新型手性氮氧自由基对Alzheimer病的保护作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     阿尔兹海默病(Alzheimer's disease, AD)是老年期痴呆最常见的类型。认知能力的逐渐下降和淀粉样斑块及神经原纤维缠结的出现是其典型的临床病理特征。最终结果会导致脑功能的异常及神经元凋亡。随着我国人口老龄化的日益严重,AD越来越成为一个严重的社会问题。研究表明AD神经退行性病变过程中,氧化应激是除年龄外另一个重要因素。大量的研究表明DNA、RNA、脂质和蛋白质氧化程度在AD病变过程中不断升高,直至出现轻度认知损伤,这些都说明氧化应激出现在AD的早期阶段,即发生在淀粉样斑块和神经原纤维缠结之前出现。尽管在AD的治疗研究中有很多针对于对抗氧化应激介导损伤的神经保护策略,但是临床结果积极有效的只有很少一部分。
     氮氧自由基(Nitroxide radicals, NRs)作为一类含有自旋单电子的稳定的自由基化合物。早期被用作自旋示踪剂。近来研究表明NRs还具有其特殊的生物学活性,一些NRs具有抗肿瘤、辐射和缺血再灌注损伤等功能。它与有害自由基反应通过“催化剂量”方式进行,只需很少的剂量即可发挥高效、强效和长效的抗氧化活性。例如,NRs具有拟SOD的作用。它可以通过电子转移的方式参与到细胞内的线粒体的呼吸链式反应,非常快速的清除超氧阴离子自由基O2.-。正是由于NRs以催化方式分解不断产生的有害自由基,反应过程中本身不会被消耗,可以循环再生利用,这也是其它自由基清除剂所无法比拟的。同时因其特有的自旋示踪功能,可通过电子顺磁共振或核磁共振成像实时了解其在组织中的分布及变化反应。
     正是由于NRs这些独特的性质,我们推测其在AD的发病过程中会发挥很好的抗氧化的能力,起到预防、治疗甚至是诊断AD发生的作用。因此,有望将NRs制备成新型的应用于神经退行性疾病的抗氧化应激损伤的药物。
     方法:
     在本实验中,我们采用体外抗氧化模型,Aβ1-42诱导的细胞毒性损伤模型以及APP/PS1双转基因AD鼠模型,来评价NRs的抗氧化能力及对AD的保护作用。
     体外抗氧化实验中,我们分别采用光泽精诱导的发光体系、CHP诱导的脂质过氧化模型和F2-异前列素免疫试剂盒来评价NRs清除超氧阴离子和抑制脂质过氧化的能力;
     体外培养原代皮层神经元模型中,在培养到第10天的时候,分别给予10μM的姜黄素、Tempol和L-NNNBP,孵育24小时后,用25μM的寡聚态Aβ1-42处理12小时。换用原培养液继续培养24小时后收集细胞。分别用CCK-8试剂盒检测细胞的存活率;用Tunel试剂盒检测细胞的凋亡;用3-NT的ELISA试剂盒测定组织的硝化应激水平;用阳离子荧光染料-四甲基罗丹明乙酯检测线粒体的膜电位变化;用细胞的免疫荧光观察激活的Caspase-3的变化;
     最后采用APP/PS-1双转基因AD小鼠来评价NRs的自由基清除能力和对AD的保护作用。实验分为5组:姜黄素治疗组、Tempol治疗组、L-NNNBP治疗组、WT组和TG组。药物用饮用水溶解,终浓度均为1mM,WT组和TG组给予正常饮水。在小鼠6周时给予药物处理,连续给药1个月。用Morris水迷宫实验评价AD小鼠空间学习记忆能力;用刚果红染色方法观察Aβ斑块;用蛋白免疫印迹方法观察磷酸化Tau和GFAP蛋白含量变化;采用免疫组化方法观察星形胶质细胞的激活。
     结果:
     体外抗氧化实验中,我们发现L-NNNBP较姜黄素和Tempol能显著减少超氧阴离子和脂质过氧化水平(#P<0.05,##P<0.01)。
     培养皮层神经元模型中,不同剂量的L-NNNBP对Aβ1-42诱导的细胞毒性都有保护作用(*P<0.05,**P<0.01),且是浓度依赖的关系。单独给予L-NNNBP,没有对细胞产生毒性作用。而Tempol的三种剂量都没有观察到神经元的保护作用;姜黄素只有在高剂量(10μM)时有细胞保护作用。Tunel法检测细胞凋亡的实验中,相对于姜黄素(42.9%±3.1%)和Tempol(51.1%±1.1%),L-NNNBP高剂量(10μM)处理组,神经元的凋亡显著降低(22.7%±2.6%,*P<0.05,**P<0.01,##P<0.01)。细胞免疫荧光结果说明L-NNNBP的这种抗凋亡的作用是通过降低激活型Caspase-3的表达引起的。Aβ诱导的氧化应激损伤也会造成线粒体功能障碍,影响线粒体正常膜电位,使其去极化。L-NNNBP能显著降低TMRM+的密度,阻止线粒体膜的去极化,保护线粒体的正常功能,且其作用强度显著高于姜黄素和Tempol(#P<0.05)。除了氧化应激,硝化应激也是自由基产生的主要来源。L-NNNBP三个浓度都降低了3-NT的含量(**P<0.01),且抑制率显著高于姜黄素和Tempol(#P<0.05)。
     Aβ斑块的沉积是AD的主要病理症状之一。在APP/PS1双转基因AD鼠模型中,6个月大的APP/PS-1小鼠给予L-NNNBP(1mM)1个月后,海马和皮层的Aβ斑块的沉积都显著减少,并且效果强于姜黄素和Tempol(##P<0.05)。除了Aβ斑块沉积,AD的另一个病理特征就是Tau蛋白异常过度磷酸化后引起的神经原纤维缠结。APP/PS1小鼠Tau蛋白的Thr205和Ser235两个位点的磷酸化程度显著升高。相对于WT组和其它药物处理组,L-NNNBP显著的降低了Tau蛋白在两个位点的磷酸化程度(**P<0.01,#P<0.05,##P<0.05)。星形胶质细胞的免疫组化和免疫蛋白印迹结果说明其在AD发病的早期就被激活,有可能进一步诱导β-淀粉样蛋白沉积加速和神经纤维缠结形成。而L-NNNBP在发挥抗氧化功效的同时抑制了星形胶质细胞的激活。Morris水迷宫的行为学结果也说明APP/PS1小鼠空间学习和记忆能力受到损伤,在给予L-NNNBP治疗后有显著改善,并且效果强于姜黄素和Tempol(**P<0.01,##P<0.01)。
     结论:
     本研究证明,无论是在氧化损伤的体外模型,还是Aβ1-42诱导的细胞毒性损伤模型,或是APP/PS1双转基因AD鼠模型中,新型的手性氮氧自由基L-NNNBP都表现出了令人兴奋的结果。它能清除超氧阴离子、抑制脂质过氧化、减轻Aβ1-42诱导的细胞毒性损伤、抗凋亡、降低氧化或硝化应激损伤、减少Aβ斑块沉积、降低Tau蛋白磷酸化水平、抑制星形胶质细胞激活和改善AD鼠的空间学习和记忆。总之,L-NNNBP很有可能开发成为临床AD治疗的候选药物。
Objectives:
     Alzheimer’s disease (AD), an age-related neurodegenerative disorder, is the most commonform of dementia. AD is characterized by the deposition of β-amyloid (Aβ) plaques,intracellular neurofibrillary tangles, loss of neurons in the brain, progressive decline ofmemory and cognitive functions, and behavioral and personality changes. In thepathogenesis and progression of AD, aging is the most critical risk factor. Moreover,oxidative stress has an important function in the early stages of AD. Reactive oxygenspecies (ROS)-mediated pathways are involved in AD development. Numerous studieshave reported the presence of elevated DNA, RNA, lipid, and protein oxidation in brainsof subjects with AD and mild cognitive impairment (MCI), suggesting that oxidative stressis an early event in AD pathogenesis. It illustrate that oxidative stress occurs at early stages, before the appearance of amyloid plaques and neurofibrillary tangles. For mostantioxidant drugs, beneficial effects have been reported in cell cultures, and partially, inanimal models. However, success in human clinical trials is much less frequent.Nitroxide radicals (NRs) are stable free radicals. NRs are utilized as biophysical tools inelectronic spin resonance spectroscopic studies and spin-label oximetry in early days.Recently studies found that NRs has some special biological activities, include radiationprotection, anticancer, against ischemia-reperfusion injury and so on. Unlike otherantioxidants that act in a sacrificial mode, NRs can provide protection in a catalyticmanner. Through the continuous exchange between these forms NRs act asself-replenishing antioxidants that degrade superoxide and peroxide. For example, NRshave Superoxide dismutase (SOD) mimetic action. Similar to endogenous SOD, thenitroxide acts as a catalyst and is not consumed in the process of dismutation of O_2~-toH_2O_2and oxygen. The catalytic rate is higher than SOD. Because its function of spintracer, we can observe its distribution and understand the changes in the body. Therefore,NRs have a better view in anti-oxidative damage as new type antioxidant drugs.
