并联六维运动重载动态模拟器机构设计与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有空间六维运动的大型重载动态模拟器的典型应用是作为地震模拟振动台,而地震模拟振动台系统是振动工程研究工作中的重要实验设备之一,它能够根据需要,以记录的天然地震波或人工设计的地震波为输入,进行地震再现,以发现结构模型在地震下的断裂机理和倒塌过程,以便制定抗震标准、找到抗震方法,减少地震灾害带来的损失。以往的地震模拟器多采用液压的冗余支链驱动,以提高系统的驱动能力和承载力,这种驱动方式也带来了设备庞大、使用环境受限、造价高、低频特性不好以及控制难度大等问题。本文在分析当前地震模拟振动台技术上存在不足的基础上,提出了一种基于多电机驱动的无冗余支链而具有机械协调的冗余容错六维地震模拟器,对冗余容错驱动、适合地震模拟的机构构型方法、数学模型建立及简化、控制方法以及实验等几个关键问题进行了研究。具体内容如下:
     (1)针对液压驱动导致设备体积庞大、造价高昂、低频特性不好以及冗余支链驱动易产生过约束等不足,提出一种适合重载装备的以电机为驱动源的冗余容错模块,建立该模块的运动学模型,得到全工况下12种工作状态,研究其传动特性并得到三个设计准则,分析其可靠性,并进行实验验证其性能,发现该驱动模块具有理想的冗余容错特性,适合作为重载震动模拟器的驱动。
     (2)在总结地震运动工程特点的基础上,设计符合模拟地震运动的地震模拟振动台并联机构基本构型,其特点为:①具有空间六维运动以便模拟真实的地震运动,②无过约束的简单机构以便准确反映地震运动的三要素,③具有强的承载力和驱动能力以便体现地震的破坏力。把冗余容错驱动模块应用于此基本构型,设计多种不同类型的多电机驱动地震模拟器,以适应地震模拟装备巨型化发展的趋势。
     (3)对地震模拟器机构拓扑参数与运动学性能关系进行研究。从机构的拓扑参数与运动学关系、拓扑参数如何影响机构的解耦和各项同性、解耦控制时拓扑参数如何影响输出位置误差等三个方面揭示如何设置机构拓扑参数才能得到理想的运动特性,并论证了解耦控制的可行性。
     (4)对地震模拟器的机构结构参数和力学特性之间的关系进行研究。通过建立地震模拟器整体和各方向刚度模型,分析地震模拟模拟器机构和结构参数对刚度的影响。采用Newton-Euler方法对地震模拟器各部分进行了受力分析,建立动力学模型的开式方程,得到广义输出力解耦的机构结构参数所满足的条件。对地震模拟器进行了动力学仿真,发现该机构在低频下具有良好的动态特性。
     (5)针对并联机构的动力学模型具有多变量强耦合的非线性和不易实时控制的特点,在对动力学模型闭式形式进行计算复杂性分析的基础上,提出了根据机构正交特点进行动力学模型解耦简化的方法,并用简化的动力学模型和计算力矩法进行地震模拟器的控制仿真,仿真结果显示基于简化动力学模型的计算力矩控制不但精度能够满足要求而且计算效率得到提高,使基于动力学的控制成为可能。
     (6)开发了用于实验的地震模拟器平台,建立了符合此地震模拟器冗余容错多轴驱动的控制系统,结合使用特点开发了其软件系统。应用六维激光跟踪仪进行位置测试,加速度传感器进行加速度检测。在三个平移方向上模拟了El Centro地震波,在三个转动方向上模拟了固定频率的谐波运动,实验结果显示此地震模拟系统能够模拟真实地震波的空间六维运动并满足一定的精度要求,适合作为地震模拟装置。
One of typical applications of a large and heavy-duty dynamic simulator with special 6-dimension movement is using as earthquake simulator equipment. Earthquake simulator system is one of the key equipments in the research field of vibration engineering. By means of inputting the data from the record of a natural earthquake or artificial seismic waves, an earthquake simulator can reproduce the earthquake motion under which failure mechanisms and collapse processes of various kinds of structures can be studied. This is help to establish the resistance standards, find the methods of earthquake resistance and reduce the cost of earthquake seismic hazards. Most of the traditional earthquake simulators are driven by hydraulically-actuated system and have redundant chains to enhance the driving force and bearing capacity. This drive mode brings about some shortcoming, such as huge system, limited application environment, high cost, undesirable characteristic of low frequency and difficult to control, and so on. Based on the analysis of disadvantages of the current earthquake simulators, this paper presents a novel motor-driven earthquake simulator which has not any redundant chains but has the characteristic of redundant-driven and fault-tolerant ability. Meanwhile, this paper focuses on several key problems, such as the actuator with redundant and fault-tolerant function, the method of designing a novel mechanism for simulating earthquake motions, building the mathematic models and its simplified strategy for real-time control, analysis of the performance index, developing the control and measure system and performing the experiments. The main contributions are as following.
     1. In consideration of the disadvantages of large hydraulic drive and redundant kinematic chains, a novel redundant and fault-tolerant actuator (RFTA) driven by motors is presented. This actuator is appropriate for heavy-payload equipments, including earthquake simulator. The kinematics of RFTA is built and its 12 working models are given. The translation mechanism characteristics are studied and three design guidelines are obtained. The reliability of this RFTA is also analyzed. Experiments for verifying are done and the results show the RFTA has the desirable functions of double supply and fault-tolerant.
