电动城市客车运行能效关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动汽车续驶里程不足是制约电动汽车产业化发展的主要瓶颈,因此在有限车载能源情况下,提高电动汽车运行能效具重要有意义。尤其是电动城市客车运行在低速、制动频繁的城市工况,能量利用率提升空间更为可观。
     电动城市客车运行能效关键技术主要涉及:电池SOC的准确估算、驱动电机效率优化控制和再生制动能量回收三方面内容。本文以JXK6121BEV型号电动城市客车为研究对象,在现有电池、电机技术水平基础上,围绕上述三方面内容展开研究,从而实现电动城市客车有限能源的开源节流,旨在提高电动城市客车能量利用率和一次充电续驶里程,主要研究内容如下:
     实车测量计算得出驱动系统能耗比例为70.8%,通过驱动系统能耗实验,确定采用驱动电机效率优化和再生制动能量回馈两种途径来提高电动城市客车的能量利用效率。在系统分析电动城市客车从电网到车轮的能量传递效率基础上,进行电动城市客车电池组能效分析、驱动系统效率和再生制动能量回馈效率研究,通过动力总成实验台架,对实车运行工况进行驱动电机效率测试,为驱动系统电机效率优化控制提供依据。
     为了有效管理车载能源,进行了电池管理系统设计,包括结构设计、电控系统设计和软件系统设计。准确估算电池SOC,可以提高动力电池的能量利用效率、延长电池使用寿命,是电池能量管理和制动力分配的关键所在。在电池性能测试基础上,提出采用PSO-BP方法,利用电池电压、充放电倍率和温度作为神经网络输入特征参数,估算电池SOC。仿真实验结果表明,该方法能够实现单体电池SOC10%-90%范围内的准确估算,中国典型城市公交循环工况电池组SOC估算精度为0.7%,实车电池组的SOC估算精度为3.5%,说明该方法能够满足实际需求。
     为了提高电动城市客车驱动系统运行效率,在异步电机矢量控制基础上,建立基于损耗模型的效率优化控制系统的仿真模型。针对损耗模型法在电机参数变化时效率优化控制精度下降的问题,提出一种混合法电机效率优化控制策略:利用损耗模型确定最优磁链搜索范围,缩短搜索时间,采用广义回归神经网络搜索最优磁链,从而消除电机参数对效率优化的影响,提高控制精度。在MATLAB/Simulink中搭建了两种效率优化控制的仿真模型并进行了仿真实验,给定转速/转矩1003r/min/200N.m情况下,效率优化以前电机效率为62.95%,基于损耗模型优化和混合法优化电机效率分别为84.23%和86.72%。给定转速/转矩1691r/min/619N.m情况下,效率优化以前电机效率为75.86%,基于损耗模型优化和混合法优化电机效率分别为80.44%和81.56%。为了验证效率优化控制策略的实用性,进行了实车运行工况仿真实验,优化以前电机平均效率为59.93%,基于损耗模型优化和混合法优化电机平均效率分别为82.45%和84.92%。仿真实验结果表明,混合法效率优化控制的鲁棒性、实用性和准确性要优于基于损耗模型的效率优化控制。
     为了回收电动城市客车频繁制动的再生制动能量,进行了制动力分配控制研究。考虑到制动力分配受到车速、制动强度和电池SOC等多因素影响,很难建立准确的数学模型,提出了模糊控制制动力分配策略并利用Simlink搭建了制动力分配仿真模型。利用Cruise软件搭建了电动城市客车模型与MATLAB进行联合仿真。中国典型城市公交循环工况,一个循环行驶5.8km,模糊控制制动力分配策略电池组SOC降低0.376%,电池组90%DOD续驶里程增加10.2km,续驶里程提高7.8%;美国FTP工况(最高车速改为70km/h)一个循环行驶16.84km,电池组SOC降低1.487%,电池组90%DOD续驶里程增加9.8km,续驶里程提高8.84%。实验结果表明,该方法能够有效地提高能量利用效率,最大限度地回收再生制动能量,延长电动城市客车的续驶里程,同时能够有效地防止电池过充电。
The endurance mileage deficiency of EV is still the main obstacle which restricts the development of electric vehicle industry, so it is significant to improve the operation energy efficiency of electric vehicle in the case of limited vehicle energy. Especially when the electric city bus run at the city conditions of low speed and frequent brake, energy efficiency promotion space is more impressive.