     Methods:
     In our study, Lucigenin chemiluminescence models derived from xanthine–xanthineoxidase reaction were used to evaluate the free radical-scavenging activity CHP-inducedlipid peroxidation system to evaluate inhibition of lipid peroxidation of Curcumin, Tempoland L-NNNBP. In primary cortical neuronal cultures, the neurons were rinsed briefly withPBS at the10th day and then pretreated with10μM Curcumin, Tempol and L-NNNBP for24h, respectively, followed by exposure to25μM of Aβ1-42for12h in the same medium.Afterward, cells were washed3times and returned to the original culture medium for24h.Cell viability was determined by cell counting kit-8(CCK-8). Measurement of apoptoticcells by the TUNEL. Male APP/PS1double-transgenic mice were used in this study toevaluate the protective effect of L-NNNBP. Mice were divided into five groups: Curcumintreatment, Tempol treatment, L-NNNBP treatment, Wild-type and Transgenetic group.Male mice were treated with curcumin, tempol or L-NNNBP (1mM in drinking water). Treatment was started when the mice were6months old and was continued for1month.After treatment for1month, spatial learning and memory were evaluated by the Morriswater maze test. The mice brain sections were stained with Congo red solution to identifythe Aβ plaques. The culture neurons and hippocampal tissues were normalized viabicinchoninic acid protein assay to generate homogenates.3-Nitrotyrosine (3-NT)measurements were performed in the supernatants.Mitochondrial membrane potential(Δψm) in the culture neurons was detected by the cationic fluorescent probetetramethylrhodamine methyl ester (TMRM). Western blot analysis was performed to theexpression of phosphorylated Tau and GFAP. Using immunohistochemistry method, wetest the activation of astrocytes.
     Results:
     We first examined the ability of L-NNNBP to scavenge the superoxide anion radical.Lucigenin chemiluminescence models derived from xanthine–xanthine oxidase reactionwere also used to evaluate the free radical-scavenging activity of L-NNNBP.L-NNNBPshowed more potent free-radical scavenging activities, which increased thechemiluminescence compared with curcumin and tempol at the same concentrations(#P<0.05,##P<0.01). In the CHP-induced lipid peroxidation system, L-NNNBP alsoshowed a higher inhibiting rate on lipid peroxidation compared with curcumin and tempol(#P<0.05,##P<0.01). In cultures, L-NNNBP attenuated Aβ1-42-induced cell death in aconcentration-dependent manner. However, tempol (0.1–10μM) did not exhibit anyneuroprotective activity against Aβ1-42-induced toxicity. Curcumin exhibitedneuroprotection only at a high concentration (10μM). Treatment with L-NNNBP alonedid not affect the cell viability. TUNEL staining was performed to identify the apoptoticneurons. Pretreatment of L-NNNBP (10μM) significantly reduced apoptotic neurons to22.7%±2.6%, and this anti-apoptotic activity was more significant than that mediated bythe same concentrations of curcumin (42.9%±3.1%) and tempol (51.1%±1.1%). Cellimmunofluorescence results show that the L-NNNBP have anti-apoptotic effect throughdecreasing the activated Caspase-3. Aβ can cause oxidative stress injury lead tomitochondrial dysfunction, affect the normal mitochondrial membrane potential and make its depolarization. L-NNNBP (0.1–10μM) prevented the depolarization of Δψm caused byAβ1-42treatment, and this action was stronger than those of curcumin and tempol at thesame concentration (#P<0.05). In addition to oxidative stress, nitrification stress is anothermain source of free radicals generation. LNNNBP attenuated Aβ1-42-induced3-NTincrease. The inhibition of3-NT by curcumin and tempol was weaker compared with thatmediated by L-NNNBP at the same concentration (#P<0.05).Aβ plaque deposition is one of the main pathological symptom of AD. Treatment withL-NNNBP and tempol markedly reduced Aβ plaque accumulation in the hippocampus andsomatosensory cortex, whereas curcumin reduced Aβ plaque acumulation in thehippocampus only. Besides Aβ plaque deposition, another feature AD pathologicalprogress is neurofibrillary tangles caused by abnormal phosphorylation of Tau. A markeddecrease in Tau phosphorylation at Ser235and Thr205was observed in theL-NNNBP-treated APP/PS1mice compared with the vehicle-treated mice. LNNNBPmarkedly decreased tau phosphorylation compared with curcumin or tempol (**P<0.01,#P<0.05,##P<0.05).In the brains of AD patients and transgenic AD mouse models, theinfiltration of activated astrocytes are seen in the area of Aβ plaques, which arecharacteristic components of an inflammatory process that develops around an injury inthe brain. Quantitative analysis showed a58.5%±3.2%decrease in GFAP expression inthe L-NNNBP-treated APP/PS1mice compared with that in the control APP/PS1mice(**P<0.01). In Morris water maze text, the L-NNNBP-treated APP/PS1mice reachedthe platform, which resulted in significantly reduced escape latency across the trialscompared with the control APP/PS1mice, and curcumin-and tempol-treated mice(**P<0.01,##P<0.01). L-NNNBP markedly improved the learning capability and memoryof APP/PS1mice compared with curcumin or tempol.
     Conclusions:
     This study demonstrates that both in oxidative damage vitro model, Aβ1-42-inducedtoxicity model or APP/PS1double transgenic mice model, treatment with the new chiralNRs (L-NNNBP), shows the exciting results. It can scavenger superoxide anion, inhibitlipid peroxidation, Reduce the cytotoxicity induced by Aβ1-42, anti-apoptosis, reduce oxidation and nitration stress, decrease Aβ plaque deposition, decrease level ofphosphorylated Tau protein, inhibit astrocyte activation and Improve spatial learning andmemory of AD transgenetic mice. In a word, L-NNNBP is likely to become the candidatedrugs for AD clinical therapy.
引文
[1] Wimo A, Prince M. World Alzheimer Report2010: The GlobalEconomic Impact of Dementia(London: Alzheimer s Disease International)[J].2010:1-56.
    [2] Dringen R. Metabolism and functions of glutathione in brain[J]. Prog Neurobiol,2000,62(6):649-671.
    [3] Harrington M, Grodstein F. Antioxidant vitamins and Alzheimer s disease: a review of theepidemiological literature[J]. Aging Health,2007,3(1):23-32.
    [4] Schurks M, Glynn R J, Rist P M, et al. Effects of vitamin E on stroke subtypes: meta-analysis ofrandomised controlled trials[J]. BMJ,2010,341:c5702.
    [5] Baum L, Lam C W, Cheung S K, et al. Six-month randomized, placebo-controlled, double-blind,pilot clinical trial of curcumin in patients with Alzheimer disease[J]. J Clin Psychopharmacol,2008,28(1):110-113.
    [6] Snow B J, Rolfe F L, Lockhart M M, et al. A double-blind, placebo-controlled study to assessthe mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson'sdisease[J]. Mov Disord,2010,25(11):1670-1674.
    [7] Blomhoff R. Dietary antioxidants and cardiovascular disease[J]. Curr Opin Lipidol,2005,16(1):47-54.
    [8] Devore E E, Feskens E, Ikram M A, et al. Total antioxidant capacity of the diet and majorneurologic outcomes in older adults[J]. Neurology,2013,80(10):904-910.
    [9] Harbour J R, Bolton J R. Superoxide formation in spinach chloroplasts: electron spin resonancedetection by spin trapping[J]. Biochem Biophys Res Commun,1975,64(3):803-807.
    [10] Soule B P, Hyodo F, Matsumoto K, et al. The chemistry and biology of nitroxide compounds[J].Free Radic Biol Med,2007,42(11):1632-1650.
    [11] Hahn S M, Krishna M C, DeLuca A M, et al. Evaluation of the hydroxylamine Tempol-H as anin vivo radioprotector[J]. Free Radic Biol Med,2000,28(6):953-958.
    [12] Gelvan D, Saltman P, Powell S R. Cardiac reperfusion damage prevented by a nitroxide freeradical[J]. Proc Natl Acad Sci U S A,1991,88(11):4680-4684.
