddy soil (double rice, single rice), upland(rape, ramie). The T_C and T_N in the double rice paddy soil were higher than those ofsingle rice, rape, and ramie, the same as the content of B_C and B_N in double rice paddysoil. The percentages of soil B_C, B_N in organic C, total nitrogen in farmland of DongtingLake region were 0.6~7.2% (average of 3.00%), 1.0~7.4% (3.8%), respectively. Theratios of T_C to T_N and B_C to B_N were 3.87-17.31 (9.15), 4.06~9.29 (7.26), respectively.There were significant correlations between T_C, T_N and B_C, B_N(p<0.01). And B_C, B_Ncould responses to the changes of T_C, T_N in farmland of Dongting Lake region.
     (3) Soil samples were collected from two long-term field fertilizer experiments sites,which had been for 18 years. One soil derived from wetlands lacustrine sediment and theother derived from alluvial sediment in the Dongting lake region. Data suggested that T_C,T_N, organic N components and B_N has changed significantly after the long-term combinedapplication of organic and chemical fertilizers (NPKM). NPKM increased the content ofT_N, B_N, total hydrolysable N (THN) and the ratio of B_N to T_N. The majority of organic Ncomponents in soil were total hydrolysable N (THN). In THN components, thepercentage of ammonia acid N (AAN) was the highest, followed by ammonium N (AN),then hydrolysable undefined N (HUN), and ammonia sugar N (ASN) was the lowest. B_Nhad significant positive correlation with THN and all THN components (p<0.01). Theavailability of AAN and HUN for B_N were the highest in THN components.
     (4)The laboratory-flooded incubation experiment, using the paddy soil developed from Quaternary red soil (reddish clayey soil) and derived from wetlands (purple alluvialsoil), showed that the majority of B_N was native, and the percentage of labelled substrateB_N in reddish clayey soil and purple alluvial soil were 0.30~6.7% and 1.0~3.5%,respectively. The combined application of rice straw and chemical fertilizer improved theimmobilization of inorganic N by microbes. In addition, the maximum of labeledsubstrate N assimilated by microbe in reddish clayey soil and purple alluvial soil were20.6% and 15.9%, respectively. The assimilation of labeled substrate N in NPKMtreatments was higher than those in chemical fertilizer treatment. The maximum oflabeled substrate N immobilized by clay in reddish clayey soil and purple alluvial soilwere 10.6% and 30.0%, respectively. B_N and fixed ammonium decreased with theincubation time. NPKM increased the remained percentage of organic N and decreasedthe remained percentage of mineral N and fixed ammonium.
     (5) For pot experiments, there was dynamic change for B_N during the period of ricegrowth. B_N was the lowest at booting stage, and then re-increased at matured stage. Thenative B_N was the majority part, and the percentage of labeled substrate B_N in reddishclayey soil and purple alluvial soil were 1.6~24.3% and 1.15~17.6%. The capability ofmicrobe assimilating inorganic nitrogen increased in the combined application of urea andrice straw treatments. The maximum of immobilization of labeled substrate N by microbein reddish clayey soil and purple alluvial soil were 8.3% and 19.2%, respectively. Theassimilation of labeled substrate N by microbe in NPKM treatments was higher thanthose in chemical fertilizer treatment. The contents of fixed ammonium in fertilizerstreatments in the two soils were lowest at tillering stage. The-maximum of immobilizationof labeled substrate N in clay in the studied soils were 2.03% and 18.69%, respectively.The immobilization of labeled substrate N by clay in NPKM treatments was lower thanthose in chemical fertilizer treatment. The remained majority status of labeled substrate N(urea and straw) were organic N, and the percentage accounted for 80% in reddish clayeysoil and 72% in purple alluvial soil, respectively. The status of labeled substrate N inremained inorganic N (urea) was mineral N (12%) in reddish clayey soil and fixed-N(20%) in purple alluvial soil.
引文
1.白军红,邓伟,朱颜明,等.2003.霍林河流域湿地土壤碳氮空间分布特征及生态效应[J].应用生态学报,14(9):1494-1498.
    2.蔡崇法,陈家宙,王长荧,等.2001.鄂南红壤丘陵区种植结构调整对土壤养分的影响[J].土壤与环境,10(1):47-50.
    3.陈桂秋,黄道友,苏以荣,等.2005.红壤丘陵区土地不同利用方式对土壤有机质的影响[J].农业环境科学学报,24(2):256-260.
    4.陈永强,俞劲炎.不同利用方式下红壤内在性质的演化[J].土壤通报,2004,35(2):149-151.
    5.陈子明,袁锋明.1995.氮肥施用对土体中N素移动利用及其产量的影响[J].土壤肥料,4:36-42.
    6.程励励.1993.渍水条件下有机氮的矿化和形态转化[J].土壤,25(6):333-333.
    7.党廷辉,彭琳,戴鸣钧,等.1995.旱塬长期施肥的产量效应与土壤肥力演变[J].水土保持学报,9(1):55-63.
    8.樊庆笙.1987.土壤中微生物的保氮作用[J].土壤,19(1):46-49.
    9.封克,殷士学,谢潮生.1992.下蜀黄土中矿物固定态铵的行为[J].土壤通报,23(6):247-249.
    10.付会芳,李生秀.1992.土壤氮素矿化与土壤供氮能力.Ⅳ.土壤有机氮组分及其矿化[J].西北农业大学学报,20(增刊):63-67.
    11.高亚军,黄东迈,朱培立,等.2000.稻麦轮作条件下长期不同土壤管理对氮素肥力的影响[J].土壤学报,37(4):456-463.
    12.葛旦之,罗淑华.1991.红黄泥土壤供氮特性的研究.Ⅰ.土壤有机氮组分及其与矿化的关系[J].湖南农学院学报,17(增刊):267-272.
    13.郭胜利,党廷辉,郝明德.2003.黄土高原沟壑区沟坡地土壤剖面中矿质氮的分布特征[J].生态学报,17(2):31-33,66.
    14.韩晓日,郭鹏程,陈恩凤,等.1998.土壤微生物对施入肥料氮的固持及其动态研究[J].土壤学报,35(3):412-418.
