血管内皮祖细胞的基因修饰与体外三维培养的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管内皮祖细胞是血管内皮细胞的前体细胞具有定向迁移分化为成熟血管内皮细胞的能力。参与出生后的血管生成和血管发生,近年来血管内皮祖细胞被广泛用于治疗缺血性心血管疾病和组织工程血管生成的研究中。为了提高血管内皮祖细胞的移植效率,克服传统干细胞移植治疗方法中的不足。将血管内皮祖细胞种植于模拟体内细胞外基质结构的三维载体支架上,进行体外培养和体内移植,是近年来研究的热点。
     本研究采用从大鼠骨髓分离单个核细胞,用特定的诱导培养基在体外培养、扩增血管内皮祖细胞。并将构建的表达组织因子途径抑制因子(TFPI)基因的重组逆转录病毒载体包装成逆转录病毒,感染血管内皮祖细胞,获得稳定表达TFPI和GFP基因的血管内皮祖细胞,用复乳有机溶剂挥发法添加蔗糖做为致孔剂,制备了聚乳酸(poly (D, L-lactide), PDLLA)多孔微球,考察了血管内皮祖细胞在RGD修饰的聚乳酸多孔微球载体上的粘附、增殖、分化情况。具体研究内容如下:
     为获得一种方便、有效的血管内皮祖细胞分离、培养和扩增方法,本研究选用密度梯度离心法分离大鼠骨髓单个核细胞,结合贴壁培养法,在添加特定生长因子的诱导体系培养血管内皮祖细胞。通过观察其生长过程中的形态改变、检测EPCs的功能和表面标志来进行鉴定。倒置显微镜观察,在贴壁培养的第4d出现EPCs集落,细胞呈纺锤形,增长速度快,于培养的第14天集落相互融合,细胞分化成铺路石样细胞。荧光显微镜观察可见大部分EPCs能同时摄取Dil-acLDL和结合FITC-UEA-1。荧光显微镜观察到培养14d的EPCs CD31、v-WF免疫荧光染色呈阳性。流式细胞仪检测结果显示CD133、Flk.1在诱导培养的3.7d呈升高趋势,至培养的第14d两者的表达量明显降低。在培养的第3、7d,CD31几乎没有表达,至培养的第14d,EPCs的CD31表达量明显升高。以上试验结果证实此方法分离培养后得到的细胞是相对纯度较高的血管内皮祖细胞。
     为获得稳定表达TFPI和GFP基因的血管内皮祖细胞,本研究将人全长TFPI的cDNA亚克隆到逆转录病毒载体pMSCV-IRES-GFP中,获得定向插入重组子pMSCV-TFPI-IRES-GFP,酶切图谱证实重组病毒中含有人TFPI的cDNA片段,基因测序结果与Genebank中TFPI cDNA序列相符。用构建的重组质粒转染293T细胞,成功包装出含有TFPI和GFP基因的逆转录病毒,将重组的逆转录病毒感染EPCs,荧光显微镜观察及流式细胞仪检测显示,90%以上的感染细胞中存在GFP表达。RT-PCR分析显示,重组的逆转录病毒感染的EPCs中TFPI mRNA水平明显增高,ELISA法检测显示,感染重组病毒的EPCs培养上清中有TFPI蛋白表达。以上研究结果为TFPI基因结合血管内皮祖细胞进行血管再狭窄防治的研究奠定了良好的实验基础。
     用复乳有机溶剂挥发法,同时选用蔗糖做为致孔剂,制备了聚乳酸多孔微球,粒径为100-300μm左右,微球支架表面孔径为16±3.78μm,球形态好,粒径、孔径均匀分布,通过共价交联的方法用RGD修饰PDLLA多孔微球,修饰后的微球形态无改变,通过红外、XPS等检测技术证实RGD成功修饰多孔微球表面。本阶段的研究为用PDLLA多孔微球作为血管内皮祖细胞的微载体研究奠定了基础。
     为考察RGD-PDLLA多孔微球支架的生物相容性,将血管内皮祖细胞种植于RGD-PDLLA多孔微球支架,以未经RGD修饰的PDLLA微球为对照,通过MTT、扫描电镜、荧光染色等生物学性能检测后,对比研究RGD修饰的PDLLA微球对EPCs增殖和分化的影响。MTT结果显示EPCs种植于多孔微球支架后的第1d、3d、7d,细胞数量逐渐增多,这说明EPCs能够在PDLLA多孔微球支架上生长、增殖。而且RGD-PDLLA多孔微球上细胞数量明显高于未修饰的PDLLA多孔微球支架。扫描电镜和荧光显微镜观察结果与MTT结果相一致。EPCs种植于多孔微球支架后的7d,保持着摄取Dil-acLDL和结合FITC-UEA-1的功能。
Endothelial Progenitor Cells (EPCs) are endothelial precursors that have an enhanced potential for differentiation into the endothelial cell lineage. EPCs are recruited into injured tissues and contribute to vasculogenesis and angiogenesis by directly incorporating into vessel walls or by secreting a variety of angiogenic growth factors. Subsequently, EPCs transplantation has been widely used in treatment of non-curable ischemic diseases and construction of tissue engineered vessels. To overcome the drawbacks of conventional cell transplantation methods and improve the quality of EPCs grafted into the injured sites. A variety of biosynthetic scaffolds have been developed as EPCs carrier for cells in vitro expension and in vivo tansplantation.
     In our study, EPCs obtained from rat bone marrow mononuclear cells(BMMNCs) were cultured in special medium. The constructed recombinant retroviral vector capable of expressing human tissue factor pathway inhibitor(TFPI) and GFP was packed into TFPI retrovirals. and infected EPCs successfully. Biological compatibility of the poly (D, L-lactide) (PDLLA) and the RGD modified PDLLA porous microspheres scaffolds were assessed by in vitro culture of EPCs and cervical cancer cells. The main content of this research are shown as follows. To establish an efficient and stable method for obtaining endothelial progenitor cells from rat bone marrow. Bone marorw mononuclear cells were isolated from rat bone marrow of femurs and tibias by Histopaque-1083 density gradient centrifugation. Then were cultured in endothelial basal medium(EGM-2) supplemented with vascular endothelial growth factor, basic fibroblast growth factor, insulin-like growth factor-1, epidermal growth factor, ascorbic acid. The form of colonis of EPCs was observed under inverted microscope. The function of EPCs were identified through uptaking DiL-acLDL and binding FITC-UEA-1. The expressions of surface markers (CD133、flk-1,CD31,v-WF) were analyzed by immunofluorescence and Fluorescence-activated cell sorting.The adhesive cells formed clusters after 4 days plating. These colonies proliferated rapidly and exhibited spindle-shaped morphology. Twelve days after plating most colonies had reached near confluence and differentiated into cobblestone-shaped cells. The majority of the cells expressed endothelial markers of CD31 and v-WF After 14 days culture by immunofluorescence detection. Furthermore, These cells were positive for Dil-acLDL incorporation and UEA-1 lectin binding after 14 days culture. Fluorescence-activated cell sorting (FACS) detection demonstrated that the expression of the early markers of EPCs (CD133、Flk-1) increased gradually after 3d、7d culture.Then decreased after 14 days culture. The expression of the late markers of EPCs (CD31) was detected highly increased after 14d culture.