     The key technology about operation energy efficiency of electric city bus mainly includes three parts:accurate estimation of battery SOC, efficiency optimization of driving motor and regenerative braking energy, JXK6121BEV type electric city bus is taken as study objects in this thesis, on the present level of battery and driving motor, the research is carried out around the above three contents, so as to realize the limited energy resources tapping and saving, in order to improve the energy utilization efficiency and prolong the endurance mileage of electric city bus, the main research contents are as follows:
     Calculate from substantial vehicle tests show that energy consumption ratio of the driving system is70.8%, base on the experimental of the energy loss in driving system, two methods including the efficiency optimization of motor drive system and regenerative braking energy are used to improve the energy utilization efficiency of electric city bus. The energy transfer efficiency from the grid to the wheels of electric city bus is analyzed, on this basis, the researches of efficiency in battery energy, efficiency of drive system and regenerative braking are studied. Efficiency test of driving motor is done under real measurement environment on an experiment bench for power train, which provide theoretical basis for efficiency optimization control of driving motor.
     In order to manage the vehicle power supply effectively, the battery management system including the structure, control system and software system was designed. Accuracy estimation of the battery SOC can improve the energy utilization efficiency of battery and extend the battery life, which is the key to energy management and braking force distribution. PSO-BP method was presented based on the testing of the battery performance, which used the battery voltage, charge-discharge rate and temperature as the input features parameters of neural network to estimate the battery SOC. The simulation results show that the presented method may estimate accurately the single battery SOC in the range of10%~90%. The estimation accuracy of battery packs SOC of the driving cycles of Chinese city buses was0.7%, and the estimation accuracy of the real vehicle battery packs was3.5%, which show that this method can meet the actual requirement.
     In order to improve the operation efficiency of driving system in electric city bus, the loss model of motor is established based on the vector control of induction motor, and simulation model of efficiency optimization control system based on loss model is established in MATLAB/Simulink. Aiming at drawbacks that efficiency optimization control precision is being dropped while motor parameters change in loss model control strategy, a hybrid method in motor efficiency optimization control is proposed, that is the loss model is used to determine the optimal flux search range, which can shorten search time, and then generalized regression neural network is used to search the optimal flux, which decrease the effect of motor parameters on efficiency optimization and improve the control precision. Comparison simulation experiments of the two efficiency optimization methods are carried out in MATLAB/Simulink, the motor efficiency with non-optimum is62.95%, and the optimized efficiency are respectively84.23%and86.72%based on the loss model optimization and the hybrid method when the given speed and torque are1003r/min/200N.m. and in the condition of1691r/min/619N.m, the non-optimum efficiency is75.86%, and the optimized efficiency are respectively80.44%and81.56%. In order to validate the practicality of efficiency optimization control strategy, the real vehicle condition simulation experiment is done, and the non-optimum efficiency is59.93%, the optimized efficiency are respectively82.45%and84.92%. The simulation experiment results show that the robustness, practicality and accuracy of hybrid method is better than the method based on loss model.
     In order to recover the energy regenerated in frequent braking, the braking force distribution control is researched. It is difficult to build the actual mathematical model for the brake force distribution which is affected by the speed, braking intensity and battery SOC, The fuzzy control strategy for braking force distribution is developed, and the simulation model of brake force distribution is established in Simulink. The electric city buses model is established by cruise and co-simulated with MATLAB. For the typical driving cycles of city buses in China, the driving distance within a cycle is5.8km, the battery SOC decreased0.376%by the fuzzy control strategy for braking force distribution, the endurance mileage of the90%DOD increased10.2km and it improved by7.8%. For the FTP cycles in American, the driving distance within a cycle was16.84km, the battery SOC decreased by1.487%based on the fuzzy control strategy for braking force distribution, the endurance mileage of the90%DOD increased9.8km and it improved by8.84%. The experiment results show that the method can improve the energy efficiency effectively, recover the regenerative braking energy in maximum scale, extend the endurance mileage of electric city bus and avoid overcharge effectively.
