多晶高纯钽板轧制变形与退火行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钽作为一种高熔点难熔金属,具有独特的物理与化学性质,在多种工业领域获得了广泛应用,被称为“金属王国”里的后起之秀,但是关于钽的基础科学研究相对落后。本文结合X射线衍射(XRD)、背散射电子衍射(EBSD)、差示扫描量热法(DSC)以及透射电子显微技术(TEM),对高纯多晶钽板在两种轧制方式下(单向轧制与周向轧制)的组织演变规律与再结晶织构形成机理做了系统研究,得到了以下主要结论:
     ①锻造退火态钽板展现出极大的组织不均匀性。这种不均匀性主要体现在钽板表面层晶粒尺寸远大于中心层的晶粒尺寸,个别晶粒呈现出异常长大形态,尺寸达到了数百微米甚至几个毫米。另外,钽板不同厚度层具有很大的织构差异,表面层含有强烈的{100}织构,而中间层具有强烈的{111}织构。以上组织的不均匀性对材料的使用性能具有不利影响。
     ②两种轧制方式下钽板具有不一样的织构演变规律。经过70%变形后,单向轧制钽板中含有较强θ纤维织构与γ纤维织构,另外还形成了中等强度的不完整α纤维织构。随着轧制变形量的增加,γ纤维织构的强度逐渐增大,而θ与α纤维织构的强度保持相对稳定。钽板在周向轧制过程中,仅含有θ与γ两种纤维织构。这两种织构的强度在轧制过程中均不稳定,随着轧制道次的改变成周期性变化。由于轧制方向的连续改变,钽板中不再含有α纤维织构。两种终轧道次钽板(87%变形量)均呈现出一定的织构梯度,这种织构梯度的存在主要归因于钽板初始组织存在极大的不均匀性。对于周向轧制钽板,这种织构梯度主要表现在,表面层具有强烈的θ织构与很弱的γ织构,其中γ织构的强度随着离样品表面距离的增加而逐渐增强,而θ织构的强度随着位置的改变没有明显变化。
     ③两种轧制方式下晶粒分裂行为均显示出取向相关性,其中{111}晶粒的分裂程度要高于{100}晶粒的分裂程度。{111}晶粒在单向轧制中容易呈现出平行的变形带组织,内部具有大的平均取向差,并含有较高的储存能。而{100}晶粒在变形过程中显得非常稳定,内部具有非常小的平均取向差,并含有较低的储存能。周向轧制对这两种晶粒的分裂行为产生了较大的影响,一方面部分地消除了{111}晶粒中的平行变形带组织,另一方面使部分{100}晶粒产生了较大的分裂。因此周向轧制明显缩小了这两种晶粒之间的储存能差异,提高了变形组织的均匀性。对位错结构的透射电镜观察表明,周向轧制钽板大多数晶粒具有位错胞结构,而单向轧制钽板大多数晶粒显示出平行的层状位错界面结构。
     ④采用三束离子束抛光技术,并结合高分辨场发射电镜上背散射电子衍射系统,可以对变形钽板内部的真实显微结构进行表征,所获得的花样质量成像图接近于透射电镜照片。不仅可以对显微结构参数,诸如位错界面间距、界面取向差等做定量的统计分析,还可以获得晶体取向与储存能之间的相互关系。
     ⑤周向轧制钽板的再结晶行为受轧制道次与退火条件的影响较大。轧制道次的增加会增加轧制织构中的{100}组分,这种组分的存在可以抑制优先形核{111}晶粒的长大,有助于细化钽板的退火晶粒结构。钽板的退火处理不适宜在低温情况下进行,低温退火很难激活{100}变形晶粒中的再结晶行为,不利于消除退火组织中的变形带。退火处理也不适宜在高温长时间条件下进行,这容易引起晶粒快速长大并粗化,不过高温短时退火可以同时激活{111}与{100}晶粒的再结晶行为。另外,在退火过程中进行回复处理对能够减小优先形核晶粒的长大速率,对细化晶粒是有利的。与单向轧制相比,周向轧制有助于消除退火样品中的变形带组织。
     ⑥周向轧制钽板的再结晶织构类型与轧制织构类型相同,为{111}与{100}混合织构,不过{111}织构要强,并且高温退火有助于加强这种织构。由于不同晶界显微结构的巨大差异,导致晶界类型对形核行为具有重要影响,其中γ-θ晶界位置为择优形核点,这个位置的形核源于亚晶长大机制,主要产生{111}与{100}两种晶粒取向,而θ-θ晶界位置为第二形核点,这个位置仅产生{100}取向晶核。强烈{111}织构的形成源于{111}再结晶晶粒的生长优势,在再结晶过程中,{111}晶粒的平均尺寸始终要大于{100}晶粒的平均尺寸。这两种晶粒的尺寸差异由晶粒生长过程中的取向钉扎产生。在生长过程中,由于轧制织构中具有更强的{100}取向,因此{100}晶粒与{100}变形基体形成小角度界面的几率更大,受到取向钉扎的影响更为明显。
Tantalum (Ta) is a refractory metal with bcc structure. Due to unique properties, ithas been widely used in many fields, such as electronics industry, cutting-tool industry,chemistry industry, medical and military fields. Unfortunately, its fundamental studiesdrop behind. In this thesis, the deformation under two rolling ways (unidirectionalrolling and clock rolling) and subsequent annealing behavior of high puritypolycrystalline Ta were studied by multiple characterization methods, such as X-raydiffraction (XRD), electron backscattered diffraction (EBSD), transmission electronmicroscope (TEM), and differential scanning calorimetry (DSC). According to thisstudy, the following results and conclusions can be drawn:
     ①The forged and annealed Ta plate displayed extreme heterogeneity inmicrostructure. The heterogeneity was in that the grain size in the surface layer wasmuch bigger than that of the center layer. Some grains owned millimeter size andexhibited abnormal growth. In addition, the texture in the surface layer was dominatedby strong {100} component compared to the intense {111} component in the centerlayer. The above heterogeneity would have deleterious effect on material performance.