     To construct the recombinant retroviral vector capable of expressing human tissue factor pathway inhibitor and GFP in rat endothelial progenitor cells (EPCs). Full length TFPI cDNA obtained from pIRES-TFPI by PCR amplification was digested with EcoRI and Xhol restriction enzymes and subsequently inserted into pMSCV-IRES-GFP expression vector to create the recombinant bicistronic retroviral vector pMSCV- TFPI- IRES -GFP encoding both TFPI and GFP. The recombinant plasmid was identified with restrictive endonuclease digestion and DNA sequencing. The recombinant plasmid was transfected into 293T and the supernatant containing packaged recombinant retroviral particles was collected and used to infect the EPCs isolated from rat bone marrow. TFPI mRNA was measured by RT-PCR and the amount of TFPI protein secreted from the transfected cells was determined by ELISA. GFP expression in the infected cells was analyzed by fluorescent microscopy and fluorescence activated cell sorting (FACS). Restriction endonuclease mapping and DNA sequencing confirmed the in-frame insertion of TFPI cDNA into the constructed vector-pMSCV-TFPI-IRES-GFP. Both RT-PCR and ELISA analysis demonstrated increased TFPI expression in the EPCs infected with TFPI retroviral. FACS analysis demonstrated that the transduction efficiency of EPCs with TFPI retroviral in vitro was over 90%. pMSCV-TFPI-IRES-GFP could be effectively expressed in cultured EPCs and may provide a useful tool for further study on the application of TFPI in the prevention of restenosis.
     Solvent-evaporation method was modified using sucrose as an additive to form large porous microspheres of PDLLA polymers.Then porous PDLLA microspheres were modified by RGD via a method of hydrolysis and grafting-coating to improve their compatibility to cells. Surface morphology of PDLLA microspheres before and after hydrolysis was visualized by scanning electron microscopy. The SEM images of PDLLA microspheres revealed that there was a highly open porous structure between the surface and the internal.There are more porous on the hydrolysis microspheres than untreated microspheres.Modified microspheres were characterized for surface chemistry by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR). FT-IR spectra exhibited characteristic peaks of amide at 3430cm-1 and 1630cm-1, XPS spectra shows the N 1s (atomic orbital 1s of nitrogen) region of the surface of the microspheres.
     Biological Compatibility of the control PDLLA and the RGD modified porous PDLLA microspheres were assessed by in vitro culture of endothelial progenitor cells. The morphology and distribution of cells on the microspheres were observed under SEM、inverted fluorescence microscopy after cultured for 1d、7 d. Cell viability was measured by MTT assay.RGD modified PDLLA microspheres exhibited stronger ability to promote EPCs attachment and proliferation after 24 h、3d、7 d culture compared to unmodified microspheres. Morever, EPCs on RGD modified microspheres maintain the function of uptaking DiL-acLDL and binding FITC-UEA-1. Scanning electron microscopy also revealed copious amount of extra-cellular matrix production by EPCs.Therefore, the RGD-coated PDLLA microspheres can be potentially used as the injectable cell microcarriers for EPCs in the treatment of Ischemic disease and tissue engineering vessels.
引文
1. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis [J]. Science,1997,275(5302):964-967.
    2. Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia[J]. Circulation, 2001,103(5):634-637.
    3. Murasawa S, Asahara T. Endothelial Progenitor Cells for Vasculogenesis Physiology,2005,20:36-42.
    4. SudaT, TakakuraN, OikeY. Hematopoiesis and angiogenesis[J]. Int Hematol, 2000,71:99-107.
    5. Murohara T, Ikeda H, Duan J. Transplanted cord blood-derived endothelial progenitor cells augment postnatal neovascularization[J]. Clin Invest,2000, 105(11):1527-1536.
    6. Hristov M, Erl W, Weber PC. Endothelial progenitor cells:moblization, differentiation and homing[J]. Arterioscler Thromb Vasc Biol,2003,23(7): 1185-1189.
    7. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin endothelial progenitor cells responsible for postnatal vasculogenesin physiological and pathological neovascularization[J]. Circ Res,1999,85(3):221-228.
    8. Hu Y, Zhang Y, Tomney, et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice[J]. J Clin Invest,2004,113(9):1258-126.
    9. Planat B V, Silvestre JS, Cousin B, et al. Plasticity of human adpose lineage cells towards endothelial cells:physiological and therapeutic perspective [J]. Circulation,2004,109(5):656-663.
    10. Jerome G, Roncalli. et al. Endothelial progenitor cells in regenerative medicine and cancer:a decade of research Trends in Biotechnology 26(5):276-283.
    11. Peichev M, Neiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC 133 by circulating human CD34+ cells identifies a population of functional endothelial precursors[J]. Blood,2000,95:952-958.
    12. Yin AH, Miraglia S, Zanjani ED, et al. CD 133, a novel marker for human hematopoietic stem and progenitor cells[J]. Blood,1997,90:5002-5012.
    13. Jin H, Chang Hwan Y, Hyo Soo K, et al. Characterization of two types of Endothelial progenitor cells and the different contribution to neovasculogenesis [J]. Arterioseler Thromb Vasc Biol,2004,24(2):288-293.
    14. Murga M, Yao L, Tosato G. Derivation of endotheliaL cells from CD34-umbilical cord blood[J]. Stem cells,2004,22(3):385-395.
    15. Schmeisser A, Garlichs CD, Zhang H, et al. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions [J]. Cardiovasc Res,2001,49(3):671-680.
    16. Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial Progenitors in human postnatal bone marrow[J]. Clin Invest,2002,109(3):337-346.
    17. Satoshi Murasawa, Takayuki Asahara. Gene Modified Cell Transplantation for Vascular Regeneration[J].Current Gene Therapy,2007,7:1-6.
