智能型变量施肥关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业的可持续发展要求以最少的投入获得最大的产出,精准农业为农业可持续发展提供了技术基础。本文以智能型变量施肥机为研究对象,针对我国分散型农户生产变量施肥方法进行了系统分析及优化,研究开发了多养分智能变量施肥系统,同时就基于作物长势变量施肥关键技术进行了深入分析,开发了基于作物长势变量施肥系统,并对变量施肥效应进行了试验分析,针对大面积生产作业下使用变量施肥抛撒机关键机构及系统进行了研究及试验。主要研究内容及结论如下:
     1、针对中小规模分散农户生产用自动和半自动变量施肥机系统控制技术进行了改进优化。针对长期单一施用一种肥料,在讨论CAN总线技术基础上,在拖拉机自带液压系统基础上开发了基于处方图的多养分变量施肥系统,并设计了整体式阀控液压系统,形成了由GPS系统、机载作业控制终端、变量施肥模块、测速模块等构成的分布式控制多养分变量施肥机。
     2、针对基于作物长势变量施肥关键技术进行了深入研究,开发了基于作物长势在线测定变量施肥系统,给出了处方图生成具体步骤及数据处理方法,实现了化学肥料根据作物长势变量投入。运用NFOA施肥模型计算施肥量,结合我国实际生产条件,进行了变量施肥试验,通过对比传统根据土壤养分及目标产量方法进行的变量施肥方式:两年试验在产量均提高的情况下,基于作物长势进行变量施肥产量更趋于均衡,试验田内产量变异由12.79%减小到8.16%,亩均节约尿素肥料施用量1.55kg;在变量施肥与传统均匀施肥小区试验对比中,相比传统平均施肥(225kg/hm2),结果显示亩均提高产量3kg,同时可节约尿素施用量2.5kg,具有较好的经济和环境效益。
     3、设计开发了肥料颗粒摩擦系数自动测试装置,解决了肥料摩擦系数传统测试繁琐,测试过程人为因素影响大等因素导致精度不高问题,并对常用的三种肥料进行了摩擦系数测试试验,验证了测试装置性能。同时从理论上分析了肥料颗粒在撒肥盘上及脱离圆盘的运动和受力,建立了肥料颗粒在脱离撒肥圆盘到抛撒到地面两个阶段的运动方程。
     4、针对变量施肥抛撒机设计了可以自动调节肥门开度的装置,以及一种可调式落肥机构,实现了能够调节落肥口大小,同时可调节肥料落入撒肥盘位置。设计了一种带有分肥翼拨肥叶片的撒肥机构,从而使进入拨肥叶片的一部分肥料经分肥翼斜向上抛出,拨肥叶片安装范围±30°,分肥翼轮廓为圆弧曲线,曲线方程为x2+(y-178)2=1782,肥料脱离圆盘斜向上抛射角为20°,相比槽型叶片进一步提高了肥料抛撒均匀性。同时为解决作业过程中,液压系统受拖拉机换挡及加速影响撒肥幅宽稳定的问题,设计增加了撒肥幅宽控制系统,进一步提升了机器的智能型。5、通过变量施肥抛撒机相关试验,结果表明:(1)排肥量与肥门开度大小存在较好的相关关系,落肥装置可使排肥链条排出的肥料等分两路落入肥盘,试验结果变异系数均在10%内;(2)撒肥盘转速试验,结果显示撒肥盘转速与PWM占空比之间存在较好的多项式相关关系,判定系数R2为0.997,系统控制精度可在±10rpm/min;(3)抛撒均匀性试验,结果显示采用装有分肥翼的拨肥叶片能够进一步提高肥料的抛撒均匀性,通过抛撒搭接,有效抛撒幅宽内变异系数为14.77%,可以较好的满足实际生产要求,相比传统3.6m幅宽变量施肥机生产率可提高4倍以上。
Sustainable development of agriculture requires the use of minimum investment to maximize production, and precision agriculture provides a good way for sustainable agriculture. In this paper, the intelligent variables as the research object, which aim at variable rate fertilizer method is analyzed in small-scale and mid-scale farmers, the key mechanism and system is researched that variable rate fertilizer spreader in large-scale farming production, and built a variable rate fertilizer system based on multi nutrients in China, and some relevant tests are completed. Some experiments have analyzed that effect of variable rate fertilizer by the information of crops growing. The main research contents and conclusions are as follows:
     It was analyzed the automatic and semi-variable rate fertilizer system control technology in suiting to small-scale and mid-scale farming. Aim at using a single fertilizer for long-term in farming, which set up multi-nutrient variable rate fertilization system based on tractor hydraulic system by analyzing CAN bus control technology. The multi-nutrient variable rate fertilization system was constructed by utilizing several microcontroller-driven nodes including GPS system, embedded control terminal, variable rate application controller and ground speed module to act as data collection and control points along CAN bus. The paper has researched that the key technology of variable rate fertilizer machine based on crop growing state, it was analyzed the process of prescription map and data processing ways..A variable rate fertilizer system online determination was designed based on crop growing state, which achieves fertilizer variable application by crop itself growing. By calculating fertilizer amounts using the model of NFOA, some experiments have taken in our country