     ②Different texture evolutions were under different rolling ways. After70%deformation, strong θ-and γ-fiber as well as moderate α-fiber would be produced inunidirectional rolling. With increased rolling deformation, the intensity of the γ-fiberwas enhanced, while kept stable in θ-and α-fiber. Duing clock rolling, only θ-andγ-fiber could be found and the intensity of the two textures varied with rolling passes.The disappearance of the α-fiber was attributed to the continuous change in rollingdirection. Both rolling methods led to a through-thickness texture gradient in Ta platesand this was caused by heterogenous microstructure and texture in the staring materials.As for clock rolling with87%thickness reduction, the intensity of γ-fiber increasedgradually from the surface layer to the center position.
     ③Orientation dependence during rolling was common in deformationmicrostructure. Compared to unidirectional rolling, the extent of orientation dependencecould be eased by clock rolling.{111} grains underwent severe deformation duringrolling and would accommodate high density dislocation. This type of orientation oftendisplayed parallel deformation bands or GNBs after heavy unidirectional rolling.{100}grains were stable during deformation, and this type of orientation did not subdivide since internal misorientations were very small. Clock rolling, on one hand, cleared upparallel deformation bands or GNBs in {111} grains; on the other hand, subdivision of{100} grains was enhanced.
     ④Triple focused ion beam polishing, in combination with EBSD system in highresolution field emission scanning electron microscopy, would be very useful inrevealing real deformation microstructure of Ta.
     ⑤Rolling pass and annealing temperature had great effect on recrystallizationbehavior of clock-rolled Ta. Increasing rolling pass would enhance {100} rolling texture,which is beneficial to inhibit the growth of nuclei. Heat treatment of clock-rolled Tashould not be done under very low (950℃)or high (1300℃) temperatures, as annealingduring low temperature was hard to eliminate deformed bands, whereas hightemperature would lead to grain coarsening. However, high temperature annealing couldactivate nucleation in {100} and {111} deformed bands simultaneously. Recoveryreleased the most stored energy of deformed Ta and would slowd down the grain growthduring subsequent recrystallization. Compared to unidirectional rolling, clock rollingwas relatively helpful for eliminating deformed bands.
     ⑥The recrystallization texture of clock-rolled Ta was the same as the rollingtexture, consisting of {111} and {100} components. The {111} component would bestrengthened under high annealing temperature. Nucleation preferred to occur in γ-θgrain boundries. This type of boundary owned subgrain substructure and the nucleationwas caused by subgrain growth. The nucleation in θ-θ grain boundaries could beactivated under relative high temperatures or needed to undergo a long embryo timebefore recrystallization. The intense {111} recrystallization texture was attributed to thebig size in {111} recrystallized grains, since during the whole recrystlliztion process,the mean size of {100} grains was always samller than that of {111} grains. This sizedifference could be explained by “orientation pinning”.
引文
[1] K ck W, Paschen P. Tantalum-processing, properties and applications[J]. JOM1989;41:33–9.
    [2] Cardonne SM, Michaluk CA, Schwartz HD. Tantalum and its alloys[J]. Int J Refract Met HardMater1995;13:187–94.
    [3] Buckman Jr. RW. New applications for tantalum and tantalum alloys[J]. JOM2000;52:40–1.
    [4] Levine BR, Sporer S, Poggie RA, Della Valle CJ, Jacobs JJ. Experimental and clinicalperformance of porous tantalum in orthopedic surgery[J]. Biomater2006;27:4671–81.
    [5] Patil N, Lee K, Goodman SB. Porous tantalum in hip and knee reconstructive surgery[J]. JBiomed Mater Res B: Appl Biomater2009;89:242–51.
    [6] Jang S-Y, Lee S-M, Balk H-K. Tantalum and niobium as a diffusion barrier between copperand silicon[J]. J Mater Sci: Mater Electron1996;7:271–8.
    [7] Luntao P, Bin L, Aiguo Z, Jianbo L, Haijun L, Qiouying W. Application of Tantalum toLSIC[J]. Chinese J Rare Met2003;27:28–34.
    [8] Moser KD. The manufacture and fabrication of tantalum[J]. JOM1999;51:29–31.
    [9] Sandim HRZ, Martins JP, Pinto AL, Padilha AF. Recrystallization of oligocrystalline tantalumdeformed by cold rolling[J]. Mater Sci Eng A2005;392:209–21.
    [10] Choi G-S, Lim J-W, Munirathnam NR, Kim I-H, Kim J-S. Preparation of5N grade tantalumby electron beam melting[J]. J Alloys Compd2009;469:298–303.