    15.韩晓日,郭鹏程,陈恩凤,等.长期施肥对土壤固定态铵含量及其有效性的影响[J].植物营养与肥料学报,1998,4(1):29-36.
    16.韩晓日,邹德乙,郭鹏程,等.1996.长期施肥条件下土壤生物量氮的动态及其调控氮素营养的作用[J].植物营养与肥料学报,2(1):16-21.
    17.何电源.1994.中国南方土壤肥力与栽培作物施肥[M].北京:科学出版社,63-74.
    18.何炎森,李瑞美.2002.不同施肥模式对丘陵熟化旱地土壤理化性状及甘蔗产量的影响[J].甘蔗糖业,4:20-23.
    19.何振立.土壤微生物生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997, 21(2):61-69.
    20.贺建林,曹明德.1998.洞庭湖区湖洲生态建设初探:以沅江市湖洲为例[J].湖泊科学,10(4):77-82.
    21.胡田田,李生秀,郝乾坤.2000.旱地土壤矿质氮和可矿化氮与土壤供氮能力的关系[J].水土保持学报,14(4):83-86,103.
    22.黄东迈,高家骅,朱培立.1981.有机、无机肥料氮在水稻—土壤系统中的转化与分配[J].土壤学报,18(2):107-119.
    23.黄国勤.1997.中国南方稻田耕作制度的演变和发展[J].中国稻米,(4):3-8.
    24.黄进良.1999.洞庭湖湿地的面积变化与演替[J].地理研究,18(3):297-304.
    25.黄思光,李世清,张兴昌.2005.土壤微生物体氮与可矿化氮关系的研究[J].水土保持学报,19(4):18-22.
    26.黄志武.1993.稻秆与标记~(15)N硫铵配合施用对硫按氮素有效性和水稻生产的影响[J].土壤学报,30(2):224-228.
    27.湖南省农业厅.1989.湖南土壤[M].北京:农业出版社,327-338.
    28.姜培坤,周国模.2003.侵蚀型红壤植被恢复后土壤微生物生物量碳、氮的演变[J] 水土保持学报,17(1):112-114.
    29.巨晓棠,李生秀.1996.土壤可矿化氮对作物吸氮量的贡献[J].干旱地区农业研究,14(4):29-33.
    30.巨晓棠,刘学军,张福锁.2004.长期施肥对土壤有机氮组成的影响[J].中国农业科学,37(1):87-91.
    31.巨晓棠,刘学军,张福锁.2004.冬小麦生长期土壤固定态铵与微生物生物量氮的动态研究[J].中国生态农业学报,12(1):90-91.
    32.巨晓棠,刘学军,张福锁.2002.尿素配施有机物料时土壤不同氮素形态的动态及利用[J].中国农业大学学报,7(3):52-56.
    33.李贵桐,张宝贵,李保国.2003.秸秆预处理对土壤微生物生物量及呼吸活性的影响[J].应用生态学报,14(12):2225-2228.
    34.李景保,邓铬金.1993.洞庭湖滩地围垦及其对生态环境的影响[J].长江流域资源与环境,2(4):340-346.
    35.李丽霞,郝明德,彭令发.2003.黄土区人工牧草地有机氮组分变化研究[J].水土保持研究,10(1):55-57,84.
    36.李玲.2005.红壤旱地和稻田土壤中有机底物分解与转化的研究[M].硕士论文,中国科学院研究生院.
    37.李庆逵主编.1992.中国水稻土.北京:科学出版社.172.
    38.李世清,李生秀,邵明安,等.2004.半干旱农田生态系统长期施肥对土壤有机氮组分和微生物生物量氮的影响[J].中国农业科学,37(6):859-864.
    39.李世清,李生秀,张兴昌.1999.不同生态系统土壤微生物体氮的差异[J].土壤侵蚀与水土保持学报,5(1):69-73.
    40.李世清,李生秀.有机物料在维持土壤微生物生物量氦库中的作用[J].生态学报,2001, 21(1):136-142.
    41.李世清,凌莉,李生秀.2000.影响土壤中微生物体氮的因子[J].土壤与环境,9(2):158-162.
    42.李世清,吕丽红,付会芳,等.2003.土壤氮素矿化过程中非交换铵态氮的变化[J].中国农业科学,36(6):663-670.
    43.李忠佩,唐永良,石华等.不同施肥制度下红壤稻田的养分循环与平衡规律[J].中国农业科学,1998,31(1):46-54.
    44.李忠佩,王效举.1998.红壤丘陵区土地利用方式变更后土壤有机碳动态变化的模拟[J].应用生态学报,9(4):365-370.
    45.廖继佩,李法云,张扬珠,等.2003.湖南稻田土壤固定态铵含量的季节变化及生物有效性[J].应用生态学报,14(10):1665-1668.
    46.廖先苓,周卫军,何电源.1995.~(15)N标记羊粪和稻草还田氮素的转化和效应的研究[J].土壤学报,32(3):292-298.
    47.刘恩才,陈永祥,肖祖荫,齐华.1998.玉米根茬、秸秆还田的增产效应研究[J].土壤通报,29(1):11-13.
    48.刘付程,史学正,于东升,等.2004.基于地统计学和GIS的太湖典型地区土壤—以土壤全氮制图为例[J].土壤学报,41(1):20-27.
    49.刘景双,孙雪利.三江平原小叶樟、毛果苔草枯落物中氮素变化分析[J].应用生态学报,2000,11(6):898-902.
    50.刘景双,杨继松,于君宝,等.三江平原沼泽湿地土壤有机碳的垂直分布特征研究[J].土壤侵蚀与水土保持学报,2003,17(3):5-8.
    51.刘明国,韩洪云,刘孝义.1998.半干旱地区河滩宜林地立地条件研究[J].应用生态学报,9(4):371-375.
    52.刘守龙,肖和艾,童成立,等.2003.亚热带稻田土壤微生物生物量碳、氮、磷状况及其对施肥的反应特点[J].农业现代化研究,24(4):278-283.
    53.刘兴土,马学慧.2002.三江平原自然环境变化与生态保护[M].北京:科学出版社,8-42.
    54.刘育红,吕军.2005.稻田土壤氮素矿化的几种方法比较[J].土壤通报,36(5):675-678.