production condition. In the way of fertilizer by tradition based on soil nutrient, yield and crop growing state, the experimental results show that the yield all increased, but yield map shown that experiment of crop growing state was production uniformity, coefficient of variation of yield decreased from12.79%to8.16%in experiment field, saving fertilizer used. Experiment of variable rate fertilizer field and traditional fertilization shown that was more benefit of economy and environment in variable rate fertilizer field, increase yield3kg/mu, and saving fertilizer2.5kg/mu.
     The automatic test equipment coefficient of friction has been designed, which can solve some questions that the friction coefficient of fertilizer is difficult to test, operation factors and other factors lead to lower accuracy during the testing process, and the coefficient of friction of three common fertilizer were tested in the paper, the experiments conclusion is verified that the test device performance. A theoretical analysis was conducted the motion state of granular fertilizer during moving in spinner disc and leaving. Analysis of condition that granular fertilizer can leave spinner disc, an analytical calculation the state of granular fertilizer subjected to force under inertia effect during fertilizer was moved to disc border, and a motional equation was established.
     Aim at variable rate fertilizer spreader, in this paper have designed the gate device of automatically adjust, the equipment of falling fertilizer which can change opening size and falling fertilizer position in disc by manual adjustment. And a special vane has designed which equipped a wing of separating fertilizer. The device can separate fertilizer of falling to vane, and some fertilizer can throw by the wing in the vane. The vane can fix in±30°, the curve equation for the wing of separating fertilizer was x2+(y-178)2=1782, the angle of fertilizer threw from leaving disc is20°, the uniformity of spreading has got a well purpose. The control system for adjusting spreader breath has designed, which has solved spreading breath difficult control during tractor accelerating and shift.
     The experimental results showed that fertilizer amount has linear correlation with gate opening size, the device of falling fertilizer can separate fertilizer from conveyor chain to two part that falling into disc, the coefficient of variation is10%in experiment. In experiment of disc rotation, the results showed that the rotation of disc has well multinomial relation to information of PWM, R2is0.997, rotation error is range±10rpm/min. The experiment of fertilizer uniformity shows that the uniformity is well by using wing of separating fertilizer vane. By spreading overlap test, the results shows that availability breadth coefficient of variation is14.77%, the working result can meet to production in fact, and the spreader productivity is4times than tradition variabale rate fertilizer machine by breadth of3.6metre.
引文
[1]奚振邦.化肥与农业[M].北京:中国农业科学出版社,2003
    [2]王激清.我国主要粮食作物施肥增产效应和养分利用效率分析与评价[D].中国农业大学,2007.
    [3]张成玉.我国测土配方施肥技术的经济环境效益评价和推广机制研究[D].中国农业大学,2009
    [4]张福锁,江荣风,陈新平,等.测土配方施肥技术要览[M].北京:中国农业大学出版社,2006
    [5]马文奇,张福锁,张卫锋.关于我国资源环境粮食安全和可持续发展的化肥产业[J].资源科学,2005,27(3):33-40.