    [11] Briant CL, Macdonald E, Balliett RW, Luong T. Recrystallization textures in tantalum sheetand wire[J]. Int J Refract Met Hard Mater2000;18:1–8.
    [12] Sandim HRZ, Martins JP, Padilha AF. Orientation effects during grain subdivision andsubsequent annealing in coarse-grained tantalum[J]. Scr Mater2001;45:733–8.
    [13] Wright SI, Gray ⅢGT, Rollett AD. Textural and microstructural gradient effects on themechanical behavior of a tantalum plate[J]. Metall Mater Trans A1994;25:1025–31.
    [14] Pokross C. Controlling the Texture of Tantalum Plate[J]. JOM1989;41:46–9.
    [15] Raabe D, Schlenkert G, Weisshaupt H, Lücke K. Texture and microstructure of rolled andannealed tantalum[J]. Mater Sci Technol1994;10:299–305.
    [16] H lscher M, Raabe D, Lücke K. Rolling and Recrystallization Textures of BCC Steels[J]. SteelRes1991;62:567–75.
    [17] Humphreys FJ, Hatherly M. Recrystallization and Related Annealing Phenomena[M]. SecondEdi. Oxford: Pergamon Press;2004.
    [18] Davenport SB, Higginson RL. Strain path effects under hot working: an introduction[J]. JMater Process Technol2000;98:267–91.
    [19] Higginson RL, MacGregor A, Palmiere EJ. Strain path effects on texture development inaluminium[J]. Mater Sci Forum2002;396-402:303–8.
    [20] Bhattacharjee PP, Joshi M, Chaudhary VP, Gatti JR, Zaid M. Texture evolution during crossrolling and annealing of high-purity nickel[J]. Metall Mater Trans A2013;44:2707–16.
    [21] Huh MY, Cho SY, Engler O. Randomization of the annealing texture in aluminum5182sheetby cross-rolling. Mater Sci Eng A2001;315:35–46.
    [22]毛卫民,张新明.晶体材料织构的定量分析[M].北京:冶金工业出版社;1993.
    [23] Liu Q, Hansen N. Geometrically necessary boundaries and incidental dislocation boundariesformed during cold deformation[J]. Scr Metall Mater1995;32:1289–95.
    [24] Kuhlmann-Wilsdorf D, Hansen N. Geometrically necessary, incidental and subgrainboundaries[J]. Scr Metall Mater1991;25:1557–62.
    [25] Hughes DA, Hansen N. Microstructure and strength of nickel at large strains[J]. Acta Mater2000;48:2985–3004.
    [26] Kuhlmann-Wilsdorf D. Energy minimization of dislocations in low-energy dislocationstructures[J]. Phys Stat Sol (A)1987;104:121–44.
    [27] Kuhlmann-Wilsdorf D. Theory of plastic deformation: properties of low energy dislocationstructuresV. Mater Sci Eng A1989;113:1–41.
    [28] Hansen N. Cold deformation microstructures[J]. Mater Sci Technol1990;6:1039–47.
    [29] Hansen N, Juul Jensen D. Development of microstructure in FCC metals during cold work[J].Phil Trans R Soc Lond A1999;357:1447–69.
    [30] Hansen N. New Discoveries in Deformed Metals[J]. Metall Mater Trans A2001;32:2917–35.
    [31] Hansen N, Juul Jensen D. Deformed metals-structure, recrystallisation and strength[J]. MaterSci Technol2011;27:1229–40.
    [32] Hansen N, Huang X, Winther G. Effect of Grain Boundaries and Grain Orientation on Structureand Properties[J]. Metall Mater Trans A2011;42:613–25.
    [33] Liu Q. A simple and rapid method for determining orientations and misorientations ofcrystalline specimens in TEM[J]. Ultramicroscopy1995;60:81–9.
    [34] Huang X, Liu Q. Determination of crystallographic and macroscopic orientation of planarstructures in TEM[J]. Ultramicroscopy1998;74:123–30.
    [35] Hughes DA, Liu Q, Chrzan DC, Hansen N. Scaling of microstructural parameters:Misorientations of deformation induced boundaries[J]. Acta Mater1997;45:105–12.
    [36] Hughes D, Chrzan D, Liu Q, Hansen N. Scaling of misorientation angle distributions[J]. PhysRev Lett1998;81:4664–7.
    [37] Godfrey A, Hughes D. Scaling of the spacing of deformation induced dislocation boundaries[J].Acta Mater2000;48:1897–905.
    [38] Huang X, Hansen N. Grain orientation dependence of microstructure in aluminium deformedin tension[J]. Scr Mater1997;37:1–7.
    [39] Liu Q, Juul Jensen D, Hansen N. Effect of grain orientation on deformation structure incold-rolled polycrystalline aluminium[J]. Acta Mater1998;46:5819–38.
    [40] Huang X. Grain Orientation Effect on Microstructure in Tensile Strained Copper[J]. Scr Mater1998;38:1697–703.
    [41] Huang X, Winther G. Dislocation structures. Part I. Grain orientation dependence[J]. Phil Mag2007;87:5189–214.
    [42] Lin FX, Godfrey A, Winther G. Grain orientation dependence of extended planar dislocationboundaries in rolled aluminium[J]. Scr Mater2009;61:237–40.