    55.刘忠翰,彭江燕.2000.化学N素在水稻田中的迁移与淋失的模型[J].农村生态环境,16(2):9-13.
    56.鲁如坤.1989.我国土壤氮、磷、钾的基本状况[J].土壤学报.26(3):280-286.
    57.庞欣,张福锁,王敬国.2000.不同供氮水平对根际土壤微生物生物量氮及微生物活度的影响[J].植物营养与肥料学报,6(4):476-480.
    58.彭令发,郝明德,来璐.2003.长期施肥对土壤有机氮影响研究.Ⅰ氮肥及其配施下土壤有机氮组分变化[J].水土保持研究,10(1):53-54.
    59.彭佩钦,仇少君.2005.洞庭湖区农业环境与湖垸农业可持续发展模式[J].长江流域资源与环境,14(3):322-326.
    60.彭佩钦,张文菊,童成立,等.2005.洞庭湖典型湿地土壤碳、氮和微生物生物量碳、氮及其垂直分布[J].水土保持学报,19(1):49-53.
    61.彭少麟,任海,张倩媚.2003.退化湿地生态系统恢复的一些理论问题[J].应用生态学报,14(11):2026-2030.
    62.任可爱,肖和艾,李玲,等.2005.洞庭湖区稻田土壤有机质和氮磷钾含量的变化[J].农业现代化研究,(2):150-153.
    63.沈宏,曹志刚,徐本生,等.1997.施肥对不同农田土壤微生物活性的影响[J].农村生态环境,13(4):29-35,54.
    64.沈宏,曹志洪,徐本生.1999.玉米生长期间土壤微生物生物量与土壤酶变化及其相关性研究[J].应用生态学报,10(4):471-474.
    65.沈其荣,王岩,史瑞和.2000.土壤微生物生物量和土壤固定态铵的变化及水稻对残留N的利用[J].土壤学报,37(3):330-338.
    66.沈其荣,余铃,刘兆普,等.1994.有机无机肥配合施用对滨海盐土土壤微生物生物量态氮及土壤供氮特征的影响[J].土壤学报,31(3):287-294.
    67.沈其荣.1992.土壤生物态氮研究进展[A].土壤资源的特性与应用[C].北京:北京农业大学出版社.285-291
    68.沈善敏.1998.农业生态系统中碳与主要营养元素循环及中国农田土壤养分收支[A].见:沈善敏主编.中国土壤肥力[M].中国农业出版社,57-110.
    69.盛海君,周春霖,沈其荣,等.2004.秸秆覆盖下旱作水稻的生长发育特征研究[J].中国水稻科学,18(1):53-58.
    70.时正元,鲁如坤.1993.农田养分再循环研究.Ⅰ.作物秸秆养分的利用率[J].土壤,25(6):281-285.
    71.孙羲.1995.植物营养原理[M].北京:中国农业出版社.
    72.孙玉焕,张杨珠.2002.土壤固定态铵的研究进展[J].湖南农业大学学报,28(2):171-175.
    73.汤树德.作物秸秆还田的土壤生物学效应[J].土壤学报,1980,17(2):172-181.
    74.王成,王钊英,李世清,等.2003.作物生长期间土壤可矿化氮的变化规律研究[J].新疆农业科学,40(5):320-323.
    75.王岩,蔡大同,史瑞和.1993.肥料残留氮的有效性及其与形态分布的关系[J].土壤学报,30(1):19-25.
    76.王岩,沈其荣,史瑞和,等.1998.有机无机肥料施用后土壤微生物生物量C、N、P的变化及N素转化[J].土壤学报,35(2):227-234.
    77.王百群,余存祖,戴鸣钧,等.1995.小麦生长过程中土壤有机氮各组分动态及其有效性[J].土壤通报,26(4):186-189.
    78.王家玉.1996.稻田土壤中N素淋失的研究[J].土壤学报,33(1):28-35.
    79.王奎波,余美炎,申秀珍,等,1994.有机无机肥对小麦吸收氮磷及土壤肥力的影响[J].核农学报,8(4):233-239.
    80.王绍明.2000.不同施肥方式下紫色水稻土土壤肥力变化规律研究[J].农村生态环境,16(3):23-26.
    81.王淑平,周广胜,孙长占,等.2003.土壤微生物生物量氦的动态及其生物有效性研究[J].植物营养与肥料学报,9(1):87-90.
    82.王维敏.麦秸、氮肥与土壤混合培养时氮素的固定、矿化与麦秸的分解[J].1986.土壤学报,23(2):97-106.
    83.王志明,朱培立,黄东迈.1999.~(14)C、~(15)N双标记秸秆对土壤微生物生物量碳、氮动态变化的影响[J].江苏农业学报,15(3):173-176.
    84.王伯仁,徐明岗,文石林.2005.有机肥和化学肥料配合施用对红壤肥力的影响[J].中国农学通报,21(2):160-163.
    85.文启孝,程励励,陈碧云.2000.我国土壤中的固定态铵[J].土壤学报,37(2):145-156.
    86.文启孝,程励励.2002.土壤有机氮化学本性[J].土壤学报,39(增刊):90-99.
    87.吴建国,张小全,徐德应.2004.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,15(4):593-599.
    88.吴金水,肖和艾,陈桂秋,等.2003.旱地土壤微生物磷测定方法研究[J].土壤学报,40(1):70-78.
    89.吴金水.1994.土壤有机质及其周转动力学[A].见:何电源主编.中国南方土壤肥力与栽培作物施肥[M].北京:科学出版社,37-46.
    90.吴金水,林启美,黄巧云,等.2006.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,54-78,109-115.
    91.向万胜,李卫红.2001.洞庭湖区洪涝灾害的时空分布与防灾减灾对策[J].生态学杂志,20(2):48-51.
    92.肖辉林.1999.气候变化与土壤有机质的关系.土壤与环境[J],8(4):300-304.
    93.熊毅,李庆逵主编.1987.中国土壤(第二版)[M].科学出版社,390-404,464-482.
    94.许迪,R. Schmid, A. Mermoud.1999.耕作方式对土壤水动态变化及夏玉米产量的影响[J].农业工程学报,15(3):101-106.
