电驱动三轮车辆电子差速控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在大力发展电动汽车的背景下,研究三轮电动车这类轻型小功率电动车可以为开发高性能电动轿车提供先见性的指导意见。在人民生活水平大幅度提高的今天,大众对集灵活、方便、节能、不污染环境、经济耐用等特点于一身的轻型代步工具的期待,也为新型三轮电动车的开发带来了巨大的潜在市场。尽管有众多电动三轮销售,但是大都没有抛弃笨重、低效的机械传动和转向装置,使得车辆的传动效率大打折扣,而电子差速正是解决这一问题的关键技术。
     论文分析了三轮轻型电动汽车的国内外发展状况及存在的问题。在对大量文献中电子差速方案进行调研的基础上,提出基于轮毂电机独立驱动的三轮电动车电子差速系统设计要求。
     本文对Ackermann-Jeantand的车辆转向经典模型进行了研究,并指出其欠缺对车辆转向时出现滑移现象的考虑。在深入分析三轮电动车在直线行驶、转向行驶和轮胎的动力学方程以及各驱动轮的转矩分配的基础上,尝试采用以滑移率为参考量,通过模糊控制对驱动转矩进行补偿的三轮车辆电子差速控制策略。
     论文用Matlab-Simulink仿真软件完成了三轮电动车差速控制系统的仿真模型建立和仿真实验验证。通过对直线运行、转向运行以及加速运行等工况中的直线扰动、大角度转向以及驱动轮滚动半径不同的情况进行仿真分析,得出了该方案能够对车辆的各种工况实施差速控制,有效的减少了后轮滑移,提高驱动系统的总体效率。
     电机是电子差速控制的执行单元,论文对无刷电机在电驱动车辆中的一些共性和特殊性进行了分析研究。总结了无刷直流电机中的四种PWM半桥调制方式,并确定采用PWM-ON进行电机调速;对三种常用的电机控制策略方式进行了简单的介绍,并最终选择采用力矩控制;特别针对电动车依靠蓄电池供电的特点,对永磁无刷直流电机低速回馈制动的机理进行了理论分析。
     论文完成了以dsPIC30F4012芯片为核心,采用三轮电动车电子差速控制方法的电机驱动控制器硬件设计。并将控制器嵌入到轮毂电机内,构成电机和控制器一体化的机构,并进行了换相电流跟踪实验。
To study on low-power Light Electric Vehicles (LEV) such as three-wheeled electric vehicle in the background of increasing development of electric vehicle (EV) would be a necessity. The study could provide not only a prescient guidance for the development of high-performance electric vehicle, but also a enormous potential market for the expectancy to flexible, convenient, energy saving, environmental protective, economic and durable transportation instruments when people's living standards are greatly improved currently. Despite the three-wheeled electric vehicle products in public are very normal and various, however most of them do not abandon the traditional mechanical transmission and steering device, which therefore cost battery power largely and should be the responsibility for vehicles’inefficiency.
     This thesis utilizes a dsPIC chip as MCU for three-wheels structure’s electronic differential (ED) system which controls the steering, transmission and speed synchronous, as well as driving the permanent magnet brushless DC motor (BLDCM).
     BLDCM is widespread adopt in low-power speed system such as electric three-wheeled vehicle because of its advantages at high starting torque, speed convenient, simple, high power density and easy to maintain. The paper firstly analyzes and studys on some particular issues of BLDCM driving system in detail. Then we make a brief presentation on both designing ideas and structure of the motor-driven controller.
     Aim to analyse the three-wheeled vehicle's movement state, the dissertation offers an instruction of classical Ackermann-Jeantand model. After finding out its defect at lack of considering the slip rated while the vehicle is turning, this paper has a in-depth analysis at three-wheeled vehicle's dynamic equations in both straightaway and turning condition, proves a tyre's mathematic model, as well as the driving wheels' torque distribution method. An ED control system, specially for three-wheeled vehicle, based on the slip rate is proposed afterwards.
     Subsequently, thesis takes slip rate as a reference fuzzy input to control the driving wheels' longitudinal torque. Then it completes the simulation model of ED control system for three-wheeled vehicle in Matlab-Simulink platform. Using this model, the paper demonstrates the superiority of fuzzy control in ED system and well-performance of ED control strategy whether in straight driving condition or in a turn via relevant simulation results, which show the strategy can effectively reduce the rear wheels slip.