    [43]魏绎郦.面心立方金属中形变位错结构的研究[D].清华大学,2011.
    [44] Every RL, Hatherly M. Oriented nucleation in low-carbon steels[J]. Texture1974;1:183–94.
    [45] I S, B V, Paul VH. Developments in macro and micro texture during plane strain channel diecompression of IF steel[J]. ISIJ Int1998;38:759–65.
    [46] Li B., Godfrey A, Meng Q., Liu Q, Hansen N. Microstructural evolution of IF-steel during coldrolling[J]. Acta Mater2004;52:1069–81.
    [47] Haldar A, Huang X, Leffers T, Hansen N, Ray RK. Grain orientation dependence ofmicrostructures in a warm rolled IF steel. Acta Mater2004;52:5405–18.
    [48] Engler O, Randle V. Introduction texture analysis: macrotexture, microtexture, and orientaionmapping[M]. Second Edi. Taylor and Francis;2010.
    [49] H lscher M, Raabe D, Lücke K. Rolling and recrystallization textures of bcc steels[J]. SteelRes1991;62:567–75.
    [50] Seidel L, H lscher M, Lücke K. Rolling and Recrystallization Textures in Iron-3%Silicon[J].Textures and Microstruct1989;11:171–85.
    [51] Raabe D, Lücke K. Textures of ferritic stainless steels[J]. Mater Sci Technol1993;9:302–12.
    [52] Huh M-Y, Engler O. Effect of intermediate annealing on texture, formability and ridging of17%Cr ferritic stainless steel sheet[J]. Mater Sci Eng A2001;308:74–87.
    [53] Huh M-Y, Kim H-C, Park J-J, Engler O. Evolution of through-thickness texture gradients invarious steel sheets[J]. Met Mater1999;5:437–43.
    [54] Raphanel JL, Van Houtte P. Simulation of the rolling textures of b.c.c. metals by means of therelaxed taylor theory[J]. Acta Metall1985;33:1481–8.
    [55] Raabe D. Simulation of rolling textures of b.c.c, metals considering grain interactions andcrystallographic slip on {110},{112} and {123} planes[J]. Mater Sci Eng A1995;197:31–7.
    [56] Bate PS, Quinta da Fonseca J. Texture development in the cold rolling of IF steel[J]. Mater SciEng A2004;380:365–77.
    [57] D. Raabe, Lücke K. Annealing textures of BCC metals[J]. Scr Metall Mater1992;27:1533–8.
    [58] Raabe D, Lücke K. Rolling and Annealing Textures of BCC Metals[J]. Mater Sci Forum1994;157-162:597–610.
    [59] Inagaki H. Fundamental aspect of texture formation in low carbon steel[J]. ISIJ Int1994;34:313–21.
    [60] Huh MY, Raabe D, Engler O. Influence of solution treatment on the microstructure andcrystallographic texture of cold rolled and recrystallised low carbon steel[J]. Steel Res1995;66:353–9.
    [61] Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ, Jensen DJ, Kassner ME, et al. Currentissues in recrystallization: a review[J]. Mater Sci Eng A1997;238:219–274.
    [62] Doherty RD. Recrystallization and texture[J]. Pro Mater Sci1997;42:39–58.
    [63] Dillamore IL, Smith CJE, Watson TW. Oriented Nucleation in the Formation of AnnealingTextures in Iron[J]. Met Sci1967;1.
    [64] Barnett MR. Role of in-grain shear bands in the nucleation of<111>//ND recrystallizationtextures in warm rolled steel[J]. ISIJ Int1998;38:78–85.
    [65] Réglé H. Mechanisms of Microstructure and Texture Evolution during Recrystallisation ofFerritic Steels Sheets. In: Crumbach M, Pomana G, Wagner P, Gottstein G, editors.Recrystallization and Grain Growth: Proceedings of the First Joint International Conference,RWTH Aachen,Germany: Springer Verlag;2001, p.207.
    [66] Cao S, Li Y, Zhang J, Wu J. EBSD Investigation on Oriented Nucleation in IF Steels[J]. JMater Sci Technol2007;23:262–6.
    [67] Hutchinson B, Ryde L. Mechanisms, kinetics and crystallography of recrystallization in coldrolled steels. In: Hansen N, Jensen DJ, Liu Y., Ralph B, editors. Microstructural andCrystallographic Aspects of Recrystallization, Roskilde, Denmark:1995, p.105–17.
    [68] Magnusson H, Juul Jensen D, Hutchinsson B. Growth rates for different texture componentsduring recrystallization of IF steel[J]. Scr Mater2001;44:435–41.
    [69] Hutchinson JW. Mechanisms of recrystallization and texture evolution in cold rolled steels. In:Tsuji N, Ueji R, Ito Y, Saito Y, Hansen N, Huang X, editors. Proceedings of the21st RisoInternational Symposium on Materials Science: Recrystallization-Fundamental Aspects andRelations to Deformation Microstructure, Denmark: RIS National Laboratory;2000, p.601–6.
    [70] Kestens L, Jonas JJ. Deep drawing textures in low carbon steels[J]. Met Mater1999;5:419–27.