    95.杨光立,李林,叶桃林,等.1997.略论洞庭湖集约农区耕作改制及农业可持续发展策略[J].作物研究,3:13.
    96.杨景成,韩兴国,黄建辉.2003.土壤有机质对农田管理措施的动态响应[J].生态学报,23(4):787-796.
    97.杨莉琳,裴冬,胡春胜,等.2005.水肥配合对太行山山前平原高产区土壤矿质氮分布及作物产量的影响[J].植物营养与肥料学报,11(1):1-7.
    98.杨永兴,王世岩.2001.三江平原湿地生态系统P、K分布特征及季节动态研究[J].应用生态学报,12(4):522-526.
    99.姚政,赵京音,蒋小华.1997.施用不同有机物后土壤微生物生物量的动态变化[J].上海农业学报,13(1):47-48.
    100.姚槐应,何振立,陈国潮,等.1999.红壤微生物生物量在土壤.黑麦草系统中的肥力意义[J].应用生态学报,10(6):725-728.
    101.姚槐应.何振立.1998.矿质氮紊和有机碳源配合使用提高氮素利用效率的机制[J].江农业大学学报,24(6):617-618.
    102.殷士学,陈川,王春生,等.1997.淹水土壤微生物生物量的形成与肥料氮的转化[J].江苏农学院学报.18(4):37-40.
    103.殷士学,王柏英,宋琦,等.1994.土壤微生物生物量氮测定过程中固铵问题[J].江苏农学院学报,15(4):34-38.
    104.殷士学.1993.土壤微生物生物量及其与养分循环关系的研究进展[J].土壤学进展,21(4):1-8.
    105.尹澄清.1995.内陆水—陆地交错带的生态功能及其保护与开发前景[J].生态学报,15(3):331-335.
    106.于君宝,王金达,刘景双.2004.三江平原泥炭中营养元素垂直分布特征[J].应用生态学报,15(2):265-268.
    107.余贵芬,吴泓涛,魏永胜,等.1999.氮在紫色土中的移动和水田氮素利用率的研究[J].植物营养与肥料学报,5(4):316-320.
    108.俞慎,李振高.1994.熏蒸提取法测定土壤微生物生物量研究进展[J].土壤学进展,22(6):42-49.
    109.袁可能.1983.植物营养元素的土壤化学[M].科学出版社,54-63.
    110.曾木祥,王蓉芳,彭世琪,等.2002.我国主要农区秸秆还田试验总结[J].土壤通报,33(5):336-339.
    111.曾希柏,关光复.1999.稻田不同耕作制下有机质和氮磷钾的变化研究[J].生态学报,19(1):90-95.
    112.张崇玉,李生秀.2004.土壤颗粒组成与固定态铵之间的关系[J].土壤学报,41(4):649-654.
    113.张俊清,朱平,张夫道.2004.有机肥和化肥配施对黑土有机氮形态组成及分布的影响[J].植物营养与肥料学报,10(3):245-249.
    114.张扬珠,廖继佩,李法云,等.2002.湖南主要类型稻田土壤固定态铵含量及其影响因素[J].应用生态学报,13(6):693-697.
    115.赵明宇,韩晓日,郭鹏程.1996.不同施肥条件下土壤固定态铵含量的动态变化[J].土壤通报,27(2):79-81.
    116.郑昭佩,刘作新,魏义长,等.2002.水肥管理对半干旱丘陵区土壤有机质含量的影响[J].水土保持学报,16(4):102-104.
    117.中国科学院土壤所.1978.土壤理化分析[M].上海:上海科学出版社,62-67,96-101,132-136.
    118.周建斌,陈竹君,李生秀.2001.土壤微生物生物量氮含量、矿化特性及其供氮作用[J].生态学报,21(10):1719-1725.
    119.周建斌,李生秀.1999.土壤微生物生物量氮与土壤可矿化氮的关系[J].西北农业大学学报,27(5):147-151.
    120.周卫军,王凯荣,张光远,等.2002.有机无机配合对红壤稻田系统生产力及其土壤肥力的影响[J].中国农业科学,35(9):1109-1113.
    121.周卫军,王凯荣,张光远.2002.红壤稻田系统有机物循环再利用潜力及增产作用[J].长江流域资源与环境,11(2):141-144.
    122.周卫军,王凯荣,张光远.2003.有机无机结合施肥对红壤稻田土壤氮素供应和水稻生产 的影响[J].生态学报,23(5):924-921.
    123.朱兆良,文启孝.1992.中国土壤氮素[M].南京:江苏科技出版社,3-23,37-89,250-287.
    124.朱兆良.2002.氮素管理与粮食生产和环境[J].土壤学报,39(增刊):3-11.
    125.朱兆良.2000.农田氮肥的损失与对策[J].土壤与环境,9,1-6.
    126.朱兆良.1987.土壤氮素.中国土壤(第二版).北京:科学出版社,464-480.
    127.朱兆良.1998.我国氮肥的施用现状、问题和对策[A].中国农业持续发展中的问题[M].南昌:江西出版社,25-31.
    128.邹长明,颜晓元,八木一行.2005.淹水条件下的氨挥发研究[J].中国农学通报,21(2):167-170.
    129. Ahmad Z, Kai H, Harada T. 1972. Effect of nitrogenous forms on immobilization and release of nitrogen in soil[J]. J Fac Agr, 17: 49-65.
    130. Allison FE. 1973. Soil organic matter and its role in crop production[A]: soil organic matter formation[M]. Elsevier Sci. Pub. Com. Amsterdam, 97-103.
    131. Amwarzay MO, Blum WEH, Strauss P, et al. 1990. Biological activity in soil in an 80-year long-term field experiment[J]. Foerderungsdienst, 38: 18-22.
    132. Anderson JPE, Domsch KH. 1978. Mineralization of bacteria and fungi in chloroformfumigated softs[J]. Soil Biology and Biochemistry, 10:207-213.
    133. Anderson JPE, Domsch KH. 1980. Quantities of plant nutrients in the microbial biomass of selected softs[J]. Soil Science, 130: 211-216.
    134. Aoyam MK and Nozawa J. 1993. Microbial biomass nitrogen and mineralizationimmobilization processes of nitrogen in soils incubated with various organic materials[J]. Soil Science Plant Nutrtion, 39: 23-32.