    18. Shintani S, Murohara T, Ikeda H, et al. Augmentation of postnatal neovascula rization with autogous bone marow transplantation. Circulation,2001,12: 897-903.
    19. Jackson KA, Majka SM, Wang H, et al.Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest,2001,107: 1395-1402.
    20. Jozkowicz A, Dulak J, Nanobashvili J, et al. Vasculogenesis-a new strategy for induction of peripheral neovascularization. Eur Surg,2002,34:114-117.
    21. Assmus B, Schachinger V, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation,2002,106:3009-3017.
    22. Kalka C, Masuda H, Tomono T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci, USA 1999,97:3422-3427.
    23. Sharpe EE, Teleron AA, Li B, Price J, Sands MS, Alford K, Young PP. The origin and in vivo significance of murine and human culture expanded endothelial progenitor cells (CE-EPCs). Am J Pathol,2006,168:1710-1720.
    24. Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM, ParkYB.Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Hypertension,2004,24:1-6.
    25. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest,2000,105:71-77.
    26. Gulati R, Jevremovic D, Peterson TE, Chatterjee S, Shah V, Vile RG, Simari RD. Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ Res 2003,93:1023-1025.
    27. Ingram DA, Mead LE, Tanaka H, Meade V, Fonoglio A, Mortell K, Pollok Ferkowicz MJ, Gilley D, Yoder MC. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood,2004,104:2752-2760.
    28. Hristov M; Erl WG; Weber PC.Endothelial Progenitor Cells Mobilization、 Differentiation, and Homing.Arterioscler. Thromb. VascBiol.2003; 23: 1185-1189.
    29. Hartlap PI, Abert R, Saeed RW, et al. Fibrocytes induce an angiogenic Phenotype in cultured endothelial cells and promote angiogenesis in vivo. FASEB J,2001,15: 2215-2224.
    30. Rsfii S, Heissig B, Hatoori K, et al. Efficient mobilization and recruitment of marrow-derived endothelial and hematopoietics stem cells by adenoviral vectors expressing angiogenic factors [J].Gene Ther,2002,9(10):631-636.
    31. Gehling UM, ErgunS, SehumaeherU et al. Invitro differentiation of endothelial cells from AC133 positive progenitor cells[J]. Blood,2000,95:3106-3112.
    32. levadot L, Murasawa S, Kureishi Y, et al. HMG-coA inhibitor mobilized Bone marrow-derived endothelial Progenitor cells. J Clin Invest,2001,108:399-400.
    33. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin endothelial progenitor cells responsible for postnatal vasculogenesin physiological and pathological neovascularization[J]. Circ Res,1999,85(3):221-228.
    34. Moore MA, Hattori K, Heissig B, et al. Mobilization of endothelial and hematopoietic stem and Progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoictin-1.Ann N Y ACad Sci,2001,938: 36-45.
    35. Gerhard-Paul Diller, Sven van Eijl. Circulating endothelial progenitor cells in patients with Eisenmenger syndrome and idiopathic pulmonary arterial hypertension[J]. circulation,2008,117:3020-3030.
    36. Rica Tanaka, Mika Wada. The effects of flap ischemia on normal and diabetic progenitor cell function [J]. Plast Reconstr Surg,2008,121(6):1929-1942.
    37. Zhu SK, Evans S. Transcriptional regulation of Bim by FOXO3a and Akt Mediates scleroderma serum-induced apoptosis in endothelial progenitor cells[J].Circulation,2008,118(21):2156-2165.
    38. Nagaya N, Kangawa K, Kanda M, et al. Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells. Circulation,2003,108:889-895.
    39. Kalka C, Masuda H, Takahashi T, et al.hara, T. (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularizati on. Proc. Natl. Acad. Sci. USA,97:3422-3427.
    40. Tepper OM, Galiano RD, Kalka C, et al. Endothelial progenitor cells:the promise of vascular stem cells for plastic surgery [J]. Plast Reconstr Surg,2003,111:846-854.
    41. waguro H, Yamaguchi J, Kalka C, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration[J]. Circulation, 2002,105:732-738.
    42. Kong DL, Melo LG, Mangi AA, et al. Enhanced inhibition of neointimal hyperplasia by genetically engineered endothelial progenitor cells[J]. Circulation, 2004,109:1769-1775.
    43. Morales CP, Holt SE, Ouellette M, et al. Absence of cancer associated changes in human fibroblasts immortalized with telomerase[J]. Nat. Genet,1999,21: 115-118.
    44. Bodnar AG, Ouellette M, et al. Extension of life-span by introduction of telomerase into normal human cells[J]. Science,1998,279:349-352.
    45. Murasawa S, Llevadot J, Silver M, Isner J M, et al. Constitutive human telomerase reverse transcriptase expression enhances regenerative properties of endothelial progenitor cells[J]. Circulation,106:1133-1139.
    46. Tara S, MiyamotoM, Asoh S, et al. Transduction of the anti-apoptotic PTD-FNK protein improves the efficiency of transplantation of bone marrow mononuclear cells[J]. Mol Cell Cardiol,2007,42 (3):489-497.
    47. Iwami Y, Masuda H, Asahara T. Endothelial progenitor cells:past, state of art, and future[J]. Cell Mol Med,2004,8:488-497.
    48. Steffel J, Luscher TF, Tanner FC. Tissue factor in cardiovascular diseases: molecular mechanisms and clinical implications[J]. Circulation,2006,113(5): 722-731.
    49. Kamikubo Y, Nakahara Y, Takemoto S, et al. Human recombinant tissue-factor pathway inhibitor prevents the proliferation of cultured human neonatal aortic smooth muscle cells[J]. FEBS Lett,1997,407(1):116-120
    50. Sato Y, Asada Y, Marutsuka K, et al. Tissue factor pathway inhibitor inhibits aortic smooth muscle cell migration induced by tissue factor/factor Ⅶa complex[J]. Thromb Haemost,1997,78(3):1138-1141.
    51. chen D, weber M, shiels PG, et al. Postinjury vascular intimal hyperplasia in mice is completely inhibited by CD34+ bone marrow-derived progenitor cells expressing membrane-tethered anticoagulant fusion proteins[J]. Journal of Thrombosis and Haemostasis,4:2191-2198.
    52. Aicher A, Brenner W, Zuhayra M, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling[J]. Circulation,2003,107(16):2134-9.
    53. Reinecke H, Murry CE. Taking the death toll after cardiomyocyte grafting:a reminder of the importance of quantitative biology[J]. Mol Cell Cardiol 2002, 34(3):251-3.