    [13] Dikalov S I, Vitek M P, Maples K R, et al. Amyloid beta peptides do not form peptide-derivedfree radicals spontaneously, but can enhance metal-catalyzed oxidation of hydroxylamines tonitroxides[J]. J Biol Chem,1999,274(14):9392-9399.
    [14] Liang Q, Smith A D, Pan S, et al. Neuroprotective effects of TEMPOL in central and peripheralnervous system models of Parkinson's disease[J]. Biochem Pharmacol,2005,70(9):1371-1381.
    [15] Kouvaris J R, Kouloulias V E, Vlahos L J. Amifostine: the first selective-target andbroad-spectrum radioprotector[J]. Oncologist,2007,12(6):738-747.
    [16] Metz J M, Smith D, Mick R, et al. A phase I study of topical Tempol for the prevention ofalopecia induced by whole brain radiotherapy[J]. Clin Cancer Res,2004,10(19):6411-6417.
    [17] Brooks W H, Guida W C, Daniel K G. The significance of chirality in drug design anddevelopment[J]. Curr Top Med Chem,2011,11(7):760-770.
    [18] Likhtenshtein G I, Yamauchi J, Nakatsuji S, et al. Organic Functional Materials ContainingChiral Nitroxide Radical Units[J].2008:303-329.
    [19] HIREL, Catherine, PECAUT, et al. Enantiopure and racemic chiral nitronyl nitroxide freeradicals: Synthesis and characterization[J]. European journal of organic chemistry,2005(2):12.
    [20] Sies H. Oxidative stress: oxidants and antioxidants[J]. Exp Physiol,1997,82(2):291-295.
    [21] Bienert G P, Schjoerring J K, Jahn T P. Membrane transport of hydrogen peroxide[J]. BiochimBiophys Acta,2006,1758(8):994-1003.
    [22] Finkel T. Oxidant signals and oxidative stress[J]. Curr Opin Cell Biol,2003,15(2):247-254.
    [23] Smythies J. The neurotoxicity of glutamate, dopamine, iron and reactive oxygen species:functional interrelationships in health and disease: a review-discussion[J]. Neurotox Res,1999,1(1):27-39.
    [24] Stone J R, Yang S. Hydrogen peroxide: a signaling messenger[J]. Antioxid Redox Signal,2006,8(3-4):243-270.
    [25] Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cellculture: how should you do it and what do the results mean?[J]. Br J Pharmacol,2004,142(2):231-255.
    [26] Halliwell B. Oxidative stress and neurodegeneration: where are we now?[J]. J Neurochem,2006,97(6):1634-1658.
    [27] Andersen J K. Oxidative stress in neurodegeneration: cause or consequence?[J]. Nat Med,2004,10Suppl:S18-S25.
    [28] Shukla V, Mishra S K, Pant H C. Oxidative stress in neurodegeneration[J]. Adv Pharmacol Sci,2011,2011:572634.
    [29] Bredesen D E. Apoptosis: overview and signal transduction pathways[J]. J Neurotrauma,2000,17(10):801-810.
    [30] Behl C. Apoptosis and Alzheimer's disease[J]. J Neural Transm,2000,107(11):1325-1344.
    [31] Maher P, Schubert D. Signaling by reactive oxygen species in the nervous system[J]. Cell MolLife Sci,2000,57(8-9):1287-1305.
    [32] Beckman K B, Ames B N. The free radical theory of aging matures[J]. Physiol Rev,1998,78(2):547-581.
    [33] Halliwell B. Role of free radicals in the neurodegenerative diseases: therapeutic implications forantioxidant treatment[J]. Drugs Aging,2001,18(9):685-716.
    [34] Moosmann B, Behl C. Cytoprotective antioxidant function of tyrosine and tryptophan residuesin transmembrane proteins[J]. Eur J Biochem,2000,267(18):5687-5692.
    [35] Masters C L, Beyreuther K. Alzheimer's disease[J]. BMJ,1998,316(7129):446-448.
    [36] Haass C, Mandelkow E. Proteolysis by presenilins and the renaissance of tau[J]. Trends CellBiol,1999,9(6):241-244.
    [37] Selkoe D J. Alzheimer's disease: genes, proteins, and therapy[J]. Physiol Rev,2001,81(2):741-766.
    [38] Benzi G, Moretti A. Are reactive oxygen species involved in Alzheimer's disease?[J]. NeurobiolAging,1995,16(4):661-674.
    [39] Loeffler D A, Connor J R, Juneau P L, et al. Transferrin and iron in normal, Alzheimer's disease,and Parkinson's disease brain regions[J]. J Neurochem,1995,65(2):710-724.
    [40] Markesbery W R. Oxidative stress hypothesis in Alzheimer's disease[J]. Free Radic Biol Med,1997,23(1):134-147.
    [41] Smith M A, Harris P L, Sayre L M, et al. Iron accumulation in Alzheimer disease is a source ofredox-generated free radicals[J]. Proc Natl Acad Sci U S A,1997,94(18):9866-9868.
    [42] Kennard M L, Feldman H, Yamada T, et al. Serum levels of the iron binding protein p97areelevated in Alzheimer's disease[J]. Nat Med,1996,2(11):1230-1235.
    [43] Crapper D R, Quittkat S, Krishnan S S, et al. Intranuclear aluminum content in Alzheimer'sdisease, dialysis encephalopathy, and experimental aluminum encephalopathy[J]. ActaNeuropathol,1980,50(1):19-24.
    [44] Bjertness E, Candy J M, Torvik A, et al. Content of brain aluminum is not elevated inAlzheimer disease[J]. Alzheimer Dis Assoc Disord,1996,10(3):171-174.
    [45] Multhaup G, Schlicksupp A, Hesse L, et al. The amyloid precursor protein of Alzheimer'sdisease in the reduction of copper(II) to copper(I)[J]. Science,1996,271(5254):1406-1409.
    [46] Multhaup G. Amyloid precursor protein, copper and Alzheimer's disease[J]. BiomedPharmacother,1997,51(3):105-111.
    [47] Linder M C, Hazegh-Azam M. Copper biochemistry and molecular biology[J]. Am J Clin Nutr,1996,63(5):797S-811S.
    [48] Deibel M A, Ehmann W D, Markesbery W R. Copper, iron, and zinc imbalances in severelydegenerated brain regions in Alzheimer's disease: possible relation to oxidative stress[J]. JNeurol Sci,1996,143(1-2):137-142.
    [49] Bush A I, Pettingell W H, Multhaup G, et al. Rapid induction of Alzheimer A beta amyloidformation by zinc[J]. Science,1994,265(5177):1464-1467.
    [50] Choi D W, Koh J Y. Zinc and brain injury[J]. Annu Rev Neurosci,1998,21:347-375.
    [51] Yan M H, Wang X, Zhu X. Mitochondrial defects and oxidative stress in Alzheimer disease andParkinson disease[J]. Free Radic Biol Med,2012.
    [52] Hensley K, Hall N, Subramaniam R, et al. Brain regional correspondence between Alzheimer'sdisease histopathology and biomarkers of protein oxidation[J]. J Neurochem,1995,65(5):2146-2156.
    [53] Palmer A M, Burns M A. Selective increase in lipid peroxidation in the inferior temporal cortexin Alzheimer's disease[J]. Brain Res,1994,645(1-2):338-342.
    [54] Lovell M A, Ehmann W D, Butler S M, et al. Elevated thiobarbituric acid-reactive substancesand antioxidant enzyme activity in the brain in Alzheimer's disease[J]. Neurology,1995,45(8):1594-1601.
    [55] Galbusera C, Facheris M, Magni F, et al. Increased susceptibility to plasma lipid peroxidation inAlzheimer disease patients[J]. Curr Alzheimer Res,2004,1(2):103-109.
    [56] Yan S D, Chen X, Schmidt A M, et al. Glycated tau protein in Alzheimer disease: a mechanismfor induction of oxidant stress[J]. Proc Natl Acad Sci U S A,1994,91(16):7787-7791.
    [57] Good P F, Werner P, Hsu A, et al. Evidence of neuronal oxidative damage in Alzheimer'sdisease[J]. Am J Pathol,1996,149(1):21-28.
    [58] Smith M A, Richey H P, Sayre L M, et al. Widespread peroxynitrite-mediated damage inAlzheimer's disease[J]. J Neurosci,1997,17(8):2653-2657.
    [59] Smith M A, Perry G, Richey P L, et al. Oxidative damage in Alzheimer's[J]. Nature,1996,382(6587):120-121.
    [60] Smith M A, Taneda S, Richey P L, et al. Advanced Maillard reaction end products areassociated with Alzheimer disease pathology[J]. Proc Natl Acad Sci U S A,1994,91(12):5710-5714.