    135. Avnimelech Y, Gad R, Leon EM, et al. 2001. Water content, organic carbon and dry bulk density in flooded sediments[J]. Aquacult Eng, 25: 25-33.
    136. Azam F, Mahmood T, Malik KA. 1988. Immobilization-remineralization of NO_3-N and total balance during the decomposition of glucose, sucrose and cellulose in soil incubated at different moisture regimes [J]. Plant and Soil, 107: 159-163.
    137. Azam F, Yousaf M, Hussain F, et al. 1989. Determination of biomass N in some agricultural soils of Punjab[J]. Pakistan Plant and Soil, 113:223-228.
    138. Bengtsson G, Bergwall C. 2000. Fate of ~(15)N labelled nitrate and ammonium in a fertilized forest soil[J]. Soil Biology and Biochemistry, 32: 545-557.
    139. Bengtsson G, Bengtson P, Mansson, KF. 2003, Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity[J]. Soil Biology & Biochemistry, 35, 143-154.
    140. Bjarnason S. 1987. Immobilization and remineralization of ammonium and nitrates after addition of different energy sources to soil [J]. Plant and Soil, 97: 381-389.
    141. Bonde TA, Rosswall T. 1987. Seasonal variation of potentially mineralizable nitrogen in cropping systerms[J]. Soil Sci. Soc. Am. J., 51(6): 1508-1514.
    142. Bonde TA, Schnurer J. Rosswall T. 1988. Microbial biomass as a fraction of potentially mineralizable nitrogen in soils from long-term field experiments[J]. Soil Biology and Biochemistry, 20(4): 447-452.
    143. Bremner JM. 1965. Organic forms of nitrogen[A]. In: Black, CA(ed). Methods of Soil Analysis Section 85(Part2)[M]. Wisconsin: Amer. Soc Agron..
    144. Brookes PC, Landman A, Pruden G, et al. 1985. Chloroform fumigation and the release of soil nitrogen, a rapid direct extraction method to measure microbial biomass nitrogen in soil[J], Soil Biology and Biochemistry, 17: 837-842.
    145. Brookes PC, Powlson DS, Jenkinson DS. 1982. Measurement of microbial biomass phosphorous in soil[J]. Soil Biology and Biochemistry, 14: 319-329.
    146. Brookes PC, Powlson DS and Jenkinson DS. 1984. Phosphorus in the soil microbial biomass[J]. Soil Biology & Biochemistry, 6(2):169-175.
    147. Burger M, Jackson LE. 2003. Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems[J]. Soil Biology and Biochemistry, 35: 29-36
    148. Campbell CA, Biederbeck VO, Zentner RP. et al. 1991. Effect of crop rotations and cultural practices on soil organic matter, microbial biomass and respiration in a thin black Chernozem[J]. Can. J. Soil Sci., 71: 363-376.
    149. Carter M R, Rennie D A. 1984. Dynamics of soil microbial biomass N under zero and shallow tillage for spring wheat, using ~(15)N wheat [J]. Plant and Soil, 76:157-164.
    150. Chalot, M. and Brun, A. 1998. Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas[J] . FEMS Microbiol. Rev. 2, 21-44.
    151. Coyne, MS, Zhai, Q, et al.. 1998. Gross nitrogen transformation rates in soil at a surface coal mine site reclaimed or prime farmland use[J]. Soil Biology & Biochemistry, 30,1099-1106.
    152. Dalai RC, Henderson PA, Glasby J M. 1991. Organic matter and microbial biomass in a vertisol after 20 years of zero-tillage [J]. Soil Biology & Biochemistry, 23: 435-441.
    153. Delgado JA. Follett R J and Shaffer MJ. 2000. Simulation of NO_3-N dynamics for cropping systems with different rooting depths[J]. Soil Sci. Soc. Am. J, 64:1050-1054.
    154. Dictor MC. Tessier L. and Soulas G. 1998. Reassessement of the KEC coefficient of Fumigation-extraction method in a soil profile[J]. Soil Boilogy and Biochemistry, 30(2): 119-127.
    155. Frissel MJ. 1978. Cycling mineral nutrients in agricultural ecosystem[M]. New York: Elsevier Scientific Publ Co.
    156. Garcia FO, Rice CW. 1994. Microbial biomass dynamics in tallgrass prairie[J]. Soil Sci. Soc Am J. 58: 816-823.
    157. Gerzabek MH, Haberhauer G, Kirchmann H. 2001. Soil organic pool sand carbon-13 natural abundances in particle size fractions of along term agricultural field experiment receiving organic amendments[J]. Soil Sci Soc Am. J, 65: 352-358.
    158. Glendining MJ, Powlson DS, Poulton PR. et al. 1996. The effects of long-term application of inorganic nitrogen fertilizer on soil nitrogen in the Broadbalk Wheat Experiment[J]. Journal of Agricultural Science, 127:347-363
    159. Granli T, Bockman O. 1994. Nitrous oxide from agriculture[J]. Norweg. Journal of Agricultural Science, Suppl. 12:128.
    160. Hirose S. 1973. Mineralization of organic nitrogen of various plant residues in the soil under upland conditions[J]. J. Sci. Soc. Manure. J p n., 44:157-163.
    161. Hodge A, Robison D, Fitter A. 2000. Are microorganisms more effective than plants at competing for nitrogen?[J]. Trends In Plant Science, 5(7): 304-308.
    162. Holems WE, Zak DR. 1994. Soil microbial biomass dynamics and net nitrogen mineralization in northen hard wood ecosystem [J]. Soil Sci Soc Am. J, 58: 238-243.
    163. Inubushi K, Watanabe I. 1986. Dynamics of available nitrogen in paddy soils, Mineralized N of chloroform-fumigated soil as a nutrient source for rice [J]. Soil Science Plant Nutrition, 32(4):561-577.
    164. Jansson S L, Hallam M J, Bartholomew W V. 1955. Preferential utilization of ammonium over nitrate by microorganisms in the decomposition of oat straw [J]. Plant and Soil, IV :382-390.
    165. Jawson, MD, Elliott, LF, Papendick, et al. 1989. The decomposition of ~(14)C-labeled wheat straw and ~(15)N-labeled microbial material [J]. Soil Biology & Biochemistry, 21, 417-422.