     2. Based on summarizing the engineering characteristics of general seismic motion, the basic parallel mechanis as earthquake simulator is designed. This parallel mechanis has the following features: ability of 6-dimention motion in space for simulating a real earthquake motion, simple mechanism without over-constraint for responding to three essential earthquake elements, stong driving power and bearing capacity for getting the collapsing force of earthquakes. Applying the RFTA to the basic parallel mechanism, many different earthquake simulator with multi-motor are designed, which adapt to the development tendency of large earthquake simulator system.
     3. The relationship between the mechanical topology parameters of an earthquake simulator and its kenimatic characteristics is researched. The research consists of three parts, that is the relationship of mechanical topology parameters and inverse kinimatics, how the mechanical topology parameters affecting characteristics of the decoupling and the isotropy, and the position-errors in different mechanical topology parameters under decoupled control. The feasibility of decoupled control is discussed
     4. The relationship between the mechanical and structural parameters of an earthquake simulator and its dynamic characteristics is researched. The stiffness model of the whole earthquake simulator is built. The relationship between the mechanical and structural parameters of an earthquake simulator and its stiffness is discussed. The force analysis of every parts of an earthquake simulator is studied by using Newton-Euler method. The dynamics model is derived and the mechanical and structural parameters of meeting the requirement of general decoupled output forces are obtained. The dynamic simulations based on the dynamic model are performed and the results show the mechanism has the desirable dynamic characteristic under low-frequency motion.
     5. In view of nonlinearity, multi-variate coupling, difficulty of real-time control, this paper analyses the complexity of computing the closed dynamic model and presents a decoupled method to simplify dynamic model according to the orthogonal fearture of the parallel mechanism. Based on the simplified dynamic model, the control of computed torque method is simulated in the earthquake simulator. The result shows the control of computed torque method based on the simplified dynamic model not only meets the requirement of computing precision but also improves the computing efficency, which makes controlling a parallel mechanism based on its dynamics possible.
     6. An earthquake simulator system for experiments is developed. The multi-axis control system with redundant and fault-tolerant function is built for simulating seismic waves. The software system is written according to the working fearture of the equipment. The 3-D laser tracker is used to measure the position of the moving platform and the acceleration of every direction is tested by single-direction accelerometer. A typical earthquake wave, named El-Centro, is simulated on three translation-directions of the earthquake simulator. The harmonic motions with fixed-frequency are performed on its three rotation-directions. The results of experiments display the earthquake simulator is able to simulate 6-dimention motions of a natural earthquake and satisfies precision, which shows the earthquake simulator is appropriate for using as earthquake simulator.
引文
[1].陈寿梁;魏琏,抗震防灾对策[M].河南科学技术出版社: 1988.
    [2]. Samata, S.; Ohuchi, H.; Matsuda, T., A study of the damage of subway structures during the 1995 Hanshin-Awaji earthquake[J]. Cement and concrete composites 1997, 19 (3), 223-239.
    [3]. Wang, Z., A preliminary report on the Great Wenchuan Earthquake. Earthquake Engineering and Engineering Vibration[J], 2008. 7(2): p. 225-234.
    [4]. Lin, J.; Stein, R. S.; Sevilgen, V., et al., USGS-WHOI-DPRI Coulomb stress-transfer model for the January 12, 2010, Mw= 7.0 Haiti earthquake[J]. US Geological Survey Open-File Rep 2010, 1019.
    [5]. Makhijani, A., Post-Tsunami Situation at the Fukushima Daiichi Nuclear Power Plant in Japan: Facts, Analysis, and Some Potential Outcomes[J]. Institute for Energy and Environmental Research 2011, 11.
    [6]. Bowyer, T. W.; Biegalski, S. R.; Cooper, M., et al., Elevated Radioxenon Detected Remotely Following the Fukushima Nuclear Accident[J]. Journal of Environmental Radioactivity 2011.
    [7]. Campbell, R. J.; Holt, M., Fukushima Nuclear Crisis[J]. 2011.
    [8].胡聿贤,地震工程学[M].地震出版社: 1988.
    [9]. Aiken, I. D.; Kelly, J. M.; University of California, B. E. E. R. C., Earthquake simulator testing and analytical studies of two energy-absorbing systems for multistory structures[M]. Earthquake Engineering Research Center, College of Engineering, University of California: 1990; Vol. 90.
    [10]. Payen, T.; Queval, J. C.; Sollogoub, P., Large scale earthquake testing facility for vulnerability assessment[J]. Is' ECEES 2006.
    [11]. Ogawa, N.; Ohtani, K.; Katayama, T., et al., Construction of a three¨Cdimensional, large¨Cscale shaking table and development of core technology[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 2001, 359 (1786), 1725.
    [12]. Sato, M.; Inoue, T., General frame work of research topics utilizing the 3-D Full-Scale Earthquake Testing Facility[J]. Journal of Japan Association for Earthquake Engineering 2004, 4 (3), 448-456.
    [13]. Ohtani, K.; Ogawa, N.; Katayama, T., et al. In Project E-Defense 3-D full-scale earthquake testing facility, 2003, 223-234.
    [14]. Nowak, R. F.; Kusner, D. A.; Larson, R. L., et al. In Utilizing modern digital signal processing for improvement of large scale shaking table performance, 2000.