    [61] Pappolla M A, Omar R A, Kim K S, et al. Immunohistochemical evidence of oxidative
    [corrected] stress in Alzheimer's disease[J]. Am J Pathol,1992,140(3):621-628.
    [62] Smith M A, Kutty R K, Richey P L, et al. Heme oxygenase-1is associated with theneurofibrillary pathology of Alzheimer's disease[J]. Am J Pathol,1994,145(1):42-47.
    [63] Schipper H M, Cisse S, Stopa E G. Expression of heme oxygenase-1in the senescent andAlzheimer-diseased brain[J]. Ann Neurol,1995,37(6):758-768.
    [64] Busciglio J, Yankner B A. Apoptosis and increased generation of reactive oxygen species inDown's syndrome neurons in vitro[J]. Nature,1995,378(6559):776-779.
    [65] Nitsch R M, Blusztajn J K, Pittas A G, et al. Evidence for a membrane defect in Alzheimerdisease brain[J]. Proc Natl Acad Sci U S A,1992,89(5):1671-1675.
    [66] Markesbery W R, Lovell M A. Four-hydroxynonenal, a product of lipid peroxidation, isincreased in the brain in Alzheimer's disease[J]. Neurobiol Aging,1998,19(1):33-36.
    [67] Mattson M P. Free radicals and disruption of neuronal ion homeostasis in AD: a role foramyloid beta-peptide?[J]. Neurobiol Aging,1995,16(4):679-682,683.
    [68] Dugan L L, Sensi S L, Canzoniero L M, et al. Mitochondrial production of reactive oxygenspecies in cortical neurons following exposure to N-methyl-D-aspartate[J]. J Neurosci,1995,15(10):6377-6388.
    [69] Reynolds I J, Hastings T G. Glutamate induces the production of reactive oxygen species incultured forebrain neurons following NMDA receptor activation[J]. J Neurosci,1995,15(5Pt1):3318-3327.
    [70] Dawson V L, Kizushi V M, Huang P L, et al. Resistance to neurotoxicity in cortical culturesfrom neuronal nitric oxide synthase-deficient mice[J]. J Neurosci,1996,16(8):2479-2487.
    [71] Montine T J, Markesbery W R, Morrow J D, et al. Cerebrospinal fluid F2-isoprostane levels areincreased in Alzheimer's disease[J]. Ann Neurol,1998,44(3):410-413.
    [72] Dyrks T, Dyrks E, Hartmann T, et al. Amyloidogenicity of beta A4and beta A4-bearingamyloid protein precursor fragments by metal-catalyzed oxidation[J]. J Biol Chem,1992,267(25):18210-18217.
    [73] Thomas T, Thomas G, McLendon C, et al. beta-Amyloid-mediated vasoactivity and vascularendothelial damage[J]. Nature,1996,380(6570):168-171.
    [74] Hensley K, Carney J M, Mattson M P, et al. A model for beta-amyloid aggregation andneurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease[J].Proc Natl Acad Sci U S A,1994,91(8):3270-3274.
    [75] Butterfield D A, Hensley K, Harris M, et al. beta-Amyloid peptide free radical fragmentsinitiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications toAlzheimer's disease[J]. Biochem Biophys Res Commun,1994,200(2):710-715.
    [76] McDonald D R, Brunden K R, Landreth G E. Amyloid fibrils activate tyrosinekinase-dependent signaling and superoxide production in microglia[J]. J Neurosci,1997,17(7):2284-2294.
    [77] Solito E, Sastre M. Microglia function in Alzheimer's disease[J]. Front Pharmacol,2012,3:14.
    [78] Nunomura A, Castellani R J, Zhu X, et al. Involvement of oxidative stress in Alzheimerdisease[J]. J Neuropathol Exp Neurol,2006,65(7):631-641.
    [79] Coppede F, Migliore L. DNA damage and repair in Alzheimer's disease[J]. Curr Alzheimer Res,2009,6(1):36-47.
    [80] Lovell M A, Markesbery W R. Oxidative DNA damage in mild cognitive impairment andlate-stage Alzheimer's disease[J]. Nucleic Acids Res,2007,35(22):7497-7504.
    [81] Lovell M A, Markesbery W R. Oxidatively modified RNA in mild cognitive impairment[J].Neurobiol Dis,2008,29(2):169-175.
    [82] Nunomura A, Moreira P I, Takeda A, et al. Oxidative RNA damage and neurodegeneration[J].Curr Med Chem,2007,14(28):2968-2975.
    [83] Markesbery W R, Kryscio R J, Lovell M A, et al. Lipid peroxidation is an early event in thebrain in amnestic mild cognitive impairment[J]. Ann Neurol,2005,58(5):730-735.
    [84] Pratico D. The neurobiology of isoprostanes and Alzheimer's disease[J]. Biochim Biophys Acta,2010,1801(8):930-933.
    [85] Sultana R, Butterfield D A. Oxidatively modified, mitochondria-relevant brain proteins insubjects with Alzheimer disease and mild cognitive impairment[J]. J Bioenerg Biomembr,2009,41(5):441-446.
    [86] Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimerdisease[J]. J Neuropathol Exp Neurol,2001,60(8):759-767.
    [87] Resende R, Moreira P I, Proenca T, et al. Brain oxidative stress in a triple-transgenic mousemodel of Alzheimer disease[J]. Free Radic Biol Med,2008,44(12):2051-2057.
    [88] Abdul H M, Sultana R, St C D, et al. Oxidative damage in brain from human mutant APP/PS-1double knock-in mice as a function of age[J]. Free Radic Biol Med,2008,45(10):1420-1425.
    [89] Pratico D, Uryu K, Leight S, et al. Increased lipid peroxidation precedes amyloid plaqueformation in an animal model of Alzheimer amyloidosis[J]. J Neurosci,2001,21(12):4183-4187.
    [90] Nunomura A, Moreira P I, Lee H G, et al. Neuronal death and survival under oxidative stress inAlzheimer and Parkinson diseases[J]. CNS Neurol Disord Drug Targets,2007,6(6):411-423.
    [91] Zhu X, Su B, Wang X, et al. Causes of oxidative stress in Alzheimer disease[J]. Cell Mol LifeSci,2007,64(17):2202-2210.
    [92] Bonda D J, Wang X, Perry G, et al. Mitochondrial dynamics in Alzheimer's disease:opportunities for future treatment strategies[J]. Drugs Aging,2010,27(3):181-192.
    [93] Lin M T, Beal M F. Mitochondrial dysfunction and oxidative stress in neurodegenerativediseases[J]. Nature,2006,443(7113):787-795.
    [94] Hung Y H, Bush A I, Cherny R A. Copper in the brain and Alzheimer's disease[J]. J Biol InorgChem,2010,15(1):61-76.
    [95] Smith M A, Zhu X, Tabaton M, et al. Increased iron and free radical generation in preclinicalAlzheimer disease and mild cognitive impairment[J]. J Alzheimers Dis,2010,19(1):363-372.
    [96] Block M L. NADPH oxidase as a therapeutic target in Alzheimer's disease[J]. BMC Neurosci,2008,9Suppl2:S8.
    [97] Perry V H, Nicoll J A, Holmes C. Microglia in neurodegenerative disease[J]. Nat Rev Neurol,2010,6(4):193-201.
    [98] Bonda D J, Wang X, Perry G, et al. Oxidative stress in Alzheimer disease: a possibility forprevention[J]. Neuropharmacology,2010,59(4-5):290-294.
    [99] Coskun P E, Beal M F, Wallace D C. Alzheimer's brains harbor somatic mtDNA control-regionmutations that suppress mitochondrial transcription and replication[J]. Proc Natl Acad Sci U SA,2004,101(29):10726-10731.
    [100] Mecocci P, MacGarvey U, Beal M F. Oxidative damage to mitochondrial DNA is increased inAlzheimer's disease[J]. Ann Neurol,1994,36(5):747-751.
    [101] Reeve A K, Krishnan K J, Turnbull D. Mitochondrial DNA mutations in disease, aging, andneurodegeneration[J]. Ann N Y Acad Sci,2008,1147:21-29.
    [102] Gibson G E, Blass J P, Beal M F, et al. The alpha-ketoglutarate-dehydrogenase complex: amediator between mitochondria and oxidative stress in neurodegeneration[J]. Mol Neurobiol,2005,31(1-3):43-63.
    [103] Gibson G E, Zhang H, Sheu K F, et al. Alpha-ketoglutarate dehydrogenase in Alzheimer brainsbearing the APP670/671mutation[J]. Ann Neurol,1998,44(4):676-681.