    54. Mooney DJ, Vandenburgh H. Cell delivery mechanisms for tissue repair[J]. Cell Stem Cell,2008,2(3):205-13.
    55. Bonaros N, Rauf R, Schachner T, Laufer G, Kocher A. Enhanced cell therapy forischemic heart disease[J]. Transplantation 2008,86(9):1151-60.
    56. Wu X, Rabkin-Aikawa E, Guleserian KJ, et al. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells [J]. Am J Physiol Heart Circ Physiol,2004,287(2):480-487.
    57. Chmidt D, Mol A, Neuenschwander S, Breymann C, et al. Living patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells [J]. Eur J Cardiothorac Surg,2005,27(5):795-800.
    58. Vorin EL, Wylie-Sears J, Kaushal S, Martin DP, Bischoff J. Quantitative evaluation of endothelial progenitors and cardiac valve endothelial cells: proliferation and differentiation on poly-glycolic acid/poly-4-hydroxybutyrate scaffold in response to vascular endothelial growth factor and transforming growth factor betal [J]. Tissue Eng,2003,9(3):487-93.
    59. Werner N, Junk S, Laufs U, et al. Intravenous transfusion of endothelial Progenitor cells reduces neointima formation after vascular injury. Circ Res,2003, 93:17-24.
    60. Griese DP, Ehsan A, Melo LG, et al. Isolation and transplantation of autologous endothelial Cells into denuded vessels and Prosthetic grafts:implications for cell-based vascular therapy. Circulation,2003,108:2710-2715.
    61. Kong D, Melo LG, Gnecchi M. et al. Cytokine-Induced Mobilization of Circulating Endothelial Progenitor Cells Enhances Repair of Injured Arteries[J]. Circulation,2004,110:2039-2046.
    62. Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic Potential of ex vivo Expanded endothelial progenitor cells for myocardial ischemia [J]. Circulation. 2001,103:634-637.
    63. Shintani S, Murohara T, IkedaH, et al. Mobilization of endothelial Progenitor cells in Patients with acute myocardial infarction[J].Circulation,2001,103:2776-2779.
    64. Kamihata H, Matsubara H, NishiueT et al. Implantation of bone marrow Mononuclear cells into ischemic myocardium enhances collateral perfusion an regional fuction via side supply of angioblasts, angiogenic ligands, and cytokines[J]. Circulation,2001,104:1046-1052.
    65. Condorelliq, BorelloU, De AngelisL. et al. Cardiomyocytes induce endothelial cells to transdifferentiate into cardiac muscle:implications for myocardium regeneration[J]. Proe Nat Acad Sci USA,2001,98:10733-10738.
    66. Badorff C, Brandes RP, PoPP R, et al. Transdifferentiation of blood derived human adult endothelial Progenitor Cells into functionally active cardiomyocytes [J]. Circulation,2003,107:1024-1032.
    67. Assmus B, Sehaehinger V, TeuPe C, et al. Transplantation of Progenitor cells and regeneration enhancement in acute myocardial infarction(TOPCARE-AMI) [J]. Circulation,2002,106:53-61.
    68. Stamm C, WestPhal B, Kleine HD, et al. Autologous bone-marrow stem cell transplantation for myocardial regeneration[J]. Lancet,2003,361:45-46.
    69. Kalka C, Macuda H, Takahashi T, et al. Transplantation of ex-expanded endothelial progenitor cells for therapeutic neovascularization[J]. Proc Natl Acad Sci USA,2000,97(7):3422-3427.
    70. Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogen-esis for patients with limb ischemia by autologous transplantation of bone marrow cells a pilot study and a randomized control trial[J]. Lancet,2002, 360(9331):427-435.
    71. Griese DP, Ehsan A, Melo LG, et al. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: implications for cell-based vascular therapy [J]. Circulation,2003,108(21): 2710-2715.
    72. Melero-Martin JM, Khan ZA, Picard A, et al. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood,2007,109:4761-4768.
    73. He H, Shirota T, Yasui H, et al. Canine endothelial progenitor cell-lined hybrid vascular graft with nonthrombogenic potential[J]. Thorac Cardiovasc Surg,2003, 126(2):455-464.
    74. Wu X, Rabkin-Aikawa E, et al. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells[J]. Am J Physiol Heart Circ Physiol,2004,287:480-487.
    75. Kaushal S, Amiel GE, Guleserian KJ, et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo[J]. Nat Med,2001, 7(9):1035-1040.
    76. Abbott, A. Cell culture:Biology's new dimension[J]. Nature,2003,424,870-872.
    77. Cukierman E, Pankov R, Stevens D R, Yamada K M. Taking Cell-Matrix Adhesions to the Third Dimension Science[J].2001,294:1708-1712.
    78. Schmeichel KL, Bissell MJ. Modeling tissue-specific signaling and organ function in three dimensions[J]. Cell Sci 2003,116(12):2377-88.
    79. Weaver V M, Petersen O W, Wang F, Larabell C A, Briand P,Damsky C. Bissell M J. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies[J]. Cell Biol.1997,137:231-245.
    80. Voytik-Harbin SL. Three-dimensional extracellular matrix substrates for cell culture[J]. Methods Cell Biol.2001,63:561-81.
    81. Nilsang S, Nehru V, Plieva FM, et al. Three-dimensional culture for monoclonal antibody production by hybridoma cells immobilized in macroporous gel particles[J]. Biotechnol Prog.2008,24(5):1122-1131.
    82. El-Ayoubi R, Eliopoulos N, Diraddo R. et al. Design and fabrication of 3D porous scaffolds to facilitate cell-based gene therapy[J]. Tissue Eng Part A.2008, 14(6):1037-1048.
    83. Conklin Schaner P J, Martin N D, Tulenko T N, et al. Decellularized vein as a protential scaffold for vascular tissue engineering[J]. Vasc Surg,2004,40: 146-153.
    84. Huynh T, Abraham G, Murray J, et al. Remodeling of an cellular collagen graft into a physiologically responsive neovessel [J]. Nature Biotechnology 1999,17:10832-1086.
    85. Sims CD, Butler PE, Cao YL. et al. Tissue engineered neocaltilage using plasma derived polymer substrates and chondrocytes[J].Plast Reconatr Surg 1998,101(6): 1580-5.
    86. Bursac N, Papadaki M, Cohen RJ, Schoen FJ, et al. Cardiac muscle tissue engineering:toward an in vitro model for lectrophysiological studies[J]. Am J Physiol,1999,277(2):433-444.
    87. Papadaki M, Bursac N, Langer R, et al. Tissue engineering of functional cardiac muscle:molecular,structural, and electrophysiological studies[J]. Am J Physiol Heart Circ Physiol,2001,280(1):168-178.