引文
[1]ChauK.T.,WbngY.5.,Chan C.C A Nover View of Energy Sources for Electric Vehicles[J].Energy Conversion and Management.1999,40(10):1021-1039.
    [2]孙逢春德国和法国电动汽车的现状和发展[J].科技潮.2004,(8):38-39
    [3]辛克伟,周宗祥,卢国良.国内外电动汽车发展及前景预测[J].电力需求侧管理,2008,10(1):75-77
    [4]汪贵平.纯电动汽车驱动与制动能量回收控制策略研究[D].长安大学博士学位论文.2009,2-5
    [5]蒋尚仁.论我国城市电动公交客车的开发[J].城市车辆.2003.2
    [6]陈安红.谈我国城市电动公交客车的开发[J].重型汽车,2005(8)
    [7]Bose B K, Patel N R, Rajashekara K. A Neuro-fuzzy-based On-line Efficiency Optimization Control of A Stator Flux-oriented Direct Vector-controlled Induction Motor Drive.IEEE Trans, on Ind. Electron,1997,44(2):270-273
    [8]谭晓军.电动汽车动力电池管理系统设计[M].中山大学出版社.2011年10月,1版,95-110
    [9]Chenghui Cai, Dong Du, Zhiyu Liu, Jingtian Ge. State-of-Charge (SOC) Estimation of High Power Ni-Mh Echargeable Battery With Artificial Neural Network. Proceedings of the 9th International Conference on Neural Information Processing.2002:824-828
    [10]T. Yamazaki, K. Sakurai, and K. I. Muramoto. Estimation of The Residual Capacity of Sealed Lead-acid Batteries by Neural Network.1998:210-214
    [11]W.X.Shen, K.T.Chau, C.C.Chan, Edward W.C.Lo. Neural Network-Based Residual Capacity Indicator for Nickel-Metal Hydride Batteries in Electric Vehicles. IEEE Transation on Vehicular T(?)hology.2005,54(5):1705-1712
    [12]Jinchun Peng, Yaobin Chen, Russ Eberhart. Battery Pack State of Charge Estimator Design Using Computational Intelligence Approaches. The Fifteenth Annual Battery Conference on Applications and Advances.2000:173-177
    [13]Bo Cheng, Yanlu Zhou, Jiexin Zhang, Junping Wang, Binggang Cao. SOC Prediction Based on Evolutionary Network. Proceedings of the IEEE International Conference on Automation and Logistics,2009.2009:880-884
    [14]C. C. Chan, E. W C. Lo, and W. X. Shen. Available Capacity Computation Model Based on Artificial Neural Network for Lead-acid Batteries in Electric Vehicles. Jounal of Power Sources,1999,87(1-2):201-204
    [15]Singh P, Reisner D. Fuzzy Logic-based State-of-health Determination of Lead Acid Batteries.24th Annual International Telecommunications Energy Conference, 2002.2002:583-590
    [16]Hongyu Guo, Jiuchun Jiang, Zhanguo Wang. Estimating the State of Charge for Ni-MH Battery in HEV by RBF Neural Network.2009 International Workshop on Intelligent Systems and Applications.2009:1-4
    [17]Bo Cheng, Yanlu Zhou, Jiexin Zhang, Junping Wang, Binggang Cao. State-of-charge Estimation Based on Immune Evolutionary Networks.4th IEEE Conference on Industrial Electronics and Applications.2009:3511-3515
    [18]齐智,吴锋.利用人工神经网络预测电池SOC的研究[J].电源技术.2005,29(5),325-328
    [19]罗玉涛,张保觉.基于神经网络的动力电池组SOC辨识方法[J].电源技术.2007,31(11),914-917
    [20]雷肖,陈清泉,刘开培,马历.电动车电池SOC估计的径向基函数神经网络方法[J].电工技术学报.2008,23(5),81-86
    [21]Matsuse K,Katsuta. Fast Rotor Flux Control of Vector Controlled Induction Motor Operating at Maximum Efficiency for Electric Vehicles. Proc. EVS-13,1996:67-71
    [22]Chis M, Jayaram S, Rajashekara K.Neural Network-based Efficiency Optimization of EV Drive. IEEE Conference on Electrical and Computer Engineering,1997,2:454-461
    [23]Lorenz R D, Yang S M. Efficiency-optimized Flux Trajectories for Closed-cycle Operation of Field-orientation Induction Machine Drives.IEEE Trans. on Ind. Applicat.,1992,28(3):574-580
    [24]Kim H G, Sul S K, Park M H. Optimal Efficiency Drive of A Current Source Inverter Fed Induction Motor by Flux Control [J].IEEE Trans, on Ind. Applicat.1984,20(6):1453-1459.