    [71] Schwarzer RA, Pospiech J, Ostafin M. Microstructure and texture in copper sheets afterreverse and cross rolling[J]. Solid State Phenomena2005;105:309–14.
    [72] Huh MY, Engler O, Raabe D. On the Influence of Cross-Rolling on Shear Band Formation andTexture Evolution in Low Carbon Steel Sheets[J]. Textures and Microstruct1995;24:225–37.
    [73] Huh MY, Cho SY, Engler O. Randomization of the annealing texture in aluminum5182sheetby cross-rolling[J]. Mater Sci Eng A2001;315:35–46.
    [74] Suwas S, Singh AK. Role of strain path change in texture development[J]. Mater Sci Eng A2003;356:368–71.
    [75] Chino Y, Sassa K, Kamiya A, Mabuchi M. Enhanced formability at elevated temperature of across-rolled magnesium alloy sheet[J]. Mater Sci Eng A2006;441:349–56.
    [76] Oertel CG, Hünsche I, Skrotzki W, Lorich A, Knabl W, Resch J, et al. Influence of cross rollingand heat treatment on texture and forming properties of molybdenum sheets[J]. Int J RefractMet Hard Mater2010;28:722–7.
    [77] Gurao NP, Sethuraman S, Suwas S. Effect of strain path change on the evolution of texture andmicrostructure during rolling of copper and nickel[J]. Mater Sci Eng A2011;528:7739–50.
    [78] Bhattacharjee PP, Joshi M, Chaudhary VP, Gatti JR, Zaid M. Texture Evolution During CrossRolling and Annealing of High-Purity Nickel[J]. Metall Mater Trans A2013;44:2707–16.
    [79] Wronski S, Wrobel M, Baczmanski, A., Wierzbanowski K. Effects of cross-rolling on residualstress, texture and plastic anisotropy in fcc and bcc metals[J]. Mater Charact2013;77:116–26.
    [80] Xiong J, Chen Z, Yi L, Hu S, Chen T, Liu C. Microstructure and mechanical properties ofannealed Mg–0.6wt%Zr sheets by unidirectional and cross rolling[J]. Mater Sci Eng A2014;590:60–5.
    [81] Kim DG, Lee KM, Lee JS, Yoon YO, Son HT. Evolution of microstructures and textures inmagnesium AZ31alloys deformed by normal and cross-roll rolling[J]. Mater Lett2012;75:122–5.
    [82] Kim SH, Kang HG, Huh MY, Engler O. Interpretation of the strain state during cross-rollrolling of aluminum by means of texture analysis[J]. Mater Sci Eng A2009;508:121–8.
    [83] Cui Q, Ohori K. Grain refinement of high purity aluminium by asymmetric rolling[J]. MaterSci Technol2000;16:1095–101.
    [84] Kang SB, Min BK, Kim HW, Wilkinson DS, Kang J. Effect of asymmetric rolling on thetexture and mechanical properties of AA6111-aluminum sheet[J]. Metall Mater Trans A2005;36:3141–9.
    [85] Ji YH, Park JJ. Development of severe plastic deformation by various asymmetric rollingprocesses[J]. Mater Sci Eng A2009;499:14–7.
    [86] Beausir B, Biswas S, Kim DI, Tóth LS, Suwas S. Analysis of microstructure and textureevolution in pure magnesium during symmetric and asymmetric rolling[J]. Acta Mater2009;57:5061–77.
    [87] Gurao NP, Sethuraman S, Suwas S. Evolution of Texture and Microstructure in CommerciallyPure Titanium with Change in Strain Path During Rolling[J]. Metall Mater Trans A2012;44:1497–507.
    [88] Fujii T, Ohba Y, Tamura Y. On the rolling deformation and recrystallization of (111)[112]single crystals of high-purity tungsten, molybdenum and tantalum[J]. J Less Common Met1975;39:161–72.
    [89] Vandermeer RA, Snyder WB. Recovery and Recrystallization in Rolled Tantalum SingleCrystals[J]. Metall Trans A1979;10:1031–44.
    [90] Sandim HRZ, Padilha AF, Randle V, Blum W. Grain subdivision and recrystallization inoligocrystalline tantalum during cold swaging and subsequent annealing[J]. Int J Refract MetHard Mater1999;17:431–5.
    [91] Sandim, HRZ, Mcqueen HJ, Blum W. Microstructure of cold swaged tantalum at largestrains[J]. Scr Mater2000;42:151–6.
    [92] Hupalo MF, Sandim HRZ. The annealing behavior of oligocrystalline tantalum deformed bycold swaging[J]. Mater Sci Eng A2001;318:216–223.
    [93] Raabe D, Mülders B, Gottstein G, Lücke K. Textures of Cold Rolled and Annealed Tantalum[J].Mater Sci Forum1994;157-162:841–6.
    [94] Clark JB, Garrett RK, Jungling TL, Asfahani RI. Influence of initial ingot breakdown on themicrostructural and textural development of high-purity tantalum[J]. Metall Trans A1991;22:2159–68.
    [95] Clark JB, Garrett RK, Jungling TL, Vandermeer RA, Vold CL. Effect of processing variableson texture and texture gradients in tantalum[J]. Metall Trans A1991;22:2039–48.
    [96] Clark JB, Garrett RK, Jungling TL, Asfahani RI. Influence of Transverse Rolling on theMicrostructural and Texture Development in Pure Tantalum[J]. Metall Trans A1992;23:2183–91.