    166. Jeckson LE, Schimel JP, Firstone M. 1989. Short term partition of ammonium and nitrate between plants and microbials in an annual grassland [J]. Soil Biology and Biochemistry, 21: 409-415.
    167. Jenkinson DS and Parry LN. 1989. The nitrogen cycle in the Broadbalk wheat experiment, a model for the turnover of nitrogen through the soil microbial biomass [J]. Soil Biology.and Biochemistry, 21:535-541. -
    168. Jenkinson DS. 1988. Determination of microbial biomass carbon and nitrogen in soils[A], In: Wilson J R (ed.) Advances in Nitrogen Cycling in Agricultural Ecosystem[C]. C A B Int, Aberystwyth: The Cambrian News Ltd. 368-386.
    169. Jenkinson DS & Ladd JN. 1981. Microbial biomass in soil, measurement and turnover[A]. In: E. A. Paul & JN. Ladd (Ed.) Soil Biochemistry, 415-471.
    170. Jenkinson DS & Powlson DS. 1976. The effects of biocidal treatment on metabolism in soil- V. A method for measuring soil biomass[J]. Soil Biology and Biochemistry, 8: 209-213.
    171. Jenkinson DS & Powlson DS. 1976. The effects of biocidal treatments on metabolism in soil- I . Fumigation with chloroform[J]. Soil Biology and Biochemistry, 8: 167-177.
    172. Jenkinson DS. 1966. Studies on the decomposition of plant materials in soil. II. Partial sterilization of soil and the soil biomass[J], Journal of Soil Science, 17: 280-302.
    173. Jenkinson DS. 1990. The turnover of organic carbon and nitrogen in soil[J]. Phil. Trans. R. Soc. Lond., 329: 361-368.
    174. Joegensen RG. & Mueller T. 1996. The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEN value[J] . Soil Biology and Biochemistry, 28: 33-37.
    175. Judith M, Stribling, Jeffery C, et al. 2001. nitrogen, phosphorus and sulfur dynamics in a low salinity marsh system dominated by spartina alterniflora [J], Wetland, 21(4): 629-638.
    176. Juma NG. Paul EA. 1984. Mineralizable Soil nitrogen: Amounts and extractability ratios [J]. Soil Sci Am J, (48): 76-80.
    177. Kaiser EA, Martens R, Heinemeyer O. 1995. Temporal changes in soil microbial carbon in arable soil: consequence for soil sampling[J]. Plant and Soil, 170: 287-295.
    178. Kaye JP, Hart SC. 1997. Competition for nitrogen between plants and soil microorganisms[J]. Trees, 12:139-143.
    179. Keener DR, Bremner JM. 1966. Comparison and evaluation of laboratory methods of obtaining an index of soil nitrogen availability [J]. Agron J, 58:498-503.
    180. Kelley KR, Stevenson FJ. 1985. Characterization and extractability of immobilized ~(15)N from the soil microbial biomass [J]. Soil Biology and Biochemistry, 17: 517-523.
    181. Kerstin R, Johan S, Marianne C. Trorben AB, et al. 1988. Microbial biomass in relation to C and N mineralization during laboratory incubation[J]. Soil Biology and Biochemistry, 20(3): 281-286.
    182. Kieft TL, Sorofer E and Firestone MK. 1987. Microbial biomass response to a rapid increase in water potential when dry soil is wetted [J]. Soil Biology and Biochemistry, 19:119-126.
    183. Kielland, K. 1994. Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling [J]. Ecology. 75, 2373-2383.
    184. Knops JM, Tilman D. 2000. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment [J].Ecology, 81(1): 88-98.
    185. Kowalend CG. 1980. Transport and transformations of fertilizer nitrogen in a sandy field plot using tracer techniques [J]. Soil Science, 129: 218-221.
    186. Koyama T. 1981. The transformations and balance of nitrogen in Japanese paddy fields [J].Fert Res., 2: 261-278.
    187. Ladd JN, Amato M, Zhou LK, 1994. Differential effects of rotation, plant residues and nitrogen fertilizer on microbial biomass and organic carbon in Australian Alfisol[J]. Soil Biology and Biochemistry, 26:957-962.
    188. Ladd JN & Foster RC. 1988. Role of microfrola in nitrogen turnover. In: J. R. Wilson. (Ed.). Advances in nitrogen cycling in agricultural ecosystems, C.A.B international, Wallingford. 113-129.
    189. Ladd JN, Jocteur-Monrozier L, Amato M. 1992. Carbon turnover and nitrogen transformations in an Alfisol and Vertisol amended with [U-~(14)C]glucose and [~(15)N] ammonium sulfate. Soil Biology and Biochemistry, 24: 359-371.
    190. Liang BC, MacKenzie A. Schnitzer FM, et al. 1998. Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils [J]. Biol Fertil Soils. 26:88-94.
    191. Lthbridge G, Davidson MS. 1983. Microbial biomass as a source of nitrogen for cereal[J]. Soil Biology and Biochemistry, 15:375-376.
    192. Lynch JM. 1981. Crop rotation and plant residues in relation to biological activity in soil. In: Agricultural yield potentials in continental climates[C]. Proceedings of 16th Colloquium of the International Potash Institute. Bern. 147-157.
    193. Ma LW. Shaffer MJ. 2001. A review of carbon and nitrogen processes in nine U.S. soil nitrogen dynamics models[A]. In: Shaffer MJ. Liwang M. Hansen S, eds. Modelling Carbon and nitrogen Dynamics for Soil Management[C]. Lewis Publishers. Boca Raton. FL. 55-102.
    194. Malhi SS, Nyborg M. 1983. Field study of the fall-applied ~(15)N-lebelled in three Alberta soils [J]. Agron J, 75: 71-74.
    195. Marumoto T, Anderson JPE, Domsch LH. 1982. Decomposition of ~(14)C-and ~(15)N-1abelled microbial cells in soil[J]. Soil Biology and Biochemistry, 14:461-467.
    196. Matthews E, Fung IY. 1987. Methane emissions from natural wetlands: Global distribution, area, and environmental characteristics of sources [J]. Global Biogeo Cycle, 1: 61-86.