    [25]Rowan T M, Lipo T A. A Quantitative Analysis of Induction Motor Performance Improvement by SCR Voltage Control[J]. IEEE Trans.on Ind. Applicat.1983,19(3):543-553.
    [26]Alexander Kusko, Donald G. Control Means for Minimization of Losses in AC and DC Motor Drives. IEEE Trans, on Ind. Applicat.,1983,13(4):561-570
    [27]Garcia G O, Luis J C M, Stephan R M, et al. An Efficient Controller for An Adjustable Speed Induction Motor Drive. IEEE Trans, on Ind. Electron,1994,41(1):533-539
    [28]Kioskeridis I, Margaris N. Loss Minimization in Induction Motor Adjustable Speed Drives. IEEE Trans, on Ind. Electron.,1996,43(1):226-231
    [29]崔纳新,张承慧,孙丰涛.异步电动机的效率优化快速响应控制研究[J].中国电机工程学报.2005,6,25(11):118-123
    [30]林友杰,许志伟,谢卫才.变频调速下异步电机的一种运行效率优化方法[J].微特电机.2010,(3):27-30
    [31]徐占国,邵诚.感应电机最大效率控制时损耗模型研究[J].大连理工大学学报.2010,50(5):762-766
    [32]Matsuse K, Yoshizumi, Katsuta S, et al. High-response Flux Control of Direct-field-oriented Induction Motor With High Efficiency Taking Core Loss Into Account[J].IEEE Trans on Industry Application,1999,35(1):62-69.
    [33]Garcia G O, Mendes J C, Stephan R M, et al. An Efficient Controller for An Adjustable Speed Induction Motor Drive [J]. IEEE Trans on Industrial Electronics,1994,41(5):533-539.
    [34]Lim S, Nam K. Loss-minimizing Control Scheme for Induction Motors [J]. IEE Proc. on Electronics. Power Application,2004(5):385-397.
    [35]Abrahamsen F, Blaabjerg F, Paul P Z, et al. On The Energy Optimized Control of Standard and High-efficiency Induction Motors in CT and HVAC Applications[J].IEEE Trans on Industry Applications,1999,34(4):822-831.
    [36]Matsuse K, Taniguchi S, Yoshizumi T, et al. A Speed-sensorless Vector Control of Induction Motor Operating at High Efficiency Taking Core Loss Into Account[J]. IEEE Trans, on Ind.,2001,37(3):548-57.
    [37]Sheng M Y, Feng C L. Loss-Minimization Control of Vector-controlled Induction Motor Drives[C]. Indonesia:IEEE 4th International Conference on Power Electronics and Drive Systems,2001.
    [38]任晋旗,李耀华,王珂.直线异步电动机的损耗模型与效率优化控制[J].电工技术学报.2009,24(12):68-73
    [39]崔纳新,张承慧,李珂,张承进.基于参数在线估计的交流异步电动机效率最优控制[J].电工技术学报.2007,22(9):80-85
    [40]李阳,张曾科,常进.基于转差率的感应电机最优效率控制[J].电机与控制学报.2005,9(3):215-217
    [41]常进,张曾科.感应电机恒功率因数控制的研究[J].中国电机工程学报,2002,22(n):70-74.
    [42]AndersenHR,PedersenJK. Low Cost Energy Optimized Control Strategy for A Variable Speed Three-phase Induction Motor [C] 8.Proe.IEEE PESC,96, Baveno, Italy,1996:920-924.
    [43]Choyl,KwonSH,ChoiJY. On-line Efficiency Optimization Control of A Slip Angular Frequency Controlled Induction Motor Drive Using Neural Networks[C].IEEE IECON 22nd International Conference,1996,(2):1216-1221.