    [15].李敏霞;杨泽群,地震模拟振动台技术的开发与应用[J].世界地震工程1996, (002), 49-54.
    [16].韩俊伟;李玉亭;胡宝生,大型三向六自由度地震模拟振动台[J].地震学报1998, 20 (3), 327-331.
    [17]. Han, J. W.; Li, Y. T.; Hu, B. S., Three dimensional large scale earthquake simulator with six degrees of freedom[J]. Acta Seismologica Sinica 1998, 11 (3), 387-390.
    [18].方重,模拟地震振动台的近况及其发展[J].世界地震工程1999, 15 (2), 89-91.
    [19].王燕华;程文滚;陆飞,等,地震模拟振动台的发展[J].工程抗震与加固改造2007.
    [20].朱伯龙;吕西林,振动台试验技术[J].中国抗震工程四十年.北京:地震出版社1989.
    [21]. Pitarka, A.; Irikura, K.; Iwata, T., et al., Three-dimensional simulation of the near-fault ground motion for the 1995 Hyogo-ken Nanbu (Kobe), Japan, earthquake[J]. Bulletin of the Seismological Society of America 1998, 88 (2), 428.
    [22]. Abrahamson, N.; Somerville, P., Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake[J]. Bulletin of the Seismological Society of America 1996, 86 (1B), S93.
    [23]. Ahmadizadeh, M.; Mosqueda, G.; Reinhorn, A. M., Compensation of actuator delay and dynamics for real-time hybrid structural simulation[J]. Earthquake Engineering & Structural Dynamics 2008, 37 (1), 21-42.
    [24]. Zhao, J.; French, C.; Shield, C., et al. In Effective force testing with nonlinear velocity feedback compensation, 2004, Venue West Conference Services Ltd, Suite 645- The Landing, 375 Water Street, Vancouver, B. C, V 6 B 5 C 6, Canada.
    [25]. Zhao, J.; Shield, C.; French, C., et al., Nonlinear system modeling and velocity feedback compensation for effective force testing[J]. Journal of engineering mechanics 2005, 131, 244.
    [26].王向英,结构地震模拟振动台混合试验方法研究[D].哈尔滨工业大学, 2010.
    [27].熊晓红;卢怀亮;黄树槐,重载数字化机械驱动单元研究[J].机床与液压2003, (002), 33-34.
    [28].赵升吨;张志远;何予鹏,等,机械压力机交流伺服电动机直接驱动方式合理性探讨[J].锻压装备与制造技术2004, 39 (006), 19-23.
    [29].孙友松;魏良模;黄开胜,等,数控重载机械驱动技术及其在成形装备中的应用[J].锻压装备与制造技术2005, 40 (001), 31-35.
    [30]. Dasgupta, B.; Mruthyunjaya, T., The Stewart platform manipulator: a review[J]. Mechanism and Machine Theory 2000, 35 (1), 15-40.
    [31]. Merlet, J. P., Parallel robots[M]. Springer-Verlag New York Inc: 2006.
    [32]. Merlet, J. P., Jacobian, manipulability, condition number, and accuracy of parallel robots[J]. Journal of Mechanical Design 2006, 128, 199.
    [33]. Gosselin, C., Determination of the workspace of 6-dof parallel manipulators[J]. Journal of Mechanical Design 1990, 112, 331.
    [34]. Tahmasebi, F.; Tsai, L. W., On the stiffnes of a novel six?\degree?\freedom parallel minimanipulator[J]. Journal of robotic systems 1995, 12 (12), 845-856.
    [35]. Gosselin, C., Stiffness mapping for parallel manipulators[J]. Robotics and Automation, IEEE Transactions on 1990, 6 (3), 377-382.
    [36]. Thomas, M.; Yuan-Chou, H.; Tesar, D., Optimal actuator sizing for robotic manipulators based on local dynamic criteria[J]. Transactions of the ASME Journal of Mechanisms, Transmissions, and Automation in Design 1985, 107 (2), 163-169.
    [37]. Klein, J.; Spencer, S.; Allington, J., et al., Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass, robotic-arm exoskeleton[J]. Robotics, IEEE Transactions on 2010, (99), 1-6.
    [38]. Gough, V.; Whitehall, S. In Universal tyre test machine, 1962,117-137.
    [39]. Stewart, D., A platform with six degrees of freedom[J]. ARCHIVE: Proceedings of the Institution of Mechanical Engineers 1847-1982 (vols 1-196) 1965, 180 (1965), 371-386.
    [40]. Gao, F.; Li, W.; Zhao, X., et al., New kinematic structures for 2-, 3-, 4-, and 5-DOF parallel manipulator designs[J]. Mechanism and Machine Theory 2002, 37 (11), 1395-1411.
    [41]. Hunt, K., Structural kinematics of in-parallel-actuated robot-arms[J]. ASME Journal of Mechanisms, Transmissions and Automation in Design 1983, 105 (12), 705-712.
    [42]. Huang, C. I.; Fu, L. C., Human vestibular based (HVB) senseless maneuver optimal washout filter design for VR-based motion simulator[J]. 2006 Ieee International Conference on Systems, Man, and Cybernetics, Vols 1-6, Proceedings 2006, 4451-4458
    [43]. Pare, P. E.; Chan, F. W.; Powell, M. L., Wear characterization of the A-MAV (TM) anterior motion replacement using a spine wear simulator[J]. Wear 2007, 263, 1055-1059.