    [104] Sorbi S, Bird E D, Blass J P. Decreased pyruvate dehydrogenase complex activity inHuntington and Alzheimer brain[J]. Ann Neurol,1983,13(1):72-78.
    [105] Cardoso S M, Proenca M T, Santos S, et al. Cytochrome c oxidase is decreased in Alzheimer'sdisease platelets[J]. Neurobiol Aging,2004,25(1):105-110.
    [106] Pickrell A M, Fukui H, Moraes C T. The role of cytochrome c oxidase deficiency in ROS andamyloid plaque formation[J]. J Bioenerg Biomembr,2009,41(5):453-456.
    [107] Li F, Calingasan N Y, Yu F, et al. Increased plaque burden in brains of APP mutant MnSODheterozygous knockout mice[J]. J Neurochem,2004,89(5):1308-1312.
    [108] Li F, Calingasan N Y, Yu F, et al. Increased plaque burden in brains of APP mutant MnSODheterozygous knockout mice[J]. J Neurochem,2004,89(5):1308-1312.
    [109] Melov S, Adlard P A, Morten K, et al. Mitochondrial oxidative stress causeshyperphosphorylation of tau[J]. PLoS One,2007,2(6):e536.
    [110] Esposito L, Raber J, Kekonius L, et al. Reduction in mitochondrial superoxide dismutasemodulates Alzheimer's disease-like pathology and accelerates the onset of behavioral changesin human amyloid precursor protein transgenic mice[J]. J Neurosci,2006,26(19):5167-5179.
    [111] Dumont M, Wille E, Stack C, et al. Reduction of oxidative stress, amyloid deposition, andmemory deficit by manganese superoxide dismutase overexpression in a transgenic mousemodel of Alzheimer's disease[J]. FASEB J,2009,23(8):2459-2466.
    [112] Massaad C A, Washington T M, Pautler R G, et al. Overexpression of SOD-2reduceshippocampal superoxide and prevents memory deficits in a mouse model of Alzheimer'sdisease[J]. Proc Natl Acad Sci U S A,2009,106(32):13576-13581.
    [113] Du H, Guo L, Fang F, et al. Cyclophilin D deficiency attenuates mitochondrial and neuronalperturbation and ameliorates learning and memory in Alzheimer's disease[J]. Nat Med,2008,14(10):1097-1105.
    [114] Du H, Guo L, Zhang W, et al. Cyclophilin D deficiency improves mitochondrial function andlearning/memory in aging Alzheimer disease mouse model[J]. Neurobiol Aging,2011,32(3):398-406.
    [115] Du H, Yan S S. Mitochondrial permeability transition pore in Alzheimer's disease: cyclophilinD and amyloid beta[J]. Biochim Biophys Acta,2010,1802(1):198-204.
    [116] Pavlov P F, Hansson P C, Glaser E, et al. Mitochondrial accumulation of APP and Abeta:significance for Alzheimer disease pathogenesis[J]. J Cell Mol Med,2009,13(10):4137-4145.
    [117] Eckert A, Schulz K L, Rhein V, et al. Convergence of amyloid-beta and tau pathologies onmitochondria in vivo[J]. Mol Neurobiol,2010,41(2-3):107-114.
    [118] Rhein V, Song X, Wiesner A, et al. Amyloid-beta and tau synergistically impair the oxidativephosphorylation system in triple transgenic Alzheimer's disease mice[J]. Proc Natl Acad SciU S A,2009,106(47):20057-20062.
    [119] Lovell M A, Xiong S, Xie C, et al. Induction of hyperphosphorylated tau in primary rat corticalneuron cultures mediated by oxidative stress and glycogen synthase kinase-3[J]. J AlzheimersDis,2004,6(6):659-671,673-681.
    [120] Wadsworth T L, Bishop J A, Pappu A S, et al. Evaluation of coenzyme Q as an antioxidantstrategy for Alzheimer's disease[J]. J Alzheimers Dis,2008,14(2):225-234.
    [121] Yang X, Dai G, Li G, et al. Coenzyme Q10reduces beta-amyloid plaque in an APP/PS1transgenic mouse model of Alzheimer's disease[J]. J Mol Neurosci,2010,41(1):110-113.
    [122] Yang X, Yang Y, Li G, et al. Coenzyme Q10attenuates beta-amyloid pathology in the agedtransgenic mice with Alzheimer presenilin1mutation[J]. J Mol Neurosci,2008,34(2):165-171.
    [123] Suno M, Nagaoka A.[Effect of idebenone and various nootropic drugs on lipid peroxidation inrat brain homogenate in the presence of succinate][J]. Nihon Yakurigaku Zasshi,1988,91(5):295-299.
    [124] Gutzmann H, Kuhl K P, Hadler D, et al. Safety and efficacy of idebenone versus tacrine inpatients with Alzheimer's disease: results of a randomized, double-blind, parallel-groupmulticenter study[J]. Pharmacopsychiatry,2002,35(1):12-18.
    [125] Senin U, Parnetti L, Barbagallo-Sangiorgi G, et al. Idebenone in senile dementia of Alzheimertype: a multicentre study[J]. Arch Gerontol Geriatr,1992,15(3):249-260.
    [126] Weyer G, Babej-Dolle R M, Hadler D, et al. A controlled study of2doses of idebenone in thetreatment of Alzheimer's disease[J]. Neuropsychobiology,1997,36(2):73-82.
    [127] Thal L J, Grundman M, Berg J, et al. Idebenone treatment fails to slow cognitive decline inAlzheimer's disease[J]. Neurology,2003,61(11):1498-1502.
    [128] Smith R A, Murphy M P. Animal and human studies with the mitochondria-targeted antioxidantMitoQ[J]. Ann N Y Acad Sci,2010,1201:96-103.
    [129] Tauskela J S. MitoQ--a mitochondria-targeted antioxidant[J]. IDrugs,2007,10(6):399-412.
    [130] Snow B J, Rolfe F L, Lockhart M M, et al. A double-blind, placebo-controlled study to assessthe mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson'sdisease[J]. Mov Disord,2010,25(11):1670-1674.
    [131] Doody R S. Dimebon as a potential therapy for Alzheimer's disease[J]. CNS Spectr,2009,14(8Suppl7):14-16,16-18.
    [132] Okun I, Tkachenko S E, Khvat A, et al. From anti-allergic to anti-Alzheimer's: Molecularpharmacology of Dimebon[J]. Curr Alzheimer Res,2010,7(2):97-112.
    [133] Wu J, Li Q, Bezprozvanny I. Evaluation of Dimebon in cellular model of Huntington'sdisease[J]. Mol Neurodegener,2008,3:15.
    [134] Grigorev V V, Dranyi O A, Bachurin S O. Comparative study of action mechanisms ofdimebon and memantine on AMPA-and NMDA-subtypes glutamate receptors in rat cerebralneurons[J]. Bull Exp Biol Med,2003,136(5):474-477.
    [135] Lermontova N N, Redkozubov A E, Shevtsova E F, et al. Dimebon and tacrine inhibitneurotoxic action of beta-amyloid in culture and block L-type Ca(2+) channels[J]. Bull ExpBiol Med,2001,132(5):1079-1083.
    [136] Zhang S, Hedskog L, Petersen C A, et al. Dimebon (latrepirdine) enhances mitochondrialfunction and protects neuronal cells from death[J]. J Alzheimers Dis,2010,21(2):389-402.
    [137] Doody R S, Gavrilova S I, Sano M, et al. Effect of dimebon on cognition, activities of dailyliving, behaviour, and global function in patients with mild-to-moderate Alzheimer's disease: arandomised, double-blind, placebo-controlled study[J]. Lancet,2008,372(9634):207-215.
    [138] Dimebon Disappoints Alzheimer Research A F. Dimebon disappoint in phase3trial.[Z].
    [139] Acetyl-L-carnitine. Monograph[J]. Altern Med Rev,2010,15(1):76-83.
    [140] Ames B N, Liu J. Delaying the mitochondrial decay of aging with acetylcarnitine[J]. Ann N YAcad Sci,2004,1033:108-116.
    [141] Maczurek A, Hager K, Kenklies M, et al. Lipoic acid as an anti-inflammatory andneuroprotective treatment for Alzheimer's disease[J]. Adv Drug Deliv Rev,2008,60(13-14):1463-1470.
    [142] Haenen G R, Bast A. Scavenging of hypochlorous acid by lipoic acid[J]. Biochem Pharmacol,1991,42(11):2244-2246.
    [143] Aliev G, Liu J, Shenk J C, et al. Neuronal mitochondrial amelioration by feedingacetyl-L-carnitine and lipoic acid to aged rats[J]. J Cell Mol Med,2009,13(2):320-333.