    [44]Caceiato.M, ConsoliA, SeareellaG, et al. Efficiency Optimization Techniques Via Constant Optimal Slip Control of Induction Motor Drives[C]. International Symposium on Power Electronics, Electrical Drives, Automation and Motion,2006:38-43.
    [45]FamouriP, CatheyJJ. Loss Minimization Control of An Induction Motor Drive[J]. IEEE Transactions on Industry Applieations,1991,27(1):32-37.
    [46]ParkMH, SulSK. Micro Processor-Based Optimal-efficiency Drive of an Induction Motor [JJ.IEEE Transations on Industrial Electronics,1984,31(1):69-73.
    [47]SulSK, ParkMH. A Novel Technique for Optimal Efficiency Control of A Current-Source Inverter-Fed Induction Motor[J]. IEEE Transations on Power Electronics,1988,3(2):192-199.
    [48]Lorenz R D, Yang S M. Efficiency-optimized Flux Trajectories for Closed-cycle Operation of Field-orientation Induction Machine Drives[J]. IEEE Trans. Ind. Appl.,1992,28(3):574- 580.
    [49]Vaez S, John V I, Rahman M A. An On-line Loss Minimization Controller for Interior Permanent Magnet Motor Drives[J]. IEEE Trans. on Energy Conversion,1999:1435-1440.
    [50]Kirschen D S, Novotny D W, Lipo T A. On-line Efficiency Optimization of A Variable Frequency Induction Motor Drive. IEEE Trans. on Ind. Applicat,1985,21(3):610-615
    [51]KirsehenDS,NovotnyDW,LipoTA. Optimal Efficiency Control of An Induction Motor Drive[J].IEEE Transations on Energy Conversion,1987,2(1):70-76.
    [52]Sul S K, Park M H. A Novel Technique for Tptimal Efficiency Control of A Current-source Inverter-fed Induction Motor. IEEE Transations on Power Electron,1988,3(2):192-199
    [53]Moreira J C, Lipo T A, Blasko V. Simple Efficiency Maximizer for An Adjustable Frequency Induction Motor Drive. IEEE Trans. on Ind. Applicat.,1991,27(5):940-946
    [54]王子佳,孙旭东.电动汽车异步电动机驱动系统的在线效率优化[J].电气传动.2005,35(7):45-48
    [55]KimGK,HaIJ,M.S KO.Control of Induction Motors for Both High Dynamic Performance and High Power Efficiency [J].IEEE Transations on Industrial Electronics,1992,39(4):323-333.
    [56]何光东,俞健,蒋静坪.利用斐波那契法实现交流电机的效率最优控制[J].控制与决策.1999,14(4):349-353
    [57]Ta C M, Hori Y, Convergence Improvement of Efficiency-optimization Control of Induction Motor Drives, IEEE Trans. On Ind. Applica.,2001,37(6):1746-1753
    [58]ChakrabortyC, TaMC, UehidaT, et al. Fast Search Controllers for Efficiency Maximization of Induction Motor Drives Based on DC Link Power Measurement[C]. Proceedings of The Power Conversion Conference, Osaka,2002,2:402-408.