    197. Mary B, Recous S and Robin D. 1998. A methods for calculating nitrogen fluxes in soil using ~(15)N tracing[J]. Soil Biology and Biochemistry, 30(14): 1963-1979.
    198. McGill WB, Camnon KR, Robertson JA, et al. 1986. Dynamic of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations [J]. Journal of Soil Science, 66:1-19.
    199. Mc Grath DA, Smith CK, Gholz HL, et al. 2001. Effects of land-use change on soil nutrient dynamics in Amazonia[J]. Ecosystems, 4: 625-645.
    200. Mitsch WJ. 1986. Wetlands[M]. New York: Van Nostrand Reinhold Company Inc. 89-125.
    201. Myrold DD. 1987. Relationship between microbial biomass nitrogen and nitrogen availability index [J]. Soil Sci Soc Am J. 51: 1047-1049.
    292. Nasholm, T. 1998. Boreal forest plants take up organic nitrogen [J]. Nature. 392, 914-916.
    203. Nicolardot B. 1988. Behaviour of newly immobilized nitrogen in three agricultural soils after addition of organic carbon substrates [A]. In: Jenkinson D S, Smith K A, eds. Nitrogen Efficiency in Agricultural Soils [C], London: Elsevier Applied Science, 342-354.
    204. Ocio JA, Brookes PC and Jenkinson DS. 1991. Field incorporation of straw and its effects on soil microbial biomass and soil inorganic N[J]. Soil Biology and Biochemistry, 23: 171-186.
    205. Ocio JK, Brooks PC, Jenkinson DS. 1991. Field incorporation of straw and its effects on soil microbial biomass and soil inorganic N[J]. Soil Biology & Biochemistry, 23: 171- 186.
    206. Okereke G U, Meintz U W. 1985. Immediate immobilization of labeled ammonium sulfate and urea nitrogen in soil [J]. Soil Science, 140: 105-108.
    207. Patra DD, BhandariS C, Misra A. 1992. Effect of plant residues on the size of microbial biom ass and nitrogen mineralization in soil incorporation of cowpea and wheat straw [J]. Soil Science Plant Nutrition, 39(1):1-6.
    208. Patron WJ, Schimel DS, Cole CV, et al. 1987. Analysis of factors controlling soil of ganic matter levels in great plain grassland [J].Soil Sci. Soc. S Am. J, 51: 1173-1179.
    209. Paul EA, Voroney RP. 1980. Nutrient and energy flow s through soil microbial biomass[A]. In: Ellwood DC, Hedger JN, Latham MJ et al (eds.). Contemporary Microbial Ecology[C]. Academic Press, 215-238.
    210. Paul EA. 1984. Dynamics of organic matter in soils [J]. Plant and Soil, 76: 275-285.
    211. Paul E, Clark FE. 1996. Soil microbiology and biochemistry[M]. 2nd. New York: Acaemic Press.
    212. Paul EA, Juma NG 1981. Mineralization and immobilization of soil nitrogen by microorganisms[A]. Clark F E, Rosswall T. Terrestrial nitrogen cycles. Ecological Bulletins, (33):179-195.
    213. Lethbridge, G, Davidson, MS, 1984. Microbial biomass as a source of nitrogen for cereals[J]. Soil Biology & Biochemistry, 15: 375-376.
    214. Powers JS. 2004. Changes in soil carbon and nitrogen after contrasting land-use transitions in Northeastern Costa Rica [J]. Ecosystems, 7(2): 134-146.
    215. Powlson DS, Brookes PC, Christensen BT. 1987. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due straw incorporation [J]. Soil Biology and Biochemistry, 191: 159-164.
    216. Raab, TK. 1996. Non-mycorrhizal uptake of amino acids by roots of the alpine sedge Kobresia myosuroides: implications for the alpine nitrogen cycle [J]. Oecologia. 108: 488-494.
    217. Rasmussen PE, Albrecht SL, Smiley RW. 1998. Soil C and N change under tillage and cropping systems in semi-arid Pacific Northwest agriculture [J]. Soil and Tillage Research. 47:197-205.
    218. Read DJ. 1996. The structure and function of the ericoid mycorrhizal root [J]. Ann. Bot. 77,365-374.
    219. Recous S, Mary B. 1990. Microbial immobilization of ammonium and nitrate in cultivated soils [J]. Soil Biology and Biochemistry, 22: 913-922.
    220. Ross DJ, Cairn A. 1981. Nitrogen availability and microbial biomass in stockpiled topsoils in southland [J]. New Zealand Journal Science, 24:137-143.
    221. Sakamoto K, Yoshida T, Satoch M. 1992. Comparison of carbon and nitrogen mineralization between fumigation and heating treatments [J]. Soil Sci. Plant Nutr., 38: 133-140.
    222. Salamanca EF, Raubuch M, Joergensen RG 2002. Relationships between soil microbial indices in secondary tropical forest soils [J].Appl. Soil Ecol., 21: 211-219.
    223. Shen SM. 1984. Mineralization and immobilization of nitrogen in fumigated soil and the measurement of microbial biomass N[J]. Soil Biology and Biochemistry, 16: 437-444.
    224. Shi SL, Liao HQ, Wen QX, et al. 1991. Fate of N from green manures and ammonium sulfate [J]. Pedoshere, 1(2): 219-227.
    225. Sims JL,Wells JP,Tackett DJ. 1967. Predicting nitrogen availability to rice I .Comparison of methods for determing available nitrogen to rice from field and reservoir soils [J]. Soil Sci Soc Am Proc, 31:672-680.
    226. Singh JS, Raghubanshi AS, Singh RS, et al. 1989. Microbial biomass acts a source of plant nutrients in dry tropical forest and savanna [J]. Nature, 338: 499-500.
    227. Sinha MK, Sinha DP, Sinha H. 1997. Organic matter transformation in soils: V. Kinetics of carbon and nitrogen mineralization in soils amended with different organic materials [J]. Plant and Soil. 46: 579-590.
    228. Smil V. 1997. Nitrogen in crop production: An account of global flows [J]. Global Biogeochem. Cyc, 13: 647-662.
    229. Smith JL, Paul EA. 1991. The significance of soil microbial biomass estimated.In:Bollage J M and Stotzky G (eds). Soil Biochemistry[C]. New York: Marcel Dekker. Inc., 359-396.