    88. AlaviA, Stupack DG. Cell survival in a three-dimensional matrix[J]. Methods Enzymol,2007,426:85-101.
    89. Li W, Machule D, Gao C, DenBesten PK. Growth of ameloblast-lineage cells in a three-dimensional Matrigel environment[J]. Eur J Oral Sci,2006,114 Suppl 1: 159-163.
    90. Jarcho M, Kay JF, Gumaer KI, Doremus RH, Drobeck HP. Tissue, cellular and subcellular events at a bone-ceramic hydroxylapatite interface[J]. J Bioeng 1977, 1:79-92.
    91. Quarto R, Mastrogiacomo M, Cancedda R, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells[J]. N Engl J Med,2001,344: 385-6.
    92. Kulkarni RK, Pani KC, Neuman C, Leonard F. Polylactic acid for surgical implants[J]. Arch Surg,1966,93:839-43.
    93. Hofmann GO. Biodegradable implants in orthopaedic surgery-a review on the state-of-the art[J]. Clin Mater,1992,10:75-80.
    94. XiaoWu, ElenaR, Kristine, et al. Tissue-engineered microvessels on three-dimensionnal biodegradable scaffolds using endothelial progenitor cells.Am J Physiol Heart Circ Physiol,2004,287:480-487.
    95. Anuradha Subramanian, Uma Maheswari Krishnan, et al. Development of biomaterial scaffold for nerve tissue engineering:Biomaterial mediated neural regeneration [J].Biomaterials,2004,25:5763-5771.
    96. Kim TK, Yoon JJ, Lee DS, Park TG. Gas foamed open porous biodegradable polymeric microspheres[J]. Biomaterials,2006,27:152-9.
    97. Lee SC, Shea M, Battle MA, et al. Healing of large segmental defects in rat femurs is aided by RhBMP-2 in PLGA matrix[J]. Biomed Mater Res 1994, 28:1149-56.
    98. NewmanKD, McBurney MW. Poly(D,L lactic-co-glycolic acid)microspheres as biodegradable microcarriers for pluripotent stem cells[J]. Biomaterials,2004, 25(26):5763-5771.
    99. Rodrigues CVM, Serricella P, Linhares ABR, et al. Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering[J]. Biomaterials,2003,24(27):4987-4997.
    100.Thomson RC, Yaszemski MJ, Powers JM, et al. Hydroxyapatite fiber reinforced poly(a-hydroxyester)foams for bone regeneration[J]. Biomaterials,1998,19(21): 1935-1943.
    101.Marra KG, Szem JW, Kumta PN, et al. In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering[J]. Journal of Biomedical Materials Research,1999,47(3):324-335.
    102.Ma PX, Zhang RY, Xiao GZ, et al. Engineering new bone tissue in vitro on highly porous poly(a-hydroxyl cids)/hydroxyapatite composite scaffolds[J]. Journal of Biomedical Materials Research,2001,54(2):284-293.
    103.Weng J, Wang M, Chen JY. Plasma-sprayed calcium phosphate particles with high bioactivity and their use in bioactive scaffolds[J]. Biomaterials,2002,23(13): 2623-2629.
    104.Wei GB, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering[J]. Biomaterials,2004,25(19): 4749-4757.
    105.ZhaoF, Yin,YJ, Lu WW, et al. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds[J], Biomaterials,2002,23(15):3227-3234.
    106.Park SN, Park JC, Kim HO, et al. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide cross-link in[J]. Biomaterials,2002,23(4):1205-1212.
    107.Zhang J, Senger B, Vautier D, et al. Natural polyelectrolyte films based on layer-by layer deposition of collagen and hyaluronic acid[J]. Biomaterials,2005, 26(16):3353-3361.
    108.Wang XH, Li DP, Wang WJ, et al. Crosslinked collagen/chitosan matrix for artificial livers[J]. Biomaterials,2003,24(19):3213-3220.
    109.Ma L, Gao CY, Mao ZW, et al. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering[J]. Biomaterials,2003,24(26):4833-4841.
    110.Li ZS, Ramay HR, Hauch KD, et al.Chitosan-alginate hybrid scaffolds for bone tissue engineering[J]. Biomaterials,2005,26(18):3919-3928.
    111.Yamane S, Iwasaki N, Majima T, et al. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering[J]. Biomaterials,2005,26(6):611-619.
    112.Mao JS, Zhao LG, Y YJ, et al. Structure and properties of bilayer chitosan-gelat in scaffolds[J]. Biomaterials,2003,24(6):1067-1074.
    113.Wang YC, Lin MC, Wang DM, et al. Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering[J]. Biomaterials.2003,24(6): 1047-1057.
    114.Ding Z, Chen JN, Gao SY, et al. Immobilization of chitosan onto poly-lactic acid film surface by plasma graft polymerization to control the morphology of fibroblast and liver cells[J]. Biomaterials,2004,25(6):1059-1067
    115.Wang XH, Li DP, Wang WJ, et al. Crosslinked collagen/chitosan matrix for artificial livers[J]. Biomaterials,2003,24(19):3213-3220.
    116.Murphy WL, Peters MC, Kohn DH, et al. Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide)scaffolds for tissue engineering[J]. Biomaterials.2000,21(24):2521-2527.
    117.Ma ZW, Gao CY, Gong YH, et al. Cartilage tissue engineering PLLA scaffold with surfacelmmobilized collagen and basic fibroblast growth factor [J]. Biomaterials.2005,26(11):1253-1259.
    118.Marklein RA, Burdick JA. Controlling Stem Cell Fate with Material Design[J].Adv. Mater.2010,22,175-189.
    119.Mikos AG, Bao Y, Cima LG, et al. Preparation of Poly(glycolicacid)bonded fiber structures for cell attachment and transplantation[J]. Biomed Mat Res,1993, 27:183-189.
    120.Mooney DJ, Mazzoni CL, Breuer C, et al. Stablized polyglycolicacid fiber based tubes for tissue engineering[J]. Biomaterials,1996,17:115-124.
    121.Widmer MS, Gupta PK, Lu LC, et al. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration [J]. Biomaterials,1998,19(21):1945-1955.
    122.Yoon JJ, Park TG, Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts [J]. Journal of Biomedical Materials Research 2001,55(3):401-408.
    123.Groot JH, Zijlstra FM, Kuipers HW, et al. Meniscal tissue regeneration in porous copoly (1-lactide/ε-caprolactone) implants[J]. Biomaterials,1997,18(8): 613-622.