    [144] Long J, Gao F, Tong L, et al. Mitochondrial decay in the brains of old rats: ameliorating effectof alpha-lipoic acid and acetyl-L-carnitine[J]. Neurochem Res,2009,34(4):755-763.
    [145] Epis R, Marcello E, Gardoni F, et al. Modulatory effect of acetyl-L-carnitine on amyloidprecursor protein metabolism in hippocampal neurons[J]. Eur J Pharmacol,2008,597(1-3):51-56.
    [146] Shenk J C, Liu J, Fischbach K, et al. The effect of acetyl-L-carnitine and R-alpha-lipoic acidtreatment in ApoE4mouse as a model of human Alzheimer's disease[J]. J Neurol Sci,2009,283(1-2):199-206.
    [147] Pettegrew J W, Klunk W E, Panchalingam K, et al. Clinical and neurochemical effects ofacetyl-L-carnitine in Alzheimer's disease[J]. Neurobiol Aging,1995,16(1):1-4.
    [148] Thal L J, Carta A, Clarke W R, et al. A1-year multicenter placebo-controlled study ofacetyl-L-carnitine in patients with Alzheimer's disease[J]. Neurology,1996,47(3):705-711.
    [149] Thal L J, Calvani M, Amato A, et al. A1-year controlled trial of acetyl-l-carnitine in early-onsetAD[J]. Neurology,2000,55(6):805-810.
    [150] Montgomery S A, Thal L J, Amrein R. Meta-analysis of double blind randomized controlledclinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairmentand mild Alzheimer's disease[J]. Int Clin Psychopharmacol,2003,18(2):61-71.
    [151] Traber M G, Atkinson J. Vitamin E, antioxidant and nothing more[J]. Free Radic Biol Med,2007,43(1):4-15.
    [152] Sung S, Yao Y, Uryu K, et al. Early vitamin E supplementation in young but not aged micereduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer's disease[J].FASEB J,2004,18(2):323-325.
    [153] Sano M, Ernesto C, Thomas R G, et al. A controlled trial of selegiline, alpha-tocopherol, orboth as treatment for Alzheimer's disease. The Alzheimer's Disease Cooperative Study[J]. NEngl J Med,1997,336(17):1216-1222.
    [154] Petersen R C, Thomas R G, Grundman M, et al. Vitamin E and donepezil for the treatment ofmild cognitive impairment[J]. N Engl J Med,2005,352(23):2379-2388.
    [155] Abramova N A, Cassarino D S, Khan S M, et al. Inhibition by R(+) or S(-) pramipexole ofcaspase activation and cell death induced by methylpyridinium ion or beta amyloid peptide inSH-SY5Y neuroblastoma[J]. J Neurosci Res,2002,67(4):494-500.
    [156] Ferrari-Toninelli G, Maccarinelli G, Uberti D, et al. Mitochondria-targeted antioxidant effectsof S(-) and R(+) pramipexole[J]. BMC Pharmacol,2010,10:2.
    [157] Li C, Guo Y, Xie W, et al. Neuroprotection of pramipexole in UPS impairment induced animalmodel of Parkinson's disease[J]. Neurochem Res,2010,35(10):1546-1556.
    [158] Gribkoff V K, Bozik M E. KNS-760704[(6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine dihydrochloride monohydrate] for the treatment of amyotrophic lateralsclerosis[J]. CNS Neurosci Ther,2008,14(3):215-226.
    [159] Huang X, Atwood C S, Hartshorn M A, et al. The A beta peptide of Alzheimer's diseasedirectly produces hydrogen peroxide through metal ion reduction[J]. Biochemistry,1999,38(24):7609-7616.
    [160] Tabner B J, El-Agnaf O M, Turnbull S, et al. Hydrogen peroxide is generated during the veryearly stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familialBritish dementia[J]. J Biol Chem,2005,280(43):35789-35792.
    [161] Adlard P A, Cherny R A, Finkelstein D I, et al. Rapid restoration of cognition in Alzheimer'stransgenic mice with8-hydroxy quinoline analogs is associated with decreased interstitialAbeta[J]. Neuron,2008,59(1):43-55.
    [162] Ritchie C W, Bush A I, Mackinnon A, et al. Metal-protein attenuation withiodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity inAlzheimer disease: a pilot phase2clinical trial[J]. Arch Neurol,2003,60(12):1685-1691.
    [163] Lannfelt L, Blennow K, Zetterberg H, et al. Safety, efficacy, and biomarker findings of PBT2intargeting Abeta as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind,randomised, placebo-controlled trial[J]. Lancet Neurol,2008,7(9):779-786.
    [164] Bandyopadhyay S, Huang X, Lahiri D K, et al. Novel drug targets based on metallobiology ofAlzheimer's disease[J]. Expert Opin Ther Targets,2010,14(11):1177-1197.
    [165] Kim J, Lee H J, Lee K W. Naturally occurring phytochemicals for the prevention ofAlzheimer's disease[J]. J Neurochem,2010,112(6):1415-1430.
    [166] Shukla P K, Khanna V K, Khan M Y, et al. Protective effect of curcumin against leadneurotoxicity in rat[J]. Hum Exp Toxicol,2003,22(12):653-658.
    [167] Begum A N, Jones M R, Lim G P, et al. Curcumin structure-function, bioavailability, andefficacy in models of neuroinflammation and Alzheimer's disease[J]. J Pharmacol Exp Ther,2008,326(1):196-208.
    [168] Garcia-Alloza M, Borrelli L A, Rozkalne A, et al. Curcumin labels amyloid pathology in vivo,disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mousemodel[J]. J Neurochem,2007,102(4):1095-1104.
    [169] Yang F, Lim G P, Begum A N, et al. Curcumin inhibits formation of amyloid beta oligomersand fibrils, binds plaques, and reduces amyloid in vivo[J]. J Biol Chem,2005,280(7):5892-5901.
    [170] Zhang L, Fiala M, Cashman J, et al. Curcuminoids enhance amyloid-beta uptake bymacrophages of Alzheimer's disease patients[J]. J Alzheimers Dis,2006,10(1):1-7.
    [171] Seo J S, Leem Y H, Lee K W, et al. Severe motor neuron degeneration in the spinal cord of theTg2576mouse model of Alzheimer disease[J]. J Alzheimers Dis,2010,21(1):263-276.
    [172] Baum L, Lam C W, Cheung S K, et al. Six-month randomized, placebo-controlled, double-blind,pilot clinical trial of curcumin in patients with Alzheimer disease[J]. J Clin Psychopharmacol,2008,28(1):110-113.
    [173] Galasko D, Montine T J. Biomarkers of oxidative damage and inflammation in Alzheimer'sdisease[J]. Biomark Med,2010,4(1):27-36.
    [174] Schwartz M, Shechter R. Systemic inflammatory cells fight off neurodegenerative disease[J].Nat Rev Neurol,2010,6(7):405-410.
    [175] McGeer E G, McGeer P L. Neuroinflammation in Alzheimer's disease and mild cognitiveimpairment: a field in its infancy[J]. J Alzheimers Dis,2010,19(1):355-361.
    [176] Lee C Y, Landreth G E. The role of microglia in amyloid clearance from the AD brain[J]. JNeural Transm,2010,117(8):949-960.
    [177] Fuhrmann M, Bittner T, Jung C K, et al. Microglial Cx3cr1knockout prevents neuron loss in amouse model of Alzheimer's disease[J]. Nat Neurosci,2010,13(4):411-413.
    [178] Hickman S E, Allison E K, El K J. Microglial dysfunction and defective beta-amyloid clearancepathways in aging Alzheimer's disease mice[J]. J Neurosci,2008,28(33):8354-8360.
    [179] Holmes C, Cunningham C, Zotova E, et al. Systemic inflammation and disease progression inAlzheimer disease[J]. Neurology,2009,73(10):768-774.
    [180] Cole G M, Frautschy S A. Mechanisms of action of non-steroidal anti-inflammatory drugs forthe prevention of Alzheimer's disease[J]. CNS Neurol Disord Drug Targets,2010,9(2):140-148.
    [181] Szekely C A, Zandi P P. Non-steroidal anti-inflammatory drugs and Alzheimer's disease: theepidemiological evidence[J]. CNS Neurol Disord Drug Targets,2010,9(2):132-139.
    [182] Wilkinson B L, Landreth G E. The microglial NADPH oxidase complex as a source ofoxidative stress in Alzheimer's disease[J]. J Neuroinflammation,2006,3:30.
    [183] Bruce-Keller A J, Gupta S, Parrino T E, et al. NOX activity is increased in mild cognitiveimpairment[J]. Antioxid Redox Signal,2010,12(12):1371-1382.