    230. Smith JL. 1994. Cycling of nitrogen through microbial activity[A]. In: Hatfield J. L, Stewart BA(eds.), Soil Biology: Effects on Soil Quality[C]. CRC Press, Inc., USA. 91-120.
    231. Smith, CJ, Paul, EA, 1990. The significance of soil microbial biomass estimations[C]. In: Bollag, J.M., Stotzky, G. (Eds.), Soil Biochemistry.Marcel Dekker, New York, pp. 357-396.
    232. Sparling GP. and West AW. 1988. A direct extraction method to estimate soil microbial C: calibration in situ using microbial respiration and 14C labelled cells[J]. Soil Biology and Biochemistry, 20:337-343.
    233. Sparling GP, Feltham CW, Reynolds J, et al. 1990. Estimation of soil microbial C by a fumigation extraction method: use of high organic matter content and a reassessment of the KEC-factor[J]. Soil Biology and Biochemistry,. 22: 301-307.
    234. Sparling GP. 1985. The soil biomass[C]. In: Vaughan, D., Malcolm, R.E.(Eds.), Soil Organic Matter and Biological Activity. Martinus Nijhoff/Dr. W. Junck, Dordrecht, Boston, Lancaster, 223.
    235. Sperow M, Eve M, Paustian K. 2003. Potential Soil C Sequestration on U.S. Agricultural Soils [J]. Climate change. 57(3):319-339.
    236. Srinstava SC, Singh JS. 1991. Microbial C, N and P in dry tropical forest soils: Effects of alternate landuses and nutrient flux[J]. Soil Biology and Biochemistry, 23(2): 117-124.
    237. Stevenson FJ. 1986. Cycles of Soil Carbon, Nitrogen, Phosphorus, Su1fu, Micronutrients[M]. New York: A Wiley-Interscience Publication, John Wiley & Sons, 173-178.
    238. Takahashi S, Uenosono S, Ono S. 2003. Short-and long-term effects of rice straw application on nitrogen uptake by crops and nitrogen mineralization under flooded and upland conditions[J]. Plant and Soil, 251:291-301.
    239. Van Gestel M, Ladd JN, Amato M. 1992. Microbial biomass responses to seasonal change and imposed drying regimes at increasing depths of undisturbed topsoil profiles[J]. Soil Biology and Biochemistry, 24: 103-111.
    240. Vance ED, Brookes PC, and Jinkenson DS. 1987. An Extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 19: 703-707.
    241.Vong PC. 1987. Contribution a letude cinetique des differentscompartiment azotes contenus dans des sols cultives apres apports de fertilisants minerauxet organiques [R]. These Detan Insptut National Polytechnique de Lorraine.
    242. Voroney RP. and Pual EA. 1984. Determination of k_C and k_N in situ for calibration of the chloroform fumigation-incubation method[J]. Soil Biology and Biochemistry, 16: 9-14.
    243. Warning SA, Bremner JM. 1964. Ammonium production in soil under waterlogged conditions as an index of nitrogen availability[J]. Nature, 201:951-952.
    244. Wen QX. 1984. Utilization of organic materials in rice production in china[A]. In: IRRI(ed.). Organic Matter and Rice[C]. Los Banos, Philippines. 45-56.
    245. Whitmore AP. Nutrient supply, microbial processes and modeling[A]. In: K. Mulangoy & R. Merckx (Eds.). Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture[C]. Wiley, Chichester. 1993, 269-278.
    246. Wickramasinghe KN, Rodgers GA, JenMnson DS. 1985. Transformations of nitrogen fertilizers in soil [J]. Soil Biology and Biochemistry, 17: 625-630.
    247. Willium JM and James GGJ. 1993. Wetland[C]. New York. Van Nostrand Reinhold. 3-24.
    248. Witter E, Martnsson AM and Garica FV. 1993. Size of the microbial biomass in a long term experiment as affected by different N-fertilizers and organic manure[J]. Soil Biology and Biochemistry, 25:659-669
    249. Woodmansce RG Duncan DA. 1980. Nitrogen and phosphorus dynamics and bodges in annual greenlands[J]. Ecology, 61(4):893-904.
    250. Wu J, Brookes PC, Jenkinson DS. 1993. Formation and destruction of microbial biomass during the decomposition of glucose and ryegrass in soil [J]. Soil. Biol. Biochem, 25(10): 1435-1441.
    251. Wu J, Joergensen RG, Pommerening B, et al. 1990. Measurement of soil microbial biomass by fumigation-extraction - an automated procedure[J]. Soil Biology and Biochemistry, 20: 1167-1169.
    252. Wu J, 1991. The turnover of organic C in soil [D]. U. K: University of Reading.
    253. Wu J, Brookes PC, Jenkinson DS.1996. Evidence for the use of a control in the fumigation-incubation method for measuring microbial biomass carbon in soil. Soil Biology and Biochemistry, 28:511-518.
    254. Yevdokimov IV, Blagodatsky SA, Kudeyarov VN. 1993. Microbiological immobilization, remineralization, and plant uptake of fertilizer nitrogen[J]. Eurasian Soil Sci., 25:16-28.
    255. Yin SX, Feng K, Cheng CM, et al. 1994. Effect of ammonium fixation on estimation of soil mi-crobial biomass nitrogen[J]. Pedosphere, 4: 321-329.
    256. Zaman HJ, Di KC, Cameron, et al. 1999. Gross nitrogen mineralization and nitrification rates and their relationships to enzyme activities and the soil microbial biomass in soils treated with dairy shed effluent and ammonium fertilizer at different water potentials[J]. Biol. Fertil. Soils, 29: 178-186.
    257. Zhou JB, Li SX. 1998. Relationships between soil microbial biomass C and N and mineralizable nitrogen in some arable soils on Loess Plateau[J]. Pedosphere, 8(4): 349-354.
    258. Zhu Z. Liao X, Cal G, Chen R et al. 1983. On the improvement of the efficiency of nitrogen of chemical fertilizers and organic manures in rice production[J]. Soil Sci.Soc.Am.J., 135: 35-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700