     After the demonstration and simulation analysis in the early, this paper designs an BLDCM driving controller with adopts the ED control system, which is especial for three-wheeled vehicles and uses dsPIC30F4012 as its core. Then this paper successfully carries on experiments of commutation current tracking at a controller embedded in-wheel BLDCM.
引文
[1]王泽平.电动汽车总体设计与性能仿真研究[D].合肥:合肥工业大学, 2007.
    [2]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社, 2002.
    [3]黄靖远.电动自行车的发展历史及市场前景展望[J].电气时代, 1999, (9): 11-13.
    [4]张飞.我国电动自行车发展状况及管理对策研究[D].郑州大学,. 2006.
    [5] Ju-sang Lee, Young-Jae Ryoo, Young-Cheol Lim, etc. A neural network model of Electric Differential system for electric vehicle[C]. IEEE Industrial Electronics Society, 2000, (2): 83-88.
    [6]靳立强等.基于四轮独立驱动电动汽车的动力学仿真模型[J].系统仿真学报, 2005, (12): 3053-3055.
    [7]沈勇,吴新文.基于复合神经网络模型的四轮独立驱动电动车控制[J].汽车工程, 2004, (4): 458-460, 475.
    [8]葛英辉,李春生,倪光正.新的轮毂电机驱动电动车电子差速控制系统研究[J].中小型电机, 2003, (60): 45-49.
    [9]葛英辉.轮式驱动电动车控制系统的研究[D].浙江大学, 2004.
    [10]葛英辉,倪光正.新型电动汽车电子差速控制算法的研究[J].汽车工程, 2005, (3): 15-19.
    [11]李春生.新的轮毂电机驱动电动车电子差速控制系统研究[J].中小型电机, 2003, (6): 45-49.
    [12]李春生.双轮独立驱动电动车驱动系统的研究[D].浙江大学, 2003.
    [13]陈勇.电动轮电动汽车动力学与控制策略研究[D].北京理工大学, 2002.
    [14]张相军.无刷直流电机无位置传感器控制技术的研究[D].上海:上海大学出版社,.2001.
    [15]刘平.无位置传感器无刷直流电机控制系统与换相研究[D].重庆大学, 2008.
    [16]王贵.电动高尔夫球车永磁无刷直流电机驱动系统研究[D].重庆大学, 2008.
    [17]韦鲲,胡长生,张仲超.一种新的消除无刷直流电机非导通相续流的PWM调制方式[J].中国电机工程学报, 2005, (2): 105-108.
    [18]何建平,陆治国.电气传动[M].重庆:重庆大学出版社, 2002.
    [19] JingWei Xu. Fuzzy PID control through optimization: a new method for PID control[D]. Wisconsin: Marquette University, 2006.
    [20]孙立军,孙雷.无刷直流电机PWM调制方式研究[J].哈尔滨理工大学学报, 2006, (2): 120-121.
    [21]韦鲲,林平.无刷直流电机PWM调制方式的优化研究[J].浙江大学学报(工学版), 2005, (7): 37-40.
    [22]许镇琳,江伟,王秀芝等.无刷直流伺服电机换相转矩脉动的分析和消除[J].电气传动. 1994, (5): 36-41.
    [23] Dae-Kyong Kim, Kwang-Woon Lee, and Byung-II Kwon. Commutation torque ripple reduction in a position sensorless Brushless DC Motor drive[J]. IEEE Transactions on Power Electronics. 2006(6): 1762-1768.
    [24] Liu Y, Zhu Z Q, D Howe. Commutation torque ripple minimization in direct torque controlled PM Brushless DC drives[C]. IAS Annual Meeting. Conference Record of the 2006 IEEE, 2006, (8): 1642-1648.
    [25]黄斐梨,王耀明.电动汽车永磁无刷直流电机驱动系统低速能量回馈制动的研究[J].电工技术学报, 1995, (8): 2-32.
    [26]陈伯时.电力拖动自动控制系统[M].机械工业出版社, 1999.
    [27]赵后才.基于DSP的电动汽车能量回馈制动系统的设计与实现[D].广东工业大学, 2007: 16-27.
    [28]耿聪,刘漂,张欣. EQ6110混合动力电动汽车再生制动控制策略研究[J].汽车工程, 2004, (3): 253-256.