    [44]. Grant, P.; Lee, P. T. S., Motion-visual phase-error detection in a flight simulator[J]. Journal of Aircraft 2007, 44 (3), 927-935.
    [45]. Neumann, J. V., Probabilistic logics and the synthesis of reliable organisms from unreliable components[J]. Automata studies 1956, 34, 43-98.
    [46]. Short, R. A., The attainment of reliable digital systems through the use of redundancy-A survey[J].IEEE Computer Group News 1968, 2 (2), 2-17.
    [47]. Aviziens, A., Fault-tolerant systems[J]. Computers, IEEE Transactions on 1976, 100 (12), 1304-1312.
    [48]. Sreevijayan, D.; Tosunoglu, S.; Tesar, D. In Architectures for fault-tolerant mechanical systems, 1994; IEEE: 1994; pp 1029-1033 vol. 3.
    [49]. Lockner, A.; Hancock, D., Redundancy in fault tolerant systems[J]. Mechanical Engineering 1990, 112, 76-83.
    [50].唐世明;张启先,冗余度机器人容错控制研究[J].机械工程学报2000, 36 (007), 34-38.
    [51]. Koren, I.; Krishna, C. M.; Books24x7, I., Fault-tolerant systems[M]. Elsevier/Morgan Kaufmann: 2007.
    [52]. Jamisola, R. S.; Maciejewski, A. A.; Roberts, R. G., Failure-tolerant path planning for kinematically redundant manipulators anticipating locked-joint failures[J]. Robotics, IEEE Transactions on 2006, 22 (4), 603-612.
    [53]. Nakamura, Y., Advanced robotics: redundancy and optimization[M]. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA: 1990.
    [54]. Samson, C.; Espiau, B.; Borgne, M. L., Robot control: the task function approach[M]. Oxford University Press: 1991.
    [55].吴宇列;吴学忠,冗余并联机构的分类研究[J].机械科学与技术(西安) 2002, 21 (001), 1-2.
    [56].林勇.基于进化型硬件的容错方法研究[D].中国科学技术大学, 2007.
    [57]. Pradeep, A.; Yoder, P.; Mukundan, R., et al., Crippled motion in robots[J]. Aerospace and Electronic Systems, IEEE Transactions on 1988, 24 (1), 2-13.
    [58]. Maciejewski, A. A. In Fault tolerant properties of kinematically redundant manipulators, 1990; IEEE: 1990; pp 638-642 vol. 1.
    [59]. Lewis, C. L.; Maciejewski, A. A. In An example of failure tolerant operation of a kinematically redundant manipulator, 1994; IEEE: 1994; pp 1380-1387 vol. 2.
    [60]. Wu, E. C.; Hwang, J. C.; Chladek, J. T., Fault-tolerant joint development for the space shuttle remote manipulator system: Analysis and experiment[J]. Robotics and Automation, IEEE Transactions on 1993, 9 (5), 675-684.
    [61].Merlet, J. P., Redundant parallel manipulators[J]. Laboratory Robotics and Automation 1996, 8 (1), 17-24.
    [62].韩先国;陈五一;郭卫东,采用冗余驱动提高并联机床精度的研究[J].航空学报,2002, 23 (5), 487-490.
    [63]. Liu, G.; Wu, Y.; Wu, X., et al. In Analysis and control of redundant parallel manipulators, 2001; IEEE: 2001; pp 3748-3754 vol. 4.
    [64]. Brien, J. F. O.; Wen, J. T. In Redundant actuation for improving kinematic manipulability, 1999; IEEE: 1999; pp 1520-1525 vol. 2.
    [65]. Gwinnett, J. E. Amusement devics. 1931.
    [66]. Pollard, W. L. G. Spray painting machine. 1940.
    [67]. POLLARD, W. L. V. Position-controlling apparatus. 1942.
    [68]. Cappel, K. L. Motion simulator. 1967.
    [69]. Fichter, E., A Stewart platform-based manipulator: general theory and practical construction[J]. The International journal of robotics research 1986, 5 (2), 157.
    [70]. Raghavan, M., The Stewart platform of general geometry has 40 configurations[J]. Journal of Mechanical Design 1993, 115, 277.
    [71]. Nanua, P.; Waldron, K. J.; Murthy, V., Direct kinematic solution of a Stewart platform[J]. Robotics and Automation, IEEE Transactions on 1990, 6 (4), 438-444.
    [72]. Innocenti, C.; Parenti-Castelli, V., Direct position analysis of the Stewart platform mechanism[J]. Mechanism and Machine Theory 1990, 25 (6), 611-621.
    [73]. Hunt, K. H., Kinematic geometry of mechanisms[M]. Clarendon Press Oxford: 1978.
    [74]. Herve, J. M., Analyse structurelle des m¨|canismes par groupe des d¨|placements[J]. Mechanism and Machine Theory 1978, 13 (4), 437-450.
    [75]. Herve, J.; Sparacino, F. In Structural synthesis ofparallel'robots generating spatial translation, 1991; IEEE: 1991; pp 808-813 vol. 1.
    [76]. Herve, J. M., The mathematical group structure of the set of displacements[J]. Mechanism and Machine Theory 1994, 29 (1), 73-81.
    [77]. Herve, J., The Lie group of rigid body displacements, a fundamental tool for mechanism design[J]. Mechanism and Machine Theory 1999, 34 (5), 719-730.