    [6]高祥照,马常宝,杜森.测土配方施肥技术[M].北京:中国农业出版社,2005.
    [7]白由路.企业测十配方施肥基础体系建设.中国城乡桥.2007,02
    [8]黄国弟.现代农业中提高肥料利用率的途径.广西热带农业,2005,01.
    [9]李继明等.农产品的肥料污染与对策.河南农业科学,2002,09
    [10]William R.R., Gorden V., Johnson Improving nitrogen use efficiency for cereal production [J]. Agronomy Journal,1999,,91(3):357-363.
    [11]Taylor S.L., Raun W.R., Solie J.B., et al. Use of spectral radiance for collecting nitrogen ,eficiencies and estimating soil variability in an established Bermuda grass pasture. J. Plant N utr,1998, 21(11):2287—2302.
    [12]江懋华.“精细农业”的实践与农业科技创新.中国软科学,1999,(4):21-25
    [13]汪懋华.“精细农业”发展与工程技术创新.农业工程学报,1999,15(1):1-8
    [14]彭望禄,Pierre Robert,程惠贤.农业信息技术与精确农业的发展.农业工程学报,2001,17(2):9-11
    [15]王荣本,纪寿文,初秀民等.基于机器视觉的玉米施肥智能机器系统
    设计概述.农业工程学报,2001,17(2):151-153
    [16]刘世洪.精确农业的发展现状[J].农业科技通讯,1999.NO(10):1-4
    [17]Soh, K.G Fertilizer use by crop[C], A global assessment, IFA.1995,2-3.
    [18]Ramakrishna N and Steve R, Land cover characterization using multi-temporal red, near-IR, and thermal-IR data from NOAA/AVHRR. Ecological applications,1997,7(1):79-90.
    [19]张伟,农业发展新课题—精确农业.农业工程基础技术理论讲座,1998,13.
    [20]Morgan-Owen, G. J, Johnston, G..T. Institution of Electrical Engineers, Differential GPS Positioning. Electronics and Communications Journal, Feb.1995,11-21.
    [21]张书慧,一种精确农业自动变量施肥技术及实施[J].农业工程学报,2003,19(1):129~131.
    [22]梁春英,王熙,赵军,等.变量施肥播种机电控液压驱动控制系统设计.黑龙江八一农垦大学,2003,5(3):47~50.
    [23]孟志军,王秀等,2005,基于嵌入式组件技术的精准农田信息采集系统的设计及实现.农业工程学报,4:99~104.
    [24]王秀,赵春江,孟志军等.精准变量施肥机的研制与试验.农业工程学报,2004,20(5):114-117.
    [25]张波屏,中国特色的精确农业之路[J],农业机械学报,2000,1:124-125.
    [26]石元春,高技术与中国农业,中国农业工程学会第六届理事会,北京,1992.12.
    [27]Solie, J.B., W.R.Raun, R.W.Whitney, M.L.Stone, and J.D.Ringer, Optical sensor based field element size and sensing strategy for nitrogen application.Trans, ASAE,1996,39:1983-1992.
    [28]Stone, M.L, J.B. Solie, W.R.Raun, R.W.Whitney, S.L.Taylor, J.D.Ringe, Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat, Transactions of ASAE,1996,39(5):1623-1631.
    [29]Chi H K, Study on winter wheat yield estimation model with spectrum data, Acta Phytoecologica Sinica(in Chinese),1995,19(4):337-344. [30]Han S F, Nitrogen sensing and site-specific application technology.Information Technology of Agriculture, Proc of the International Conference on Agricultural and Technology, Beijing,, China, 2001,06:324-330.
    [31]Francis, D.D., and W.P.Piekielek, Assessing crop nitrogen needs with chlorophyll meters, The Potash and Phosphate Institute Site-specific management Guide,1999,12(4):453-467.
    [32]Reetz H.F, Site-specific nutrient management systems for the 1990s, Better crops with plant food,1994,4:14-19.
    [33]刘良云,黄木易,黄文江,2004.利用多时相的高光谱航空图像监测冬小麦条锈病,遥感学报,8(3):275~281.