    124.Shastri VP, Martin I, Langer R. Macroporous polymer foams by hydrocarbon templating[J]. Proceedings of the National Academy of Science USA.2000,97: 1970-1975.
    125.Calandrelli B, Immirzi, Malinconico M, et al. Preparation and Characterisation of composites based on biodegradable polymers"in vivo"applications[J]. Polymer, 2000,41:8027-8033.
    126.Mooney DJ, Baldwin DF, Suh NP,et al. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolicacid)without the use of organic solvents[J]. Biomaterials,1996,17:1417-1422.
    127.Nam YS, Yoon JJ, Park TG. novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as aporogen additive[J]. J Biomed Mater Res(ApplBiomat),2000,53:1-7.
    128.Nam Y S, Park T G. Biodegradable polymeric microcellular foams by modified thermallyinduced phase separation methods[J]. Biomaterials,1999,20:1783-1790.
    129.Bognitzki M, Czado W, Freze T, Schaper A, et al. [J]. Adv. Mater,2001,13, 70-72.
    130.Li X, Electrospinning of nanofibers:Reinventing the wheel? [J]. Adv. Mater, 2004,16:1151-1170.
    131.Singhvi R, Kumar A, Lopez GP, et al. Enginerring cell shape and Function[J]. Science,1994,264:696-698.
    132.Jiang T, Abdel-Fattah WI, Laurencin CT. In vitro evaluation of chitosan /poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering[J]. Biomaterials,2006,27(28):4894-4903.
    133.Quirk RA, Chan WC, Davies M C, et al. Poly(L-lysine)-GRGDS as a biomimetic surface modifier for poly(lactic acid) [J]. Biomaterials,2001,22:865-872.
    134.Giancotti FG, Ruoslahti E. Integrin signaling [J]. Science,1999,285(5430): 1028-1032.
    135.Zheng DQ, Woodard AS, Fornaro M, et al. Prostatic carcinoma cell migration via alpha v beta 3 integrin is modulated by focal adhesion kinase pathway [J]. Cancer Res,1999,59(7):1655-1664.
    136.Hynes RO. Integrins:bidirectional, allosteric signaling machines[J]. Cell,2002 20,110(6):673-687.
    137.Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule[J]. Nature 1984,309: 30-33.
    138.Ruoslahti E. RGD and other recognition sequences for integrins[J]. Annu Rev Cell Dev Biol 1996;12:697-715.
    139.Feugier P, Black RA, Hunt JA, et al. Attachment, morphology and adherence of human endothelial cells to vascular prosthesis materials under the action of shear stress. Biomaterials,2005,25:1457-1466.
    140.Giovanni M, Ciapetti G, Satriano SP, Baldini N. The effect of irradiation modification and RGD sequence adsorption on the response of human osteoblasts to polycaprolactone. Biomaerials,2005,26:4793-804.
    141.Wakitani S, Mit suoka T, nakamura N, et al. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae:two case reports[J]. Cell Transplant,2004,13 (5):595-600.
    142.Lee CR, Gr odzinsky AJ, Spector M. Biosynt hetic response of passaged chondrocytes in a type Ⅱ collagen scaffold to mechanical compression[J]. Biomed Mater Res A,2003,64 (3):560-569.
    143.Xu JW, Johnson TS, Motariem PM, et al.Tissue-engineered flexible ear-shaped cartilage[J]. Plast Reconstr Surg,2005,115(6):1633-1641.
    144.Gellynck K, Verdonk PC, Van Nimmen E, et al. Silkworm and spider silk scaffolds for chondrocyte support [J]. J Mater Sci Mater Med,2008,19 (11): 3399-3409.
    145.Dobratz EJ, Kim SW, Voglewede A, et al. Injectable cartilage:using alginate and human chondrocytes [J]. Arch Facial Plast Surg,2009,40-47.
    146.Nettles DL, Elder SH, Gilbert JA. Potential use of chitosan as a cell scaffold material for cartilage tissue engineering[J]. Tissue Eng,2002,8(6):1009-1016.
    147.Zwingmann J, Mehlhorn AT, Sudkamp N, et al. Chondrogenic differentiation of human articular chondrocytes differs in biodegradable PGA/PLA Scaffolds [J]. Tissue Eng,2007,13(9):2335-2343.
    148.Kim TK, Yoon JJ, Lee DS. et al. Gas foamed open porous biodegradable polymeric microspheres[J]. Biomaterials,2006,27:152-159.
    149.Sahoo SK, Panda AK, Labhasetwar V. Characterization of Porous PLGA/PLA Microparticles as a Scaffold for Three Dimensional Growth of Breast Cancer Cells[J]. Biomacromolecules,2005,6:1132-1139.
    150.Naidoo K, Rolfes H, Easton K, et al. An emulsion preparation for novel micro-porous polymeric hemi-shells[J]. Materials Letters,2008,62:252-254.
    151.Shi XD, Sun L, Jiang J, et al.Biodegradable Polymeric Microcarriers with Controllable Porous Structure for Tissue Engineering[J]. Macromol. Biosci.2009, 9:1211-1218.
    152.Yodthong B. Porous microspheres of methoxy poly(ethylene glycol)-b-poly (ε-caprolactoneco-D,L-lactide) prepared by a melt dispersion method [J]. Polymer, 2009,50:4761-4767.
    1. Vermylen J. Clinical trials of primary and secondary prevention of thrombosis and restenosis[J]. Thromb Haemost,1995,74(1):377-381.
    2. Asahara T, Murohara T, Suilivan A, et al. Isolation of Putative Progenitor endothelial Cells for angiogenesis[J]. Science,1997,275:964-967.
    3. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization[J]. Circ. Res.1999,85:221-228.
    4. luttun A, Carmeliet G, Carmeliet P. Vascular progenitors:from biology to treatment Trends[J]. Cardio vasc Med,2002,12:88-96.
    5. Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia[J]. Circulation, 2001,103(5):634-637.
    6. Murohara T, Ikeda H, Duan J, et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization[J]. Clin Invest.2000,105: 1527-1536.
    7. Hristov M, Erl W, Weber PC Endothelial progenitor cells:moblization differentiation and homing[J]. Arterioscler Thromb Vasc Biol,2003,23(7): 1185-1189.
    8. Hu Y, Zhang Y, Tomney, et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice[J]. Clin Invest 2004,113(9):1258-1265.
    9. Majka SM, Jackson KA, Kienstra KA, et al. Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration[J]. Clin Invest,2003,111:71-79.
    10. Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells[J]. EMBO J,1999,18 (14):3964-3972.