    [78]. Angeles, J., The qualitative synthesis of parallel manipulators[J]. Journal of Mechanical Design 2004, 126, 617.
    [79]. Li, Q.; Huang, Z.; Herve, J. M., Type synthesis of 3R2T 5-DOF parallel mechanisms using the Lie group of displacements[J]. Robotics and Automation, IEEE Transactions on 2004, 20 (2), 173-180.
    [80]. Li, Q.; Herve, J. M., Structural shakiness of nonoverconstrained translational parallel mechanisms with identical limbs[J]. Robotics, IEEE Transactions on 2009, 25 (1), 25-36.
    [81]. Li, Q.; Herve, J. M., Parallel mechanisms with bifurcation of Schoenflies motion[J]. Robotics, IEEE Transactions on 2009, 25 (1), 158-164.
    [82]. Meng, J.; Liu, G.; Li, Z., A geometric theory for analysis and synthesis of sub-6 DoF parallel manipulators[J]. Robotics, IEEE Transactions on 2007, 23 (4), 625-649.
    [83].邹慧君;高峰,现代机构学进展[M].高等教育出版社: 2007.
    [84]. Yu, J.; Dai, J. S.; Bi, S., et al., Numeration and type synthesis of 3-DOF orthogonal translational parallel manipulators[J]. Progress in Natural Science 2008, 18 (5), 563-574.
    [85]. Yu, J. J.; Dai, J. S.; Bi, S. S., et al., Type synthesis of a class of spatial lower-mobility parallel mechanisms with orthogonal arrangement based on Lie group enumeration[J]. SCIENCE CHINA Technological Sciences 2010, 53 (2), 388-404.
    [86]. Huang, Z.; Li, Q., General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators[J]. The International journal of robotics research 2002, 21 (2), 131.
    [87]. Huang, Z.; Li, Q., Type synthesis of symmetrical lower-mobility parallel mechanisms using the constraint-synthesis method[J]. The International journal of robotics research 2003, 22 (1), 59.
    [88]. Li, Q.; Huang, Z. In Type synthesis of 4-DOF parallel manipulators, 2003; IEEE: 2003; pp 755-760 vol. 1.
    [89]. Merlet, J. P. In Parallel robot: open problems., In Proceedings of the 9th International Symposium on Robotics Research[C], Hollerbach; Koditschek, Eds. , 1999; Springer: Snowbird, UT: Hollerbach; Koditschek, Eds. , 1999; pp 9-12.
    [90]. Rico, J. M.; Cervantes-S¨¢nchez, J. J.; Tadeo-Chevez, A., et al., New considerations on the theory of type synthesis of fully parallel platforms[J]. Journal of Mechanical Design 2008, 130, 112302.
    [91]. Gogu, G., Structural synthesis of parallel robots: part 1: methodology[M]. Springer: 2007.
    [92]. Gogu, G., Structural Synthesis of Parallel Robots: Part 2: Translational Topologies with Two and Three Degrees of Freedom[M]. Springer Verlag: 2009.
    [93]. Yang, T. L.; Liu, A. X.; Jin, Q., et al., Position and orientation characteristic equation for topological design of robot mechanisms[J]. Journal of Mechanical Design 2009, 131, 021001.
    [94]. Jin, Q.; Yang, T. L., Theory for topology synthesis of parallel manipulators and its application to three-dimension-translation parallel manipulators[J]. Journal of Mechanical Design 2004, 126, 625.
    [95]. Jin, Q.; Yang, T. L., Synthesis and analysis of a group of 3-degree-of-freedom partially decoupled parallel manipulators[J]. Journal of Mechanical Design 2004, 126, 301.
    [96]. Yang, J.; Gao, F.; Ge, Q. J., et al., Type synthesis of parallel mechanisms having the first class“Gf”sets and one-dimensional rotation[J]. Robotica 2006, 1 (-1), 1-8.
    [97]. Gao, F.; Yang, J.; Ge, Q. J. In Type Synthesis of Parallel Mechanisms Having Two Rotations, IDETC/CIE 2010[C], Montreal,Quebec, Canada, 2010; ASME: Montreal,Quebec, Canada, 2010.
    [98]. GAO, F.; YANG, J.,“GF sets”theory and type synthesis of parallel robots. In IFToMM Asian-MMS[C], 2010.
    [99].高峰;杨加仑;葛巧德,并联机器人型综合的G-F集理论[M].科学出版社: 2011.
    [100].Merlet, J., Direct kinematics and assembly modes of parallel manipulators[J]. The International journal of robotics research 1992, 11 (2), 150.
    [101].Nair, R.; Maddocks, J., On the forward kinematics of parallel manipulators[J]. The International journal of robotics research 1994, 13 (2), 171.
    [102].Song, S. K.; Kwon, D. S., Efficient formulation approach for the forward kinematics of 3-6 parallel mechanisms[J]. Advanced Robotics 2002, 16 (2), 191-215.
    [103].Merlet, J. P., Direct kinematics of parallel manipulators[J]. Robotics and Automation, IEEE Transactions on 1993, 9 (6), 842-846.
    [104].Husty, M. L., An algorithm for solving the direct kinematic of Stewart-Gough-type platforms[J]. Mechanism and Machine Theory 1996, 31 (4), 365-380.
    [105].Rouillier, F., Real roots counting for some robotics problems. In Kluwer, Dordrecht: 1995; p 73¨C82.