    [34]http://www.nue.okstate.edu.2003
    [35]金继运.精准农业及其在中国的发展前景[J].植物营养与肥料学报.1998,4(1):1-7.
    [36]王芙蓉,比例阀控液压马达速度控制系统的性能研究[J],设计与研究,2001,22(2):11-13.
    [37]刘长年,液压伺服系统的分析和设计[M].北京:科学出版社,1985,35~76
    [38]王秀等.精准变量施肥机的研制与试验修改.农业工程学报,2007(8):36-39
    [39]赵建领,51系列单片机开发宝典,电子工业出版社.2007.4.
    [40]张俊谟,SOC单片机原理与应用--基于C8051F系列[M],北京:北京航空航天大学出版社,2007,05:35~38.
    [41]张培仁,孙力,基于C语言C8051F系列微控制器原理与应用[M],北京:清华大学出版社,2007,11:100~232.
    [42]童长飞,C8051F系列单片机开发与C语言编程[M],北京:北京航空航天大学出版社,2005.02:201~235.
    [43]潘琢金,C8051FXXX高速SOC单片机原理及应用[M],北京:北京航空航天大学出版社,2003.02:79~132.
    [44]Trimble AgGPS 332 GPS Receiver USER GUIDE[S],2005.9:77-101.
    [45]张华君,韩崇昭,递推批量最小二乘在直升机电动舵机故障诊断中的应用[J],西安交通大学学报,2004(02).
    [46]William R.Raun, Improving Nitrogen Use Efficiency in Cereal Grain Production with Optical Sensing and Variable Rate Application [J], American Society of Agronomy Journal,2002, 94:815-820.
    [47]曹宏鑫,刘世军,工法宏,任德昌,王旭清,张立民,高亮之,金之庆,张继林,作物生态平衡施肥决策系统的研究[J]计算机与农业,2000,(11).
    [48]赵春江,薛绪掌,王秀,陈立平,潘瑜春,孟志军,精准农业技术体系的究进展与展望[J],农业工程学报,2003,(04).
    [49]杨印生,吴才聪,马成林,张书慧.,应用变量施肥技术的合理农田规模研究农业系统科学与综合研究,2004,(01).
    [50]刘佳,我国精准农业的发展方向,中国农村科技,2007,(05)
    [51]ASAE S341.2.ASAE Standards,44th Ed.Procedure For Measuring Distribution Uniformity and Calibrating Granular Broadcast Spreaders[S].ASAE St.Joesph, MI.1997.
    [52]Patterson D E; Reece A R (1962). The theory of the centrifugal distributor. I:Motion on the disc, near-centre feed. Journal of Agricultural Engineering Research,7(3),232-240.
    [53]Inns F M; Reece A R (1962). The theory of the centrifugal distributor:II:motion on the disc, off-centre feed. Journal of Agricultural Engineering Research,7(4),345-353.
    [54]Mennel R M; Reece A R (1963). The theory of the centrifugal distributor:III:particle trajectories. Journal of Agricultural Engineering Research,7(3),78-84
    [55]Aphale A; Bolander N; Park J; Shaw L; Svec J; Wassgren C(2003). Granular fertiliser particle dynamics on and off a spinner spreader[J]. Biosystems Engineering,85(3),319-329.
    [56]R.Olieslagers,H.Ramon,J.De Baerdemaeker. Calculation of Fertilizer Distribution Patterns from a Spinning Disc Spreader by means of a Simulation Model[J]. agric.Engng Res.1996,63,137-152.
    [57]J.W.Hofstee, W.Huisman. Handing and Spreading of Fertilizers Partl:Physical Properties of Fertilizers in Relation to Particle Motion[J].agric.Engng Res.1990,47,213-234.
    [58]J.P.Fulton,S.A.Shearer,T.S.Stombaugh, Pattern Assessment of a Spinner Disc Variable-Rate Fertilizer Applicator[C]. Sacramento Convention Center,Sacramento, California,2001.7.30-8.1.
    [59]J.P.Fulton et al. Field Evaluation of a Spinner Disc Variable-Rate Fertilizer Applicator[C]. Annual Meeting, Sheraton Centre, Toronto, Canada,1999.7.18-21.