    11. Shintani S, MuroharaT, Ikeda H, et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction[J]. Circulation,2001,103: 2776-2779.
    12. Yamaguchi J, Kusano KF, Masuo O, et al. Stromal cell derived factor-effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization[J]. Circulation,2003,107(9):1322-1328.
    13. Kawamoto A, Asahara T, Losordo DW. Transplantation of endothelial progenitor cells for therapeutic neovascularization[J]. Cardiovasc Resear Med,2002,3:221-225.
    14. Hirschi KK, Goodell MA. Hematopoietic, vascular and cardiac fates of bone marrow-derived stem cells[J]. Gene Ther,2002,9:648-652.
    15. Jackson KA, Majka SM, Wang H, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells[J]. J Clin Invest,2001,107:1395-1402.
    16. Jozkowicz A, Dulak J, Nanobashvili J, et al. Vasculogenesis-a new strategy for induction of peripheral neovascularization. Eur Surg,2002,34:114-117.
    17. Shintani S, Murohara T, Ikeda H, et al. Augmentation of postnatal neovascularization with autogous bone marow transplantation. Circulation,2001, 12:897-903.
    18. Heeschen C, Aicher A, Lehmann R, et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood,2003,102(4): 1340-1346.
    19. Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature,1996,380:439-442.
    20. Shi Q, Rafii S, Wu MH, et al. Evidence for circulating bone marrow derived endothelial cells. Blood,1998,92:362-367.
    1. Kirchengast M, Munter K. Endothelin and restenosis[J]. Cardiovasc Res,1998, 39(3):550-555.
    2. Vermylen J. Clinical trials of primary and secondary prevention of thrombosis and restenosis[J]. Thromb Haemost,1995,74(1):377-381.
    3. Kato H. Regulation of functions of vascular wall cells by tissue factor pathway inhibitor:basic and clinical aspects[J]. Arterioscler Thromb Vasc Biol,2002, 22(4):539-548.
    4. Steffel J, Luscher TF, Tanner FC. Tissue factor in cardiovascular diseases: molecular mechanisms and clinical implications [J]. Circulation,2006,113(5): 722-731.
    5. Oltrona L, Speidel CM, Recchia D, et al. Inhibition of tissue factor-mediated coagulation markedly attenuates stenosis after balloon-induced arterial injury in minipigs[J]. Circulation,1997,96(2):646-652.
    6. Asada Y, Hara S, Tsuneyoshi A, et al. Fibrin-rich and platelet-rich thrombus formation on neointima:recombinant tissue factor pathway inhibitor prevents fibrin formation and neointimal development following repeated balloon injury of rabbit aorta[J]. Thromb Haemost,1998,80(3):506-511.
    7. Yin Xin-hua, Yutani C, Ikeda Y, et al. Tissue factor pathway inhibitor gene delivery using HVJ-AVE liposomes markedly reduces restenosis in atherosclerotic arteries[J]. Cardiovasc Res,2002,56(3):454-463.
    8. Zoldhelyi P, Chen Zhi-qiang, Shelat HS, et al. Local gene transfer of tissue factor pathway inhibitor regulates intimal hyperplasia in atherosclerotic arteries[J]. Proc Natl Acad Sci U S A,2001,98(7):4078-4083.
    9. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis[J]. Science,1997,275(5302):964-967.
    10. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization[J]. Circ Res,1999,85(3):221-228.
    11. Hur J, Yoon CH, Kim HS, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis[J]. Arterioscler Thromb Vasc Biol,2004,24(2):288-293.
    12. Kalka C, Masuda H, Takahashi T, et al. Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects[J]. Circ Res,2000,86(12):1198-1202.
    13. Kong De-ling, Melo LG, Mangi AA, et al. Enhanced inhibition of neointimal hyperplasia by genetically engineered endothelial progenitor cells[J]. Circulation, 2004,109(14):1769-1775.
    14. Miller AD. Cell-surface receptors for retro viruses and implications for gene transfer[J]. Proc Natl Acad Sci U S A,1996,93(21):11407-11413.
    15. Meyer F, Finer M. Gene therapy:progress and challenges[J]. Cell Mol Biol (Noisy-le-grand),2001,47(8):1277-1294.
    16. Murasawa S, Asahara T. Gene modified cell transplantation for vascular regeneration[J]. Curr Gene Ther,2007,7(1):1-6.
    17. Kong D, Melo LG, Gnecchi M, et al. Cytokine-Induced Mobilization of Circulating Endothelial Progenitor Cells Enhances Repair of Injured-Arteries. Circulation,2004,110:2039-2046.
    18. Misteli T, Spector DL. Applications of the green fluorescent protein in cell biology and biotechnology[J]. Nat Biotechnol,1997,15(10):961-964.
    19. Levenson VV, Transue ED, Roninson IB. Internal ribosomal entry site-containing retroviral vectors with green fluorescent protein and drug resistance markers[J]. Hum Gene Ther,1998,9(8):1233-1236.
    1. Abbott A. Cell culture:Biology's new dimension.Nature[J].2003,424:870-872.
    2. Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking Cell-Matrix Adhesions to the Third Dimension[J]. Science,2001,294:1708-1712.
    3. Weaver VM, Petersen OW, Wang F, Larabell CA, et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies[J]. Cell Biol,1997,137:231-245.
    4. Hofmann GO. Biodegradable implants in orthopaedic surgery-a review on the state-of-the art[J]. Clin Mater,1992,10:75-80.
    5. Baek C, Hlee JC, Jung YG, et al. Tissue-engineered cartilage on biodegradable macroporous scaffolds:cell shape and phenotype expression[J]. Laryngoscope, 2002,112:1050-1055.
    6. Newman KD, McBurney MW. Poly(D,L lactic-co-glycolic acid)microspheres as biodegradable microcarriers for pluripotent stem cells[J]. Biomaterials,2004, 25(26):5763-5771.
    7. Kim TK, Yoon JJ, Lee DS, Park TG. Gas foamed open porous biodegradable polymeric microspheres[J]. Biomaterials,2006,27:152-9.
    8. Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering[J]. Biomaterials,2003,24(24):4353-64.
    9. Kato D, Takeuchi M, Sakurai T, et al. The design of polymer microcarrier surfaces for enhanced cell growth[J]. Biomaterials,2003,24(23):4253-64.
    10. Nikolai TJ, Hu WS. Cultivation of mammalian cells on macroporous carriers[J]. Enzyme Microb Technol,1992,14:203-9.
    11. Chun KW, Yoo HS, Yoon JJ, Park TG. Biodegradable PLGA microcarriers for Injectable Delivery of Chondrocytes:effect of surface modification on cell attachment and function[J]. Biotechnol Prog,2004,20:1797-801.