    [97]魏忠梅,杨明杰,李麦海.冷压-轧制工艺对钽板组织与性能的影响[J].稀有金属与硬质合金2000;3:14–7.
    [98]袁韧,张新明,周卓平.钽丝的织构和再结晶行为研究[J].材料导报2002;16:68–70.
    [99]郭磊,王志法.加工方法对钽板力学性能以及织构的影响[J].稀有金属与硬质合金2005;33:18–22.
    [100]张行健,王志法,陈德欣,张瑾瑾.冷变形量及退火温度对钽板再结晶组织的影响[J].稀有金属与硬质合金2005;33:8–12.
    [101]张行健,王志法,姜国圣,陈德欣,张瑾瑾.锭坯生产工艺对纯钽板再结晶温度影响的研究[J].粉末冶金技术2006;24:118–21.
    [102]姜国圣,王志法,崔大田,张行健.纯钽片晶粒大小控制与深冲性能[J].矿冶工程2007;27:78–83.
    [103]陈明,朱晓光,王欣平,万小勇. Ta晶粒细化工艺及组织、织构的研究[J].热加工工艺2010;39:26–8.
    [104]Michaluk CA, Nowell MM, Witt RA. Quantifying the Recrystallization Texture of Tantalum[J].JOM2002;54:51–4.
    [105]Pawlik K. Determination of the Orientation Distribution Function from Pole Figures inArbitrarily Defined Cells[J]. Phys Stat Sol(b)1986;134:477.
    [106]杨平.电子背散射衍射技术及其应用[M].北京:冶金工业出版社;2007.
    [107]Randle V. Applications of electron backscatter diffraction to materials science: status in2009[J]. J Mater Sci2009;44:4211–8.
    [108]Schwartz AJ, Kumar M, Adams BL, Field DP, editors. Electron Backscatter Diffraction inMaterials Science[M]. Second Edi. Springer;2009.
    [109]Kang SJL, Huh MY, Hwang NM, Homma H, Ushioda K, Ikuhara Y. Recrystallization andgrain growth. In: Kang SJL, Huh MY, Hwang NM, Homma H, Ushioda K, Ikuhara Y, editors.Prco.3rd Int. Conf. on “Recrystallization and grain growth,” Jeju Island, Korea: Trans TechPublications;2007, p.1544.
    [110]Delannay L, Mishin OV, Juul Jensen D, Van Houtte P. Quantitative analysis of grainsubdivision in cold rolled aluminium[J]. Acta Mater2001;49:2441–51.
    [111]Li BL, Godfrey A, Liu Q. Subdivision of original grains during cold-rolling of interstitial-freesteel[J]. Scr Mater2004;50:879–83.
    [112]Sandim HRZ, Raabe D. EBSD study of grain subdivision of a Goss grain in coarse-grainedcold-rolled niobium[J]. Scr Mater2005;53:207–12.
    [113]Hurley PJ, Bate PS, Humphreys FJ. An objective study of substructural boundary alignment inaluminium[J]. Acta Mater2003;51:4737–50.
    [114]Winther G, Huang X, Godfrey A, Hansen N. Critical comparison of dislocation boundaryalignment studied by TEM and EBSD: technical issues and theoretical consequences[J]. ActaMater2004;52:4437–46.
    [115]Choi SH. Monte carlo technique for simulation of recrystallization texture in interstitial freesteels[J]. Mater Sci Forum2002;408-412:469–74.
    [116]Choi S, Jin Y. Evaluation of stored energy in cold-rolled steels from EBSD data[J]. Mater SciEng A2004;371:149–59.
    [117]Chen Y, Hjelen J, Roven HJ. Application of EBSD technique to ultrafine grained andnanostructured materials processed by severe plastic deformation: Sample preparation,parameters optimization and analysis[J]. Trans Nonferrous Met Soc China2012;22:1801–9.
    [118]Bever MB, Holt DL, Titchener AL. The stored energy of cold work[J]. Progress Mater Sci1973;17:5–177.
    [119]Scholz F, Driver JH, Woldt E. The stored energy of cold rolled ultra high purity iron[J]. ScrMater1999;40:949–54.
    [120]Scholz F, Woldt E. The release of stored energy during recovery and recrystallization of coldrolled ultra high purity iron[J]. J Therm Anal Calorim2001;64:895–903.
    [121]Leffers T, Juul Jensen D. Evaluation of the effect of initial texture on the development ofdeformation texture[J]. Textures and Microstruct1986;6:231–54.
    [122]Lee K, Kim G, Kestens L. Effect of initial texture on the evolution of texture and stored energyduring recrystallization of interstitial free steel[J]. Mater Sci Forum2005;495-497:357–62.
    [123]Bingert JF, Desch PB, Bingert SR, Maudlin PJ, Tome CN. Texture evolution in upset-forgedP/M and wrought tantalum: experimentation and modeling. In: Bose A, Dowding R, editors.Proceedings of4th International Conference on Tungsten Refractory Metals and Alloys:Processing, Properties, and Applications., Princeton, NJ: Metal Powder Industries Federation;1997, p.169–78.
    [124]Engler O. A Study of Through-Thickness Texture Gradients in Rolled Sheets[J]. Metall MaterTrans A2000;31:2299–315.