    [184] Park L, Zhou P, Pitstick R, et al. Nox2-derived radicals contribute to neurovascular andbehavioral dysfunction in mice overexpressing the amyloid precursor protein[J]. Proc Natl AcadSci U S A,2008,105(4):1347-1352.
    [185] Wilkinson B L, Cramer P E, Varvel N H, et al. Ibuprofen attenuates oxidative damage throughNOX2inhibition in Alzheimer's disease[J]. Neurobiol Aging,2012,33(1):121-197.
    [186] Pasqualetti P, Bonomini C, Dal Forno G, et al. A randomized controlled study on effects ofibuprofen on cognitive progression of Alzheimer's disease[J]. Aging Clin Exp Res,2009,21(2):102-110.
    [187] Martin B K, Szekely C, Brandt J, et al. Cognitive function over time in the Alzheimer's DiseaseAnti-inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial ofnaproxen and celecoxib[J]. Arch Neurol,2008,65(7):896-905.
    [188] Spiegelman B M. Transcriptional control of energy homeostasis through the PGC1coactivators[J]. Novartis Found Symp,2007,286:3-6,6-12,162-163,196-203.
    [189] Kreisler A, Duhamel A, Vanbesien-Mailliot C, et al. Differing short-term neuroprotectiveeffects of the fibrates fenofibrate and bezafibrate in MPTP and6-OHDA experimental modelsof Parkinson's disease[J]. Behav Pharmacol,2010,21(3):194-205.
    [190] Nicolakakis N, Aboulkassim T, Ongali B, et al. Complete rescue of cerebrovascular function inaged Alzheimer's disease transgenic mice by antioxidants and pioglitazone, a peroxisomeproliferator-activated receptor gamma agonist[J]. J Neurosci,2008,28(37):9287-9296.
    [191] Escribano L, Simon A M, Perez-Mediavilla A, et al. Rosiglitazone reverses memory decline andhippocampal glucocorticoid receptor down-regulation in an Alzheimer's disease mousemodel[J]. Biochem Biophys Res Commun,2009,379(2):406-410.
    [192] Watson G S, Cholerton B A, Reger M A, et al. Preserved cognition in patients with earlyAlzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone:a preliminary study[J]. Am J Geriatr Psychiatry,2005,13(11):950-958.
    [193] Risner M E, Saunders A M, Altman J F, et al. Efficacy of rosiglitazone in a genetically definedpopulation with mild-to-moderate Alzheimer's disease[J]. Pharmacogenomics J,2006,6(4):246-254.
    [194] Swartz H M, Chen K, Pals M, et al. Hypoxia-sensitive NMR contrast agents[J]. Magn ResonMed,1986,3(1):169-174.
    [195] Krishna M C, Grahame D A, Samuni A, et al. Oxoammonium cation intermediate in thenitroxide-catalyzed dismutation of superoxide[J]. Proc Natl Acad Sci U S A,1992,89(12):5537-5541.
    [196] Miura Y, Utsumi H, Hamada A. Antioxidant activity of nitroxide radicals in lipid peroxidationof rat liver microsomes[J]. Arch Biochem Biophys,1993,300(1):148-156.
    [197] Krishna M C, Samuni A, Taira J, et al. Stimulation by nitroxides of catalase-like activity ofhemeproteins. Kinetics and mechanism[J]. J Biol Chem,1996,271(42):26018-26025.
    [198] Mitchell J B, Samuni A, Krishna M C, et al. Biologically active metal-independent superoxidedismutase mimics[J]. Biochemistry,1990,29(11):2802-2807.
    [199] Mitchell J B, Anver M R, Sowers A L, et al. The antioxidant tempol reduces carcinogenesis andenhances survival in mice when administered after nonlethal total body radiation[J]. CancerRes,2012,72(18):4846-4855.
    [200] Mitchell J B, DeGraff W, Kaufman D, et al. Inhibition of oxygen-dependent radiation-induceddamage by the nitroxide superoxide dismutase mimic, tempol[J]. Arch Biochem Biophys,1991,289(1):62-70.
    [201] Hahn S M, Tochner Z, Krishna C M, et al. Tempol, a stable free radical, is a novel murineradiation protector[J]. Cancer Res,1992,52(7):1750-1753.
    [202] Goffman T, Cuscela D, Glass J, et al. Topical application of nitroxide protects radiation-inducedalopecia in guinea pigs[J]. Int J Radiat Oncol Biol Phys,1992,22(4):803-806.
    [203] Liebmann J, DeLuca A M, Epstein A, et al. Protection from lethal irradiation by thecombination of stem cell factor and tempol[J]. Radiat Res,1994,137(3):400-404.
    [204] Cotrim A P, Hyodo F, Matsumoto K, et al. Differential radiation protection of salivary glandsversus tumor by Tempol with accompanying tissue assessment of Tempol by magneticresonance imaging[J]. Clin Cancer Res,2007,13(16):4928-4933.
    [205] Metz J M, Smith D, Mick R, et al. A phase I study of topical Tempol for the prevention ofalopecia induced by whole brain radiotherapy[J]. Clin Cancer Res,2004,10(19):6411-6417.
    [206] Mitchell J B, Anver M R, Sowers A L, et al. The antioxidant tempol reduces carcinogenesis andenhances survival in mice when administered after nonlethal total body radiation[J]. CancerRes,2012,72(18):4846-4855.
    [207] Schubert R, Erker L, Barlow C, et al. Cancer chemoprevention by the antioxidant tempol inAtm-deficient mice[J]. Hum Mol Genet,2004,13(16):1793-1802.
    [208] Gariboldi M B, Ravizza R, Petterino C, et al. Study of in vitro and in vivo effects of thepiperidine nitroxide Tempol--a potential new therapeutic agent for gliomas[J]. Eur J Cancer,2003,39(6):829-837.
    [209] Kuppusamy P, Chzhan M, Vij K, et al. Three-dimensional spectral-spatial EPR imaging of freeradicals in the heart: a technique for imaging tissue metabolism and oxygenation[J]. Proc NatlAcad Sci U S A,1994,91(8):3388-3392.
    [210] Liu K J, Gast P, Moussavi M, et al. Lithium phthalocyanine: a probe for electron paramagneticresonance oximetry in viable biological systems[J]. Proc Natl Acad Sci U S A,1993,90(12):5438-5442.
    [211] Samuni A, Krishna C M, Mitchell J B, et al. Superoxide reaction with nitroxides[J]. Free RadicRes Commun,1990,9(3-6):241-249.
    [212] Krishna M C, Samuni A. The effect of oxygen at physiological levels on the detection of freeradical intermediates by electron paramagnetic resonance[J]. Free Radic Res Commun,1993,18(4):239-247.
    [213] Kuppusamy P, Afeworki M, Shankar R A, et al. In vivo electron paramagnetic resonanceimaging of tumor heterogeneity and oxygenation in a murine model[J]. Cancer Res,1998,58(7):1562-1568.
    [214] Kuppusamy P, Li H, Ilangovan G, et al. Noninvasive imaging of tumor redox status and itsmodification by tissue glutathione levels[J]. Cancer Res,2002,62(1):307-312.
    [215] Dunn J F, O'Hara J A, Zaim-Wadghiri Y, et al. Changes in oxygenation of intracranial tumorswith carbogen: a BOLD MRI and EPR oximetry study[J]. J Magn Reson Imaging,2002,16(5):511-521.
    [216] Brasch R C. Work in progress: methods of contrast enhancement for NMR imaging andpotential applications. A subject review[J]. Radiology,1983,147(3):781-788.
    [217] Matsumoto K, Hyodo F, Matsumoto A, et al. High-resolution mapping of tumor redox status bymagnetic resonance imaging using nitroxides as redox-sensitive contrast agents[J]. Clin CancerRes,2006,12(8):2455-2462.
    [218] McDonald M C, Zacharowski K, Bowes J, et al. Tempol reduces infarct size in rodent modelsof regional myocardial ischemia and reperfusion[J]. Free Radic Biol Med,1999,27(5-6):493-503.
    [219] Cuzzocrea S, McDonald M C, Mazzon E, et al. Beneficial effects of tempol, amembrane-permeable radical scavenger, in a rodent model of splanchnic artery occlusion andreperfusion[J]. Shock,2000,14(2):150-156.
    [220] Bi W, Cai J, Xue P, et al. Protective effect of nitronyl nitroxide-amino acid conjugates on liverischemia-reperfusion induced injury in rats[J]. Bioorg Med Chem Lett,2008,18(6):1788-1794.