    12. Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule[J]. Nature,1984, 309(5963):30-33.
    13. Ruoslahti E. RGD and other recognition sequences for integrins[J]. Annu Rev Cell Dev Biol,1996,12:697-715.
    14. LeBaron RG, Athanasiou KA. Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials[J].Tissue Eng,2000,6(2):85-103.
    15. Myles J, Burgess BT, Dickinson BT. Modification of the adhesive properties of collagen by covalent grafting with RGD peptides[J]. Biomater Sci Polymer Edu, 2000,11(1):69-86.
    16. Burgess BT, Myles JL, Dickinson RB. Quantitative analysis of adhesion-mediated cell migration in three-dimensional gels of RGD-grafted collagen[J]. Ann Biomed Eng,2000,28:110-118.
    17. Hersel U, Dahmen C, Kessler H. RGD modified polymers:biomaterials for stimulated cell adhesion and beyond[J]. Biomaterials,2003,24:4385-4415.
    18. Jeschke B, Meyer J, Jonczyk A, et al. RGD peptides for tissue engineering of articular cartilage[J]. Biomaterials,2002,23:3455-3463.
    19. Schaffner P, Dard M. Structure and function of RGD peptides involved in bone biology[J]. Cell Mol Life Sci,2003,60:119-132.
    20. Michele Asther, Jean-Claude Meunier. Increased thermal stability of Bacillus licheniformis a-amylase in the presence of various additives[J]. Enzyme and Microbial Technology,1990,12(11):902-905.
    21. Sahoo SK, Panda AK, Labhasetwar V. Characterization of Porous PLGA/PLA Microparticles as a Scaffold for Three Dimensional Growth of Breast Cancer Cells[J]. Biomacromolecules,2005,6:1132-1139.
    22. Hong Y, Gao CY. Collagen-coated polylactide microspheres as chondrocyte microcarriers[J]. Biomaterials 2005,26:6305-6313.
    1. Behfar A, Hodgson D M, Zingman L V, et al. Administration of allogenic stem cells dosed to secure cardiogenesis and sustained infarct repair[J]. Ann N Y Acad Sci,2005,1049:189-198.
    2. R. M. Nerem, Tissue Engineering:The Hope, the Hype, and the Future [J]. Tissue Eng,2006,12:1143-1150.
    3. Aicher A, Brenner W, Zuhayra M, Badorff C, Massoudi S, Assmus B, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling[J]. Circulation,2003,107(16):2134-9.
    4. Reinecke H, Murry CE. Taking the death toll after cardiomyocyte grafting:a reminder of the importance of quantitative biology [J]. J Mol Cell Cardiol,2002, 34(3):251-253.
    5. Mooney D J, Vandenburgh H. Cell delivery mechanisms for tissue repair[J]. Cell Stem Cell,2008,2(3):205-13.
    6. Bonaros N, Rauf R, Schachner T, et al. Enhanced cell therapy for ischemic heart disease[J].Transplantation,2008,86(9):1151-1160.
    7. Liliensiek S J, Campbell S, Nealey PF, et al. The scale of substratum topographic features modulates proliferation of corneal epithelial cells and corneal fibroblasts[J]. J Biomed Mater Res A,2006,79(1):185-192.
    8. Kaushal S, Amiel GE, Guleserian KJ, et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo[J]. Nat Med,2001, 7(9):1035-1040.
    9. Koung LK, Dong KH, Kwideok P, et al. Enhanced dermal wound neovasculari-zation by targeted delivery of endothelial progenitor cells using an RGD-g-PLLA scaffold[J]. Biomaterials 2009,30:3742-3748.
    10. BokhariM, Carnachan RJ, Cameron NR, et al. Novel cell culture device enabling three-dimensional cell growth and improved cell function[J]. Biochem Biophys Res Commun,2007,354 (4):1095-1100.
    11. Xudong Shi, Lei Sun, Jian Jiang, et al. Biodegradable Polymeric Microcarriers with Controllable Porous Structure for Tissue Engineering [J]. Macromol. Biosci. 2009,9:1211-1218.
    12. Griese DP, Ehsan A, Melo LG, et al. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts:implication for cell-based vascular thrapy[J]. Circulation,2003,108:27102-2715.
    13. Wu X, Rabkin-Aikawa E, Guleserian KJ, Perry TE, Masuda Y, Sutherland FW, et al. Tissue-engineered micro vessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells[J]. Am J Physiol Heart Circ Physiol 2004,287 (2):480-487.
    14. Schmidt D, Mol A, Neuenschwander S, Breymann C, Gossi M, Zund G, et al. Living patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells[J]. Eur J Cardiothorac Surg,2005,27(5):795-800.
    15. Dvorin EL, Wylie-Sears J, Kaushal S, Martin DP, Bischoff J. Quantitative evaluation of endothelial progenitors and cardiac valve endothelial cells: proliferation and differentiation on poly-glycolic acid/poly-4-hydroxybutyrate scaffold in response to vascular endothelial growth factor and transforming growth factor betal[J]. Tissue Eng,2003,9(3):487-93.
    16. Wu X, Rabkin-Aikawa E, Guleserian KJ, et al. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells [J].Am J Physiol Heart Circ Physiol 2004,287:480-H487.
    17. Abbott A. Cell culture:Biology's new dimension[J]. Nature,2003,424:870-872.
    18. Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking Cell-Matrix Adhesions to the Third Dimension[J]. Science,2001,294:1708-1712.
    19. Hong Y, Gao CY. Collagen-coated polylactide microspheres as chondrocyte microcarriers[J]. Biomaterials 2005,26:6305-6313.
    20. Hersel U, Dahmen C, Kessler H. RGD modified polymers:biomaterials for stimulated cell adhesion and beyond[J]. Biomaterials,2003,24:4385-4415.
    21. Sahoo SK, Panda AK, Labhasetwar V. Characterization of Porous PLGA/PLA Microparticles as a Scaffold for Three Dimensional Growth of Breast Cancer Cells[J]. Biomacromolecules,2005,6:1132-1139.
    22. Zitzmann S, Ehemann V, Schwab M. Arginine-glycine-aspartic acid (RGD)-peptide binds to both tumor and tumor-endothelial cells in vivo [J]. Cancer Res, 2002,62:5139-5143.
    23. Martino MM, Mochizuki M, Rothenfluh DA, et al. Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability[J]. Biomaterials,2009,30:1089-1097.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700