    [59]Matsuse K, Yoshizumi T, Katsuta S et al. High Response Flux Control of Direct-field-oriented Induction Motor With High Efficiency Taking Core Loss Into Account. IEEE Trans. on Ind. Appl.,1999,35(1):62-69
    [60]Li W, Mao Z Y. Efficient Control of An Induction Motor Based on The Decoupling Variable Structure Strategy. Proc. of The World Congress on Intelligent Control and Automation.2002:2845-2848
    [61]Poirier E, Ghribi M, Kaddouri A. Loss Minimization Control of Induction Motor Drives Based on Genetic Algorithms. IEEE International Electric Machines and Drives Conference,2001:475-478
    [62]苗敬利,李华德,胡广大,赵仁涛.感应电动机动态效率优化的自抗扰解耦控制[J].微电机.2010,43(4).34-38
    [63]Sousa G C D, Bose B K, Cleland J D. Fuzzy Logic Based On-line Efficiency Optimization Control of An Indirect Vector-controlled Induction Motor Drive. IEEE Trans. on Ind. Electron,1995,42(2):192-198
    [64]张立伟,温旭辉,郑琼林.异步电机用混合式模糊搜索效率优化控制研究[J].中国电机工程学报.2007,27(27):83-87
    [65]Bose B K,Patel N R,Rajasllekara K. A Neuro-fuzzy-based On-line Efficiency Optimization Control of A Stator Flux-oriented Direct Vector-controlled Induction Motor Drive[J].IEEE. Trans On Ind.Eleetron,1997.44(2):270-273
    [66]Pryymak B, Moreno E J, Peracaula J. Neural Network Based Efficiency Optimization of An Induction Motor Drive With Vector Control. IECON 02,2002,1:146-151
    [67]周立峰,张奕黄,张坦.基于混合法的异步电动机效率优化控制研究[J].微特电机.2010(7):47-50
    [68]李子昀.一种考虑铁耗的感应电机最大效率控制系统[J].大电机技术.2011(3):17-21
    [69]于伟光,祁新梅,郑寿森.基于定子磁链规划的异步电机最优效率控制[J].电气传动.2012,42(1):14-17
    [70]刘小虎,谢顺依,郑力捷.一种改进的感应电机最大效率控制技术研究[J].中国电机工程学报.2005,25(6):95-98
    [71]Wang J B, Liaw C W. Indirect Field-oriented Induction Motor Drive With Fuzzy Detuning Correction and Efficiency Optimization Controls.IEEE Electric. Applicat,1997,144(1):37-45
    [72]Kioskeridis I, Margaris N. Loss Minimization in Scalar-controlled Induction Motor Drives With Search Controllers. IEEE Trans, on Power Electron,1996,11(2):213-220
    [73]Wasynczuk O, Sudhoff S D, Hansen I G, et al. A Maximum Torque Permanent Control Stratery for Induction Motor Drives. IEEE Trans, on Power Conversion. 1998,13(2):163-169
    [74]Chang JH,KimBK.Minimum-Time Minimum-Loss Speed Control of Induction Motors Under Field-Oriented Control [J]. IEEE Translations on Industrial Electronics,1997,44(6):809-815
    [75]徐占国.电动车用感应电机矢量控制系统的研究.博士学位论文[D].大连理工大学:大连2010年9月,43-74
    [76]Mauro Velardocchia,et al. Hardware-In the-Loop to Evaluate Active Braking Systems Performance[J],SAE2005-01-1580,2005
    [77]Eiji Nakamura,et al. Development of Electronically Controlled Brake System for Hybrid Vehicle[J].SAE2002-01-0403,2002
    [78]Sohel Anwar,et al. A Predictive Control Algorithm for An Anti-Lock Braking System[J], SAE 2002-01-0302,2002
    [79]Nakamura E, Soga M. Development of Electronically Controlled Brake System for Hybrid Vehicle[C]. SAE Paper 2002-01-0300,2002.
    [80]H.Ishitani, Y.Baba, R.Matsuhashi, Evaluation of Energy Efficiency of A Commercial HEV, Prius, at City Driving, EVS16, Beijing,1999
    [81]Masami Ogura, Yasushi Aoki, The HONDA EV PLUS Regenerative Braking System.EVS14,USA,1997
    [82]Albrichsfeld C, Karner J. Brake System for Hybrid and Electric Vehicles[C]. SAE Paper 2009-01-1217,2009.
    [83]L.A.Viterna, Ultra-Capacitor Energy Storage In a Large Hybrid Electric Bus, EVS14, USA,1997
    [84]Cikanek SR, BaileyK E. Regenerative Braking System For A Hybrid Electric Vehicle[C]. Proceedings of The American Control Conference,2002,4:3129-3134.
    [85]K.E.Balley.Dynamic Model and Coordinated Control System for a Hybrid Eleetric Vehiele[C].14th International Eleetric Vehiele Symposium,1997
    [86]Yimin Gao.Eleetronic Braking System of EV and HEV-Integration of Regenerative Braking,Automatic Braking Force Control and ABS[C].SAE Paper 2001-01-2478
    [87]Gao Hongwei, GaoYimln, Mehrdad Ehsanil.A Neural Network Based SRM Drive Control Strategy for Regenerative Braking in EV and HEV[C].IEEE International Eleetric Maehines and Drives Conference:571-575
    [88]HoonYeo. Performance Analysis of Regenerative Braking System for Parallel Hybrid Electric Vehicle Using HILS.19th International Electric Vehicle Syrnposium(EVS19):438-448
    [89]Gao Yimin, Chen Liping, Ehsani M. Investigation of The Effectiveness of Regenerative Braking for EV and HEV 1990-01-2910 [C/CD]MSAE Paper. [S.1.]:SAE,1990.