    [125]Truszkowski W, Krol J, Major B. Inhomogeneity of rolling texture in fcc metals[J]. MetallTrans A1980;11:749–58.
    [126]Mishin OV, Bay B, Jensen DJ. Through-thickness texture gradients in cold-rolled aluminum[J].Metall Mater Trans A2000;31:1653–62.
    [127]Chen JZ, Zhen L, Shao WZ, Dai SL, Cui YX. Through-thickness texture gradient in AA7055aluminum alloy[J]. Mater Lett2008;62:88–90.
    [128]Bhattacharjee PP, Joshi M, Chaudhary VP, Zaid M. The effect of starting grain size on theevolution of microstructure and texture in nickel during processing by cross-rolling[J]. MaterCharact2013;76:21–7.
    [129]Jeong W. Effect of hot-rolling temperature on microstructure and texture of an ultra-low carbonTi-interstitial-free steel[J]. Mater Lett2008;62:91–4.
    [130]Saha R, Ray R, Bhattacharjee D. Attaining deep drawability and non-earing properties in Ti+Nb interstitial-free steels through double cold rolling and annealing[J]. Scr Mater2007;57:257–60.
    [131]Carroll JD, Clark BG, Buchheit TE, Boyce BL, Weinberger CR. An experimental statisticalanalysis of stress projection factors in BCC tantalum[J]. Mater Sci Eng A2013;581:108–18.
    [132]Gracio JJ, Fernandes JV, Schmitt JH. Effect of grain size on substructural evolution and plasticbehaviour of copper[J]. Mater Sci Eng A1989;118:97–105.
    [133]Jago R a., Hansen N. Grain size effects in the deformation of polycrystalline iron[J]. ActaMetall1986;34:1711–20.
    [134]Scheriau S, Pippan R. Influence of grain size on orientation changes during plasticdeformation[J]. Mater Sci Eng A2008;493:48–52.
    [135]Hansen N, Huang X, Winther G. Grain orientation, deformation microstructure and flowstress[J]. Mater Sci Eng A2008;494:61–7.
    [136]Lewandowska M. Dependence of the deformation microstructure of aluminium alloys on thestrain path[J]. Mater Chem Phys2003;81:555–7.
    [137]Schmitt JH, Shen EL, Raphanel JL. A parameter for measuring the magnitude of a change ofstrain path: validation and comparison with experiments on low carbon steel[J]. Int J Plasticity1994;10:535–51.
    [138]Rajmohan N, Hayakawa Y, Szpunar JA, Root JH. Neutron diffraction method for stored energymeasurement in interstitial free steel[J]. Acta Mater1997;45:2485–94.
    [139]Ray RK, Jonas JJ, Hook RE. Cold rolling and annealing textures in low carbon and extra lowcarbon steels[J]. Int Mater Rev1994;39:129–72.
    [140]Boer BD, Wieting J. Formation of a near {001}<110>recrystallization texture in electricalsteels[J]. Scr Mater1997;37:753–60.
    [141]Gil Sevillano J, Van Houtte P, Aernoudt E. Inhomogeneity in the stored energy of deformedBCC metals[J]. Scr Metall1976;10:775–8.
    [142]Borbély A, Driver JH, Ungár T. An X-ray method for the determination of stored energies intexture components of deformed metals; application to cold worked ultra high purity iron[J].Acta Mater2000;48:2005–16.
    [143]Nesterova EV, Bacroix B, Teodosiu C. Microstructure and Texture Evolution under Strain-PathChanges in Low-Carbon Interstitial-Free Steel[J]. Metall Mater Trans A2001;32:2527–38.
    [144]Giannuzzi LA, Stevie FA, editors. Introduction to Focused Ion Beams[M]. Springer US;2005.
    [145]Munroe PR. The application of focused ion beam microscopy in the material sciences[J].Mater Charact2009;60:2–13.
    [146]Rubanov S, Munroe PR. FIB‐i nduced damage in silicon[J]. J Microscopy2004;214:213–21.
    [147]Yu J, Liu J, Zhang J, Wu J. TEM investigation of FIB induced damages in preparation of metalmaterial TEM specimens by FIB[J]. Mater Lett2006;60:206–9.
    [148]Kiener D, Motz C, Rester M, Jenko M, Dehm G. FIB damage of Cu and possible consequencesfor miniaturized mechanical tests[J]. Mater Sci Eng A2007;459:262–72.
    [149]Mayer J, Giannuzzi LA, Kamino T, Michael J. TEM sample preparation and FIB-induceddamage[J]. MRS Bull2007;32:400–7.
    [150]Peeters B, Seefeldt M, Teodosiu C, Kalidindi SR, Van Houtte P, Aernoudt E.Work-hardening/softening behaviour of bcc polycrystals during changing strain paths: I. Anintegrated model based on substructure and texture evolution, and its prediction of thestress–strain behaviour of an IF steel during two-stage strain paths[J]. Acta Mater2001;49:1607–19.
    [151]Peeters B, Bacroix B, Teodosiu C, Van Houtte P. Work-hardening/softening behaviour of bccpolycrystals during changing strain: Part II. TEM observations of dislocation sheets in an IFsteel during two-stage strain paths and their representation in terms of dislocation densities[J].Acta Mater2001;49:1621–32.