    [106].Wampler, C. W., Forward displacement analysis of general six-in-parallel SPS (Stewart) platform manipulators using soma coordinates[J]. Mechanism and Machine Theory 1996, 31 (3), 331-337.
    [107].黄真,空间机构学[M].机械工业出版社: 1991.
    [108].Chen, S. L.; You, I., Kinematic and singularity analyses of a six DOF 6-3-3 parallel link machine tool[J]. The International Journal of Advanced Manufacturing Technology 2000, 16 (11), 835-842.
    [109].于晖;孙立宁,新型6—HTRT并联机器人工作空间和参数研究[J].机器人2002, 24 (004), 293-298.
    [110].Ji, Z., Dynamics decomposition for Stewart platforms[J]. Journal of Mechanical Design 1994, 116, 67.
    [111].Dasgupta, B.; Mruthyunjaya, T., Closed-form dynamic equations of the general Stewart platform through the Newton-Euler approach[J]. Mechanism and Machine Theory 1998, 33 (7), 993-1012.
    [112].Dasgupta, B.; Mruthyunjaya, T., A Newton-Euler formulation for the inverse dynamics of theStewart platform manipulator[J]. Mechanism and Machine Theory 1998, 33 (8), 1135-1152.
    [113].Dasgupta, B.; Choudhury, P., A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators[J]. Mechanism and Machine Theory 1999, 34 (6), 801-824.
    [114].Lee, K. M.; Shah, D. K., Dynamic analysis of a three-degrees-of-freedom in-parallel actuated manipulator[J]. Robotics and Automation, IEEE Journal of 1988, 4 (3), 361-367.
    [115].Lee, J. D.; Albus, J. S.; Dagalakis, N. G., et al., Computer simulation of a parallel link manipulator[J]. Robotics and computer-integrated manufacturing 1989, 5 (4), 333-342.
    [116].Lebret, G.; Liu, K.; Lewis, F., Dynamic analysis and control of a Stewart platform manipulator[J]. Journal of robotic systems 1993, 10 (5), 629-655.
    [117].Miller, K.; Clavel, R., The Lagrange-based model of Delta-4 robot dynamics[J]. Robotersysteme 1992, 8 (1), 49-54.
    [118].Pang, H.; Shahinpoor, M., Inverse dynamics of a parallel manipulator[J]. Journal of robotic systems 1994, 11 (8), 693-702.
    [119].Bajodah, A. H.; Hodges, D. H.; Chen, Y. H., New form of Kane's equations of motion for constrained systems[J]. Journal of guidance, control, and dynamics 2003, 26 (1), 79-88.
    [120].Lin, G.; Wang, D.; Xu, L., et al., The analytical dynamic model of six-DOF industrial robotic manipulators of containing closed chain[J]. Mechanism and Machine Theory 2005, 40 (4), 385-393.
    [121].Kane, T. R.; Levinson, D. A., The use of Kane's dynamical equations in robotics[J]. The International journal of robotics research 1983, 2 (3), 3.
    [122].Tsai, L. W., Solving the inverse dynamics of a Stewart-Gough manipulator by the principle of virtual work[J]. Journal of Mechanical Design 2000, 122, 3.
    [123].Wang, J.; Gosselin, C. M., A new approach for the dynamic analysis of parallel manipulators[J]. Multibody System Dynamics 1998, 2 (3), 317-334.
    [124].Sokolov, A.; Xirouchakis, P., Dynamics analysis of a 3-DOF parallel manipulator with RPS joint structure[J]. Mechanism and Machine Theory 2007, 42 (5), 541-557.
    [125].Oen, K. T.; Wang, L. C. T., Optimal dynamic trajectory planning for linearly actuated platform type parallel manipulators having task space redundant degree of freedom[J]. Mechanism and Machine Theory 2007, 42 (6), 727-750.
    [126].Merlet, J. P., Parallel robots[M]. Kluwer Academic Publishers: 2000.
    [127].Ouyang, P.; Zhang, W. J.; Wu, F. X. In Nonlinear PD control for trajectory tracking withconsideration of the design for control methodology, 2002; pp 4126-4131 vol. 4.
    [128].Honegger, M.; Brega, R.; Schweiter, G. In Application of a nonlinear adaptive controller to a 6 dof parallel manipulator, 2000; IEEE: 2000; pp 1930-1935 vol. 2.
    [129].Codourey, A., Dynamic modeling of parallel robots for computed-torque control implementation[J]. The International journal of robotics research 1998, 17 (12), 1325.
    [130].Luh, J.; Walker, M.; Paul, R., Resolved-acceleration control of mechanical manipulators[J]. Automatic Control, IEEE Transactions on 1980, 25 (3), 468-474.
    [131].Vivas, A.; Poignet, P., Predictive functional control of a parallel robot[J]. Control Engineering Practice 2005, 13 (7), 863-874.
    [132].Lee, S. H.; Song, J. B.; Choi, W. C., et al. In Controller design for a Stewart platform using small workspace characteristics, 2001; IEEE: 2001; pp 2184-2189 vol. 4.
    [133].Yamane, K.; Okada, M.; Komine, N., et al. In Parallel dynamics computation and H?T acceleration control of parallel manipulators for acceleration display, 1998; IEEE: 1998; pp 2301-2308 vol. 3.