    [90]Gao Yimin, Chen Liping, Ehsani Mehrdad. Electric Braking System of EV and HEV-Integration of Regenerative Braking, Future Transportation Technology Conference & Exposition, Costa Mesa, CA, USA,2001. SAE International,2004:733-780
    [91]Oba H, Yamanaka A, Katsata H, et al. Development of A Hybrid Power Train System Using CVT in A Minivan[J]. Toyota Technical Review,2002,51 (2):52-57.
    [92]何仁,陈庆樟.汽车制动能量再生系统制动力分配研究.兵工学报[J].2009,30(2):205-209
    [93]陈庆樟,何仁.汽车再生制动系统机电制动力分配[J].江苏大学学报(自然科学版)[J].2008,29(5):394-396
    [94]李珂,张承慧,崔纳新.电动汽车用高效回馈制动控制策略[J].电机与控制学报[J].2008,12(3):324-331
    [95]李国斐,林逸,何洪文.电动汽车再生制动控制策略研究[J].北京理工大学学报.2009,29(6):520-524.
    [96]姜建满,赵韩.电动汽车再生制动力动态协调控制算法研究[J].合肥工业大学学报(自然科学版).2012,35(9):1153-1157
    [97]王猛,孙泽昌,卓桂荣,程鹏.电动汽车制动能量回收系统研究[J].农业机械学报.2012,43(2):6-10.
    [98]工军,熊冉,杨振迁.纯电动大客车制动能量回收系统控制策略研究[J].汽车工程.2009,31(10):932-937
    [99]查鸿山,宗志坚,刘忠途.电动汽车能量回馈制动仿真研究[J].机械科学与技术.2012,31(4):572-577
    [100]郭金刚,王军平,曹秉刚.基于优化的电动车制动力分配[J].机械科学与技术.2011,30(9):1495-1499。
    [101]刘辉,王伟达,何娇,项昌乐.基于模糊控制的混合动力电动车再生制动系统的建模与仿真[J].汽车工程.2012,34(1):51-56
    [102]俞林炯,高松.纯电动大客车制动能量回馈控制策略[J].山东理工大学学报(自然科学版).2011,25(5):98-102
    [103]张亚军,杨盼盼.纯电动汽车再生制动系统的建模与仿真[J].武汉理工大学学报.2010,32(15):90-95
    [104]姚杰,钟再敏,孙泽昌.基于模糊逻辑推理的燃料电池客车再生制动控制策略[J].汽车工程.2007,29(11):1063-1066
    [105]赵国柱,滕建辉,魏民祥,杨正林.基于模糊控制的电动汽车低速再生ABS研究[J].中国机械工程.2012,23(1):117-122
    [106]朱基亮,杜翀,何亮明.锂离子电池的热稳定性和大电流充放电稳定性研究[J].四川大学学报(工程科学版).2011,43(4):205-208
    [107]何洪文,余晓江,孙逢春等.电动汽车电机驱动系统动力特性分析[J].中国电机工程学报,2006,26(6):136-140
    [108]潘绍明,罗功坤,劳有兰.电动汽车动力控制系统的研究[J].制造业自动化.2012,34(3):147-150
    [109]王博,孙仁云,雍文亮.变路面车辆稳定性控制策略研究[J].汽车技术.2012,(5):17-20
    [110]王彦会,郭孔辉,卢炳武.基于多元统计分析的车辆操纵稳定性客观评价[J].吉林大学学报(工学版),2011,41(增刊1):6-11
    [111]郭宝玉,袁翔,孙香梅,尤立刚,张翼.纯电动汽车变工况运行能效分析[J].公路与汽运[J].2012,(3):8-11
    [112]Delucchi M A,Burke A,Lipman T, et al. Electric and Gasdine Vehicle Cost and Energy-use Mode[M].Dsvis:University of California Publications,2000:213-214
    [113]黄万友,程勇,工宏栋,李闯.纯电动汽车磷酸铁锂电池组放电效率模型[J].华中科技大学学报(自然科学版),2012,40(5):129-132
    [114]陈明,郭立新.电动汽车动力性与能耗经济性参数灵敏度分析[J].东北大学学报(自然科学版).2012,33(5):723-726
    [115]周兵,江清华,杨易,工继生.基于行驶工况的纯电动汽车比能耗分析及传动比优化[J]. 中国机械工程.2011,22(10):1235-1240
    [116]王猛,孙泽昌,卓桂荣,程鹏.电动汽车制动能量回收最大化影响因素分析[J].同济大学学报(自然科学版).2012,40(4):583-588
    [117]Gao Y M,Chen L PJEhsani M.Investigation of The Effectiveness of Regenerative Braking for EV and HEV [C].SAE Paper 1999-01-2910,1999.