    [152]Haessner F, Schmidt J. Recovery and recrystallization of different grades of high purityaluminium determined with a low temperature calorimeter[J]. Scr Metall1988;22:1917–22.
    [153]Knudsen T, Cao WQ, Godfrey A, Liu Q, Hansen N. Stored Energy in Nickel Cold Rolled toLarge Strains, Measured by Calorimetry and Evaluated from the Microstructure[J]. MetallMater Trans A2008;39:430–40.
    [154]Stuwe HP, Padilha AF, Siciliano Jr F. Competition between recovery and recrystallization[J].Mater Sci Eng A2002;333:361–7.
    [155]Hutchinson JB. Development of Textures in Recrystallization[J]. Met Sci1974;5:185–96.
    [156]Etter AL, Mathon MH, Baudin T, Branger V, Penelle R. Influence of the cold rolled reductionon the stored energy and the recrystallization texture in a Fe-53%Ni alloy[J]. Scr Mater2002;46:311–7.
    [157]Hughes D. High angle boundaries formed by grain subdivision mechanisms[J]. Acta Mater1997;45:3871–86.
    [158]Belyakov A, Sakai T, Miura H, Kaibyshev R, Tsuzaki K. Continuous recrystallization inaustenitic stainless steel after large strain deformation[J]. Acta Mater2002;50:1547–57.
    [159]Jazaeri H, Humphreys FJ. The transition from discontinuous to continuous recrystallization insome aluminium alloys II-annealing behaviour[J]. Acta Mater2004;52:3251–62.
    [160]Mathaudhu SN, Hartwig KT. Grain refinement and recrystallization of heavily workedtantalum[J]. Mater Sci Eng A2006;426:128–42.
    [161]Primig S, Leitner H, Knabl W, Lorich A, Clemens H, Stickler R. Influence of the heating rateon the recrystallization behavior of molybdenum[J]. Mater Sci Eng A2012;535:316–24.
    [162]Attallah MM, Strangwood M, Davis CL. Influence of the heating rate on the initiation ofprimary recrystallization in a deformed Al–Mg alloy[J]. Scr Mater2010;63:371–4.
    [163]Duggan BJ, Roberts WT. Recrystallization Textures in an Iron–1.2%Copper Alloy[J]. Met Sci1975;9:449–54.
    [164]Quadir M., Duggan B. Deformation banding and recrystallization of α fibre components inheavily rolled IF steel[J]. Acta Mater2004;52:4011–21.
    [165]Gobernado P, Petrov RH, Kestens L a. I. Recrystallized {311}〈136〉 orientation in ferritesteels[J]. Scr Mater2012;66:623–6.
    [166]Wright SI, Bingert SR, Johnson MD. Effect of annealing temperature on the texture of rolledtantalum and tantalum-10wt.%tungsten. Proceedings of the2nd International Conference onTungsten and Refractory Metals, Mclean, Virginia:1994, p.501–8.
    [167]Abe M, Yokabu Y, Hayashi Y, Hayami S. Trans Japan Inst Metals1982;23:718.
    [168]Inagaki H. Inagaki. Trans Iron Steel Inst Japan1984;24:266.
    [169]Inokuti Y, Doherty RD. Texture1977;2:143.
    [170]Hutchinson WB. Recrystallization textures in iron resulting from nucleation at grainboundaries[J]. Acta Metall1989;37:1047–56.
    [171]Barnett MR, Kestens L. Formation of {111}<110> and {111}<112> textures in cold rolled andannealed IF sheet steel[J]. ISIJ Int1999;39:923–9.
    [172]Park J, Szpunar JA. Evolution of recrystallization texture in nonoriented electrical steels[J].Acta Mater2003;51:3037–51.
    [173]Khatirkar R, Vadavadagi B, Haldar A, Samajdar I. ND//<111> recrystallization in interstitialfree steel: the defining role of growth inhibition[J]. ISIJ Int2012;52:894–901.
    [174]Sinclair CW, Robaut F, Maniguet L, Mithieux J-D, Schmitt J-H, Brechet Y. Recrystallizationand Texture in a Ferritic Stainless Steel: an EBSD Study[J]. Adv Eng Mater2003;5:570–4.
    [175]Sedlacek R, Blum W, Forest S. Subgrain formation during deformation: physical origin andconsenquences[J]. Metall Mater Trans A2002;33:319–27.
    [176]Ibe G, Lücke K. No Title. Archiv Für Das Eisenhüttenwese1968;39:693.
    [177]曹圣泉,张津徐,吴建生,陈家光. IF钢织构与晶界特征分布的研究[J].金属学报2004;40:1045–50.
    [178]Lee DN. Strain energy release maximization model for evolution of recrystallizationtextures[J]. Int J Mech Sci2000;42:1645–78.
    [179]Park YB, Lee DN, Gottstein G. The evolution of recrystallization textures in body centredcubic metals[J]. Acta Metall1998;46.
    [180]Juul Jensen D. Growth rates and misorientation relationships between growing nuclei/grainsand the surrounding deformed matrix during recrystallization[J]. Acta Metall Mater1995;43:4117–29.
    [181]Juul Jensen D. Orientation aspects of growth during recrystallization[D]. Technical Universityof Denmark,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700