    [221] Liang Q, Smith A D, Pan S, et al. Neuroprotective effects of TEMPOL in central and peripheralnervous system models of Parkinson's disease[J]. Biochem Pharmacol,2005,70(9):1371-1381.
    [222] Dikalov S I, Vitek M P, Maples K R, et al. Amyloid beta peptides do not form peptide-derivedfree radicals spontaneously, but can enhance metal-catalyzed oxidation of hydroxylamines tonitroxides[J]. J Biol Chem,1999,274(14):9392-9399.
    [223] Krishna M C, DeGraff W, Hankovszky O H, et al. Studies of Structure Activity Relationship ofNitroxide Free Radicals and Their Precursors as Modifiers Against Oxidative Damage[J].Journal of Medicinal Chemistry,1998,41(18):3477-3492.
    [224] Likhtenshtein G I, Yamauchi J, Nakatsuji S, et al. Organic Functional Materials ContainingChiral Nitroxide Radical Units[J].2008:303-329.
    [225] Reddy P H, Manczak M, Mao P, et al. Amyloid-beta and mitochondria in aging andAlzheimer's disease: implications for synaptic damage and cognitive decline[J]. J AlzheimersDis,2010,20Suppl2:S499-S512.
    [226] Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimerdisease[J]. J Neuropathol Exp Neurol,2001,60(8):759-767.
    [227] Nunomura A, Castellani R J, Zhu X, et al. Involvement of oxidative stress in Alzheimerdisease[J]. J Neuropathol Exp Neurol,2006,65(7):631-641.
    [228] Kim J, Lee H J, Lee K W. Naturally occurring phytochemicals for the prevention ofAlzheimer's disease[J]. J Neurochem,2010,112(6):1415-1430.
    [229] Tauskela J S. MitoQ--a mitochondria-targeted antioxidant[J]. IDrugs,2007,10(6):399-412.
    [230] Lim G P, Chu T, Yang F, et al. The curry spice curcumin reduces oxidative damage andamyloid pathology in an Alzheimer transgenic mouse[J]. J Neurosci,2001,21(21):8370-8377.
    [231] Hirel C, Pécaut J, Choua S, et al. Enantiopure and Racemic Chiral Nitronyl Nitroxide FreeRadicals: Synthesis and Characterization[J]. European Journal of Organic Chemistry,2005,2005(2):348-359.
    [232] Qin X, Xiong G, Sun Y, et al. Preparation and characterization of new chiral pyrrolyl α-nitronyl nitroxide radicals in which the imidazolyl framework was directly bound to chiralcenter[J]. Journal of Molecular Structure,2011,989(1–3):10-19.
    [233] Trinchese F, Liu S, Battaglia F, et al. Progressive age-related development of Alzheimer-likepathology in APP/PS1mice[J]. Ann Neurol,2004,55(6):801-814.
    [234] Galle J, Bengen J, Schollmeyer P, et al. Impairment of endothelium-dependent dilation in rabbitrenal arteries by oxidized lipoprotein(a). Role of oxygen-derived radicals[J]. Circulation,1995,92(6):1582-1589.
    [235] Musiek E S, Morrow J D. F2-isoprostanes as markers of oxidant stress: an overview[J]. CurrProtoc Toxicol,2005,Chapter17:15-17.
    [236] Morita Y, Naka T, Kawazoe Y, et al. Signals transducers and activators of transcription(STAT)-induced STAT inhibitor-1(SSI-1)/suppressor of cytokine signaling-1(SOCS-1)suppresses tumor necrosis factor alpha-induced cell death in fibroblasts[J]. Proc Natl Acad SciU S A,2000,97(10):5405-5410.
    [237] Bayir H, Kagan V E, Borisenko G G, et al. Enhanced oxidative stress in iNOS-deficient miceafter traumatic brain injury: support for a neuroprotective role of iNOS[J]. J Cereb Blood FlowMetab,2005,25(6):673-684.
    [238] McManus M J, Murphy M P, Franklin J L. The mitochondria-targeted antioxidant MitoQprevents loss of spatial memory retention and early neuropathology in a transgenic mousemodel of Alzheimer's disease[J]. J Neurosci,2011,31(44):15703-15715.
    [239] Trinchese F, Liu S, Battaglia F, et al. Progressive age-related development of Alzheimer-likepathology in APP/PS1mice[J]. Ann Neurol,2004,55(6):801-814.
    [240] Blanchard V, Moussaoui S, Czech C, et al. Time sequence of maturation of dystrophic neuritesassociated with Abeta deposits in APP/PS1transgenic mice[J]. Exp Neurol,2003,184(1):247-263.
    [241] Kirsch D G, Doseff A, Chau B N, et al. Caspase-3-dependent cleavage of Bcl-2promotesrelease of cytochrome c[J]. J Biol Chem,1999,274(30):21155-21161.
    [242] Lustbader J W, Cirilli M, Lin C, et al. ABAD directly links Abeta to mitochondrial toxicity inAlzheimer's disease[J]. Science,2004,304(5669):448-452.
    [243] Kurt M A, Davies D C, Kidd M, et al. Hyperphosphorylated tau and paired helical filament-likestructures in the brains of mice carrying mutant amyloid precursor protein and mutantpresenilin-1transgenes[J]. Neurobiol Dis,2003,14(1):89-97.
    [244] Itagaki S, McGeer P L, Akiyama H, et al. Relationship of microglia and astrocytes to amyloiddeposits of Alzheimer disease[J]. J Neuroimmunol,1989,24(3):173-182.
    [245] Trinchese F, Liu S, Battaglia F, et al. Progressive age-related development of Alzheimer-likepathology in APP/PS1mice[J]. Ann Neurol,2004,55(6):801-814.
    [246] Perry V H, Nicoll J A, Holmes C. Microglia in neurodegenerative disease[J]. Nat Rev Neurol,2010,6(4):193-201.
    [247] Smith M A, Zhu X, Tabaton M, et al. Increased iron and free radical generation in preclinicalAlzheimer disease and mild cognitive impairment[J]. J Alzheimers Dis,2010,19(1):363-372.
    [248] Selkoe D J. Alzheimer's disease: genes, proteins, and therapy[J]. Physiol Rev,2001,81(2):741-766.
    [249] Drake J, Link C D, Butterfield D A. Oxidative stress precedes fibrillar deposition ofAlzheimer's disease amyloid beta-peptide (1-42) in a transgenic Caenorhabditis elegansmodel[J]. Neurobiol Aging,2003,24(3):415-420.
    [250] Selkoe D J. Alzheimer disease: mechanistic understanding predicts novel therapies[J]. AnnIntern Med,2004,140(8):627-638.
    [251] Hardy J, Selkoe D J. The amyloid hypothesis of Alzheimer's disease: progress and problems onthe road to therapeutics[J]. Science,2002,297(5580):353-356.
    [252] Mohmmad A H, Wenk G L, Gramling M, et al. APP and PS-1mutations induce brain oxidativestress independent of dietary cholesterol: implications for Alzheimer's disease[J]. Neurosci Lett,2004,368(2):148-150.
    [253] Garwood C J, Pooler A M, Atherton J, et al. Astrocytes are important mediators ofAbeta-induced neurotoxicity and tau phosphorylation in primary culture[J]. Cell Death Dis,2011,2:e167.
    [254] Zhu X, Su B, Wang X, et al. Causes of oxidative stress in Alzheimer disease[J]. Cell Mol LifeSci,2007,64(17):2202-2210.
    [255] Butterfield D A, Boyd-Kimball D. The critical role of methionine35in Alzheimer's amyloidbeta-peptide (1-42)-induced oxidative stress and neurotoxicity[J]. Biochim Biophys Acta,2005,1703(2):149-156.
    [256] Haghighi A Z, Maples K R. On the mechanism of the inhibition of glutamine synthetase andcreatine phosphokinase by methionine sulfoxide[J]. J Neurosci Res,1996,43(1):107-111.
    [257] Kanski J, Aksenova M, Butterfield D A. The hydrophobic environment of Met35ofAlzheimer's Abeta(1-42) is important for the neurotoxic and oxidative properties of thepeptide[J]. Neurotox Res,2002,4(3):219-223.
    [258] Yao J, Irwin R W, Zhao L, et al. Mitochondrial bioenergetic deficit precedes Alzheimer'spathology in female mouse model of Alzheimer's disease[J]. Proc Natl Acad Sci U S A,2009,106(34):14670-14675.
    [259] Matsumoto K, Hyodo F, Matsumoto A, et al. High-resolution mapping of tumor redox status bymagnetic resonance imaging using nitroxides as redox-sensitive contrast agents[J]. Clin CancerRes,2006,12(8):2455-2462.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700