    [118]张俊智,陆欣,张鹏君等.混合动力城市客车制动能量回收系统道路试验[J].机械工程学报,2009,45(2):25.
    [119]尹巍,全书海.基于模糊控制的燃料电池电动车制动能量回馈策略[J].仪表技术,2010(5):4-7.
    [120]黄万友,程勇,曹红,李闯,张笑文.纯电动汽车能量回馈效率特性测试分析[J].机械工程学报.2012,48(12):88-95
    [121]陈立泉.锂离子电池:从基础研究到产业[J].新材料产业,2009(10):89-91
    [122]张宾,林成涛,陈全世.电动汽车用LiFeP04/C锂离子蓄电池性能[J].电源技术.2008,32(2):95-98
    [123]R Eberhart, JKennedy. A New Optimizer Using Particle Swarm Theory[C]. Proc Int Sym Micro Machine and Human Science:Nago-ya, Japan, Oct.1995-39-43.
    [124]Shi Y, Eberhart R. A Modified Particle Swarm Optimizer. In:Proc. IEEE Int'1. Conf.on Evolutionary Computation. Piscataway, NJ:IEEE Press.1998:69-73.
    [125]阮毅,陈伯时.电力拖动自动控制系统——运动控制系统[M].4版.机械工业出版社,2012年,155-160
    [126]T.Noguci, S.Kondo and Is.Takahashi, Field-Oriented Control of An Induction Motor With Robust On-line Tuning of Its Parameters, IEEE Transactions on Industry Applications, vol.33, no.l, pp.35-42, January/February 1997.
    [127]孟庆铸,赵志广,赵宇龙.基于MRAS的异步电机转子电阻的辨识方法[J].电机技术,2008,(1):5-8
    [128]冯志鹏,宋希庚,薛冬新等.基于广义回归神经网络的时间序列预测研究[J].振动、测试与诊断,2003,23(2):105-109
    [129]Specht D F. A General Regression Neural Network[J]. IEEE Transations on Neural Networks,1991,2(6):568-576.
    [130]Chtioui Y, Panigrahi S, Francl L. A Generalized Regression Neural Network and its Application for Leaf Wetness Prediction to Forecast Plant Disease[J]. Chemometrics and Intel-ligent Laboratory Systems,1999,48(1):47-58.
    [131]姚李孝,刘学琴,伍利,薛美娟.基于广义回归神经网络的电力系统中长期负荷预测[J].电力自动化设备,2007,27(8):26-29
    [132]王震坡,孙逢春.电动车辆动力电池管理系统及应用技术[M].北京:机械工业出版社,2012:27-28
    [133]张文春主编.汽车理论[M].北京:机械工业出版社,2005年7月:22-39
    [134]Zijian Zhang, Guoqing Xu. Regenerative Braking for Electric Vehicle Based on Fuzzy Logic Control Strategy.2010 2nd International Conference on Mechanical and Electronics Engineering,2010,Volumel,319-323
    [135]Hao Zhang, Guoqing Xu. Fuzzy Logic Control in Regenerative Braking System for Electric Vehicle. Proceeding of the IEEE International Conference on Information and Automation Shenyang, China, June 2012,588-591

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700