    [134].Paccot, F.; Andreff, N.; Martinet, P., A review on the dynamic control of parallel kinematic machines: Theory and experiments[J]. The International journal of robotics research 2009, 28 (3), 395.
    [135].Paccot, F.; Andreff, N.; Martinet, P. In Revisiting the major dynamic control strategies of parallel robots, 2007.
    [136].Ngoc, P.; Kim, J.-H.; Kim, H.-S., Development of a New 6-DOF Parallel-kinematic Motion Simulator (ICCAS 2008). In International Conference on Control, Automation and Systems 2008[C], COEX, Seoul, Korea, 2008; pp 2370-2373.
    [137].Lee, K.; Kim, J., Controller gain tuning of a simultaneous multi-axis PID control system using the Taguchi method[J]. Control Engineering Practice 2000, 8 (8), 949-958.
    [138].Renton, D.; Elbestawi, M., High speed servo control of multi-axis machine tools[J]. International Journal of Machine Tools and Manufacture 2000, 40 (4), 539-559.
    [139].Chapman, C. H., Fundamentals of seismic wave propagation[M]. Cambridge Univ Pr: 2004.
    [140].Braga, F., Fundamentals of Antiseismic Engineering[J]. CISM, Udine 1977.
    [141].Yilmaz, O.; Doherty, S. M., Seismic data analysis[M]. Society of Exploration Geophysicists: 2001.
    [142].Yilmaz; Doherty, S. M., Seismic data analysis: processing, inversion, and interpretation of seismic data[M]. Society of Exploration Geophysicists, Tulsa, OK: 2001.
    [143].李杰;李国强,地震工程学导论[J].北京:地震出版社6, 2361-2376.
    [144].Bolt, B. A.; Abrahamson, N. A., New attenuation relations for peak and expected accelerations of strong ground motion[J]. Bulletin of the Seismological Society of America 1982, 72 (6A), 2307.
    [145].Vanmarcke, E. H.; Lai, S. S. P., Strong-motion duration and RMS amplitude of earthquake records[J]. Bulletin of the Seismological Society of America 1980, 70 (4), 1293.
    [146].Biot, M. A., Analytical and experimental methods in engineering seismology[J]. Trans. ASCE 1943, 108, 365-385.
    [147].Housner, G. W. In Behavior of structures during earthquakes, 1959, ASCE: pp 283-303.
    [148].Housner, G. W.; Martel, R. R.; Alford, J. L., Spectrum analysis of strong-motion earthquakes[J]. Bulletin of the Seismological Society of America 1953, 43 (2), 97.
    [149].Hudson, D. E. In Response spectrum techniques in engineering seismology, World Conference on Earthquake Engineering[C], Berkeley, California, 1956; Sponsored by Earthquake Engineering Research Institute and Department of Engineering, University Extension, University of California.: Berkeley, California, 1956.
    [150].Kiureghian, A. D.; Neuenhofer, A., Response spectrum method for multi‐support seismic excitations[J]. Earthquake engineering & structural dynamics 1992, 21 (8), 713-740.
    [151].Anderson, J. G.; Hough, S. E., A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies[J]. Bulletin of the Seismological Society of America 1984, 74 (5), 1969.
    [152].Sokolov, V. Y., Seismic intensity and Fourier acceleration spectra: revised relationship[J]. Earthquake Spectra 2002, 18, 161.
    [153].Gasparini, D. A.; Vanmarcke, E. H. E. J., Simulated earthquake motions compatible with prescribed response spectra[M]. Massachusetts Institute of Technology, Dept. of Civil Engineering, Constructed Facilities Division: 1976.
    [154].Vanmarcke, E. H., Structural response to earthquakes. In Elsevier, Amsterdam-Oxford-New York: 1976; pp 287-337.
    [155].Takizawa, H.; Jennings, P. C., Collapse of a model for ductile reinforced concrete frames under extreme earthquake motions[J]. Earthquake engineering & structural dynamics 1980, 8 (2), 117-144.
    [156].Mahin, S. A. In Effects of duration and aftershocks on inelastic design earthquakes, Proceedings of the Seventh World Conference on Earthquake Engineering[C], Istanbul, 1980, Istanbul, pp 677-80.
    [157].谢礼立;张晓志,地震动记录持时与工程持时[J].地震工程与工程振动1988, 8 (1), 31-38.
    [158].Wilson, E. L., A clarification of the orthogonal effects in a three-dimensional seismic analysis[J]. Earthquake Spectra 1995, 11 (4), 659-666.
    [159].Lopez, O. A.; Torres, R., Discussion of" A Clarification of Orthogonal Effects in a Three-Dimensional Seismic Analysis" by EL Wilson, I. Suharwardy, and A. Habibullah[J]. Earthquake Spectra 1996, 12, 357-362.
    [160].Komatitsch, D.; Tromp, J., Introduction to the spectral element method for three‐dimensional seismic wave propagation[J]. Geophysical Journal International 1999, 139 (3), 806-822.
    [161].Lee, W. H.; elebi, M.; Todorovska, M. I., et al., Introduction to the special issue on rotational seismology and engineering applications[J]. Bulletin of the Seismological Society of America 2009, 99 (2B), 945.
    [162].Kozak, J. T., Tutorial on earthquake rotational effects: historical examples[J]. Bull. Seismol. Soc. Am 2009, 99, 998-1010.