    [60]J.P. Fulton, S.A. Shearer, M. E. Anderson, T.F. Burks and S.F. Higgins, Simulated Application Errors for Granular Materials for Fixed and Variable-Rate Application[C], ASAE Annual International Meeting, Midwest Express Center, Milwaukee, Wisconsin,2000,July 9-12.
    [61]Fulton, J.P., Shearer, S.A., Chabra, G., and Higgins, S.F. (2001). Performance assessment and model development of a variable-rate, spinner-disc fertilizer applicator[J]. Trans. of ASAE. Vol.44(5), pp.:1071-1081.
    [62]Parish, R. L. Comparison of spreader pattern evaluation methods[J]. Applied Engineering in Agriculture 2(2):89-93.1986.
    [63]Parish, R. L. Granular pattern analysis[J]. Agrichemical Age 30(8):18-19.1986.
    [64]Parish, R. L. Rotary spreader speed effects[J]. American Lawn Applicator 8(6):35-36,38.1987.
    [65]Parish, R. L. A computer program for spreader pattern analysis[J]. Applied Engineering in Agriculture 3(1):14-16.1987.
    [66]Broder, M. F. Performance testing of fertilizer application equipment[J]. ASAE paper no.83-1503, ASAE,St. Joseph, MI.1983.
    [67]Parish, R.L. Effect of rough operating surface on rotary spreader distribution pattern[J]. Applied Engineering in Agriculture ASAE,7(1):61-63.1991.
    [68]Fulton J P,Shearer S A,Stombaugh T S,et al.Simulation of Variable-Rate Application of Granular Materials[A]. ASAE Annual International Meeting[C].Chicago.lllinois,2002.28-31.
    [69]Hayden G Lawrence, Ian J Yule. Accessing Spreader Performance for Variable Rate Fertiliser Application[A]. ASAEAnnual International Meeting[C]. Tampa, Florida,2005.7.17-20.
    [70]Tony E.Grift Giyoung Kweon, Development of a Uniformity Controlled Granular Fertilizer
    [71]史久根,张培仁,陈真勇.CAN现场总线系统设计技术.北京:国防工业出版社,2004
    [72]Bosch, Robert, GmbH.1991. CAN Specification, Version 2.0. Robert Bosch GmbH, Postfach 50,D-7000 Stuttgart 1,Germany.
    [73]饶运涛,邹继军,郑勇芸.现场总线CAN原理与应用技术.北京:北京航空航天大学出版社,2003
    [74]邬明宽.CAN总线原理和应用系统设计.北京:北京航空航天大学出版社,1996
    [75]刘阳春,张小超,伟利国等.一种变量施肥技术的实现及其台架试验.农业机械学,2011,41(9)
    [76]Weisberg, P., R. Benneweis, and M. Bloom.1993. Air seeder monitor/controller communications system. SAE Paper No.932430. Warrendale, Pa.:SAE.
    [78]Monson, R. J., and E. M. Dahlen.1995. Mobile Control System Responsive to Land Area Maps.U. S. Patent 5,453,924.
    [79]Bernard, J. W.1986. Electronic communication protocol for agriculture — Can we avoid a crisis.ASAE Paper No.86-5528.St. Joseph, Mich.:ASAE
    [80]Schueller, J. K.1988. A proposed scheme for integrated tractorimplement communications and control. ASAE Paper No.881533. St. Joseph, Mich.:ASAE
    [81]Artman, R.1986. A proposal for physical link and data link control for computer systems on farms. In P roceedings of the Agri-mation 2 Confere nee, ASAE/SME.3-5 March 1986,Chicago,Illinois. ASAE, St. Joseph, Mich
    [82]Stone, M., K. McKee, C. Formwalt, and R. Benneweis.1999b. ISO 11783:an electronic communications protocol for agricultural equipment. ASAE Distinguished Lecture#23,Agricultural Equipment Technology Conference. Louisville, Kentucky.