    [29]袁飞雄,黄声华,李朗如.永磁无刷直流电机PWM调制方式研究[J].微电机, 2004, (5): 42-44.
    [30] Salih Baris Ozturk, Hamid A, Toliyat. Direct torque control of Brushless DC Motor with non-sinusoidal back-EMF[C]. IEEE International Electric Machines & Drivers Conference. 2007, (3): 165-171.
    [31] Sebastien E.Gay, Hongwei Gao, Dr. Mehrdad Ehsani. Fuel cell hybrid drive train configurations and motor drive selection[C]. VTC 2002-Fall.2002 IEEE 56th. 2002, (24): 1007-1010.
    [32]任恒山.现代汽车概论[M].人民交通出版社, 2005: 149-152.
    [33] Rafal Setlak. HAULAGE TRUCKS MODEL with four electric separate wheel drives[C]. TRANSPORT, 2005, (1): 51-54.
    [34] C.C.Chan, J.Z.Jiang, G.H.Chen, X.Y.Wang and K.T.Chan. A novel polyphase multipole square-wave permanent magnet motor drive for electric vehicles[C]. IEEE Transactions on Industry Applications, 1994, (5): 1258-1266.
    [35] Sinclair Gair, Andrew Cruden, J McDonald, Branislav Hredzak. Electronic Differential with sliding mode controller for a direct wheel drive electric vehicle[C]. ICM '04, Proceedings of the IEEE International Conference on Mechatronics, USA: IEEE, 2004: 98-103.
    [36] Dhar A, Ghose D. Capture region for a realistic TPN guidance law[C]. IEEE Transactions on Aerospace and Electronic Systems (S0885-8985), 1993, (3): 995-1003.
    [37] Stephant.J, Charara.A, Meizel.D. Virtual sensor: application to vehicle sideslip angle and transversal forces[C]. IEEE Transactions on Industrial Electronics, 2004, (51): 278-289.
    [38] Mark Denny. The dynamics of antilock brake systems[J]. European Journal of Physics, 2005, (26): 1007-1016.
    [39]杨得军,林柏忠.汽车动力传动系实时动力学仿真模型[J].汽车工程, 2006, (05): 45-50.
    [40] Mu Sun Woo, Yong Ho Yoon, Seung Jun Lee, Chung Yuen Wom, You Young Choe. Comparison of characteristic using two Hall-ICs and one Hall-IC for 3 phases slotless PM Brushless DC Motor[C]. IEEE Industrial Electronics Society, 2004, (2): 1380-1384.
    [41] Byoung-Kuk Lee, Tae-Hyung Kim and Mehrdad Ehsani. On the feasibility of four-switch three-phase BLDC Motor drives for low cost commercial applications: Topology and Control[J]. IEEE Transactions on Power Electronics, 2003, (1): 164-172.
    [42]张利鹏.汽车转弯制动性能分析与防抱控制仿真研究[D].秦皇岛:燕山大学, 2004.
    [43] Akitaka Nishio, Kenji Tozu, Hiroyuki Yamaguchi, et al. Development of vehicle stability control system based on vehicle sideslip angle estimation[C]. SAE Paper, 2001, (3):115 - 122.
    [44] Qian Ming. Sliding mode controller design for ABS system[D]. Virginia, Virginia Polytechnic Institute and State University, 1997.
    [45] Vinatha U, Swetha Pola, Dr. K.P.Vittal. Recent developments in control schemes of BLDC Motors[C]. IEEE International Conference on Industrial Technology, 2006, (15): 477-482.
    [46]汤蕴缪,史乃著.电机学[M].北京:机械工业出版社, 2001.
    [47]王耀南,孙炜.智能控制理论及应用[M].北京:机械工业出版社, 2008.
    [48]刘和平等. dsPIC通用数字信号处理器原理及应用—基于dsPIC30F系列[M].北京:北京航空航天大学出版社, 2007.
    [49]高春燕.电动高尔夫球车他励直流电机驱动系统研究[D].重庆:重庆大学, 2007.
    [50] Anthony Murray.应对高电流的挑战[J].电源技术, 2006, (4): 80.
    [51]林锐.?高质量程序设计指南—C++/C语言[M].?北京:?电子工业出版社,?2002.?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700