    [163].Trifunac, M. D.; Todorovska, M. I., Nonlinear soil response as a natural passive isolation mechanism--the 1994 Northridge, California, earthquake[J]. Soil Dynamics and Earthquake Engineering 1998, 17 (1), 41-51.
    [164].Yang, F.; Luo, Q.; Che, W., Torsional phenomena in 2008 great Wenchuan earthquake[J]. Earthquake Science 2010, 23 (1), 79-85.
    [165].Newmark, N. M.; Rosenbluth, E., In北京:中国建筑工业出版社: 1986.
    [166].Trifunac, M. D., A note on rotational components of earthquake motions on ground surface for incident body waves[J]. International Journal of Soil Dynamics and Earthquake Engineering 1982, 1 (1), 11-19.
    [167].Gupta, I. D.; Trifunac, M. D., A note on contribution of torsional excitation to earthquake response of simple symmetric buildings[J]. Earthq. Eng. Eng. Vib 1987, 7 (3), 27-46.
    [168].Rutenberg, A.; Heidebrecht, A. C., Response spectra for torsion, rocking and rigid foundations[J]. Earthquake engineering & structural dynamics 1985, 13 (4), 543-557.
    [169].Lee, V. W.; Trifunac, M. D., Rocking strong earthquake accelerations[J]. Soil Dynamics and Earthquake Engineering 1987, 6 (2), 75-89.
    [170].Lee, V. W.; Trifunac, M. D., Torsional accelerograms[J]. International Journal of Soil Dynamics and Earthquake Engineering 1985, 4 (3), 132-139.
    [171].李宏男;孙立晔,地震面波产生的地震动转动分量研究[J].地震工程与工程振动2001, 21 (001), 15-23.
    [172].Trifunac, M. D.; Gicev, V., Response spectra for differential motion of columns paper II: Out-of-plane response[J]. Soil Dynamics and Earthquake Engineering 2006, 26 (12), 1149-1160.
    [173].Trifunac, M. D., Buildings as sources of rotational waves[J]. Physics of Asymmetric Continuum: Extreme and Fracture Processes 2008, 49-66.
    [174].Kaul, M. K., Stochastic characterization of earthquakes through their response spectrum[J]. Earthquake Engineering & Structural Dynamics 1978, 6 (5), 497-509.
    [175].Scanlan, R. H.; Sachs, K., Earthquake time histories and response spectra[J]. Journal of the Engineering Mechanics Division 1974, 100 (4), 635-655.
    [176].Jurkevics, A.; Ulrych, T. A. D. J., Representing and simulating strong ground motion[J]. Bulletin of the Seismological Society of America 1978, 68 (3), 781.
    [177].Chang, M. K.; Kwiatkowski, J. W.; Nau, R. F., et al., ARMA models for earthquake ground motions[J]. Earthquake Engineering & Structural Dynamics 1982, 10 (5), 651-662.
    [178].Paccot, F.; Andreff, N.; Martinet, P. In Revisiting the major dynamic control strategies of parallel robots, 2007.
    [179].王益群;张泽强,并联机器人电液伺服系统控制策略的研究[J].机床与液压1992, (003), 112-117.
    [180].Honegger, M.; Brega, R.; Schweiter, G. In Application of a nonlinear adaptive controller to a 6 dof parallel manipulator, 2000, IEEE: pp 1930-1935.
    [181].Denkena, B.; Holz, C. In Advanced position and force control concepts for the linear direct driven hexapod PaLiDA, 2006, pp 359-378.
    [182].Cheng, H.; Yiu, Y. K.; Li, Z., Dynamics and control of redundantly actuated parallel manipulators[J]. Mechatronics, IEEE/ASME Transactions on 2003, 8 (4), 483-491.
    [183].Olsen, M. M.; Petersen, H. G., A new method for estimating parameters of a dynamic robot model[J]. Robotics and Automation, IEEE Transactions on 2001, 17 (1), 95-100.
    [184].Khalil, W.; Dombre, E., Modeling, identification & control of robots[M]. Butterworth-Heinemann: 2004.
    [185].Lee, S. H.; Song, J. B.; Choi, W. C., et al., Position control of a Stewart platform using inverse dynamics control with approximate dynamics[J]. Mechatronics 2003, 13 (6), 605-619.
    [186].Nguyen, C. C.; Antrazi, S. S.; Zhou, Z. L., et al., Adaptive control of a stewart platform‐based manipulator[J]. Journal of Robotic Systems 1993, 10 (5), 657-687.
    [187].Ji, Z. In Study of the effect of leg inertia in Stewart platforms, 1993, IEEE: pp 121-126.
    [188].Li, Q.; Wu, F. X., Control performance improvement of a parallel robot via the design for controlapproach[J]. Mechatronics 2004, 14 (8), 947-964.
    [189].Zhang, W. J.; Li, Q.; Guo, L. S., Integrated design of mechanical structure and control algorithm for a programmable four-bar linkage[J]. Mechatronics, IEEE/ASME Transactions on 1999, 4 (4), 354-362.
    [190].Li, Q.; Zhang, W. J.; Chen, L., Design for control-a concurrent engineering approach for mechatronic systems design[J]. Mechatronics, IEEE/ASME Transactions on 2001, 6 (2), 161-169.
    [191].Wu, F. X.; Zhang, W. J.; Li, Q., et al., Integrated design and PD control of high-speed closed-loop mechanisms[J]. Journal of dynamic systems, measurement, and control 2002, 124, 522.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700