    [83]H.Auernhammer.2004.Off-Road Automation Technology In European Agriculture — State of the Art and Expected Trends. Pp 184-191 in Automation Technology for Off-Road Equipment,Conference Proceedings.2004(Kyoto, Japan)
    [84]蔡得聪.农用机械设备的总线标准.测控计算,2003,Vol.22(3):35-37
    [85]薛金林,鞠卫萍.世界农业机械电子信息化的工程应用.中国农机,2004(1):19-21
    [86]ISO.1998a. Part 2. Physical Layer. ISO 11783 Part 2 Draft Document N148/97E,10 September 1997.ISO/TC23/SC19/WG1.
    [87]ISO.1998b. Part 6. Virtual Terminal. ISO 11783 Part 6 Draft Document N187/98E,28 August1998. ISO/TC23/SC19/WG1.
    [88]Carroll E. Goering, Marvin L. Stone, David W. Smith, Paul K. Turnquist.2003. Electrical andElectronic Systems. Published in Off-Road Vehicle Engineering Principles, Chapter 10, pp.205-254. 2003 American Society of Agricultural Engineers.
    [89]H.Auernhammer.2004.Off-Road Automation Technology In European Agriculture — State ofthc Art and Expected Trends. Pp 184-191 in Automation Technology for Off-Road Equipment,Conference Proceedings.2004(Kyoto, Japan)
    [90]方仕雄.李奇.一种主从式的CAN总线高层协议设计及应用.测控技术,2006,Vol.25(8):47-49
    [91]孟志军.基于处方图的变量施肥作业系统关键技术研究,中国农业大学博士学位论文,2007
    [92]刘刚,支持精细农业实践的农田空间分布信息处理的方法与试验研究,中国农业大学博士学位论文,2001
    [93]Filella I., Serrano L.. Serra J., et al. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Sci.,1995,35:1400—1405.
    [94]Hagger R.J., Stent C.J., Rose J. Measuring spectral differences in vegetation canopy by a reflectance ratio meter. Weeds Res.1984,24:59-65.
    [95]Mullen R.W., Freeman K.W., Raun W.R., et al. Identifying an in-season response index and the potential to increase wheat yield with nitrogen. Agron.J.2003,95:347—351.
    [96]Raun W.R., Solie J.B., Johnson, et d. In-season prediction of potential grain yield in winter wheat using canopy reflectance.Agron. J.2001,93, 583 — 589.
    [97]Shanahan J.E, Schepers J.S., Francis D.D., et al. Use of remote sensing imagery to estimate corn grain yield. Agron. J.2001,93,683 — 689.
    [98]Solie J.B., Raun W.R., Stone M.L. Submeter spatial variability of selected soil and Bermuda grass production variables. Soil Sci.Soc.Am.J,1999,63:1724— 1733.
    [99]Mullen R.W., Freeman K.W., Johnson G.V., et al. The Magruder plots:Long-term wheat fertility research. Better Crops 2001,85(2),6 — 8.
    [100]Lukina E.V., Freeman K.W., Wynn K.J., et al. Nitrogen fertilization optimization algorithm based on in-season estimates of yield and plant nitrogen uptake. J. Plant Nutr.2001,24:885-898.
    [101]Wibawa W.D., Dludlu D.L., Swenson L.J., et al. Variable fertilizer rate application based on yield goal, siol fertility and soil map unit.J. Prod.Agric.1993,6,255— 266.
    [102]沈善敏.氮肥在中国农业发展中的贡献和农业中氮的损失.土壤学报,2002,39(增刊):12-25.
    [103]Francis D.D., Schepers J.S., Vigil M.F. Post-anthesis nitrogen loss from corn. Agron.J.1993,85: 633—643.
    [104]http://www.fao.org
    [105]Gao Rongqiang et al(高荣强等)Preprocessing of Near Infrared Spectroscopic Data (近红外光谱的数据预处理研究)Spectroscopy and Spectral Analysis (光谱学与光谱分析)2004,24(12):1563-1565.
    [106]朱兆良.氮素管理与粮食生产和环境.土壤学报,2002,39(增刊):3-11.
    [107]陈立平.精准农业变量施肥理论与试验研究[D].中国农业大学,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700