两种昆虫纤溶酶的性质、结构分析以及酶模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人口结构的老龄化和人民生活水平的提高,心脑血管疾病已成为威胁人类健康的一大杀手,心肌梗塞、脑中风等血栓性疾病的发病率正逐年提高。溶栓是治疗血栓性疾病有效的手段,但目前临床使用的溶栓药物有异常出血等副作用,而且价格昂贵,因此迫切需要研制高效、快速、副作用小,价廉的新型溶栓药物。本文从两种昆虫(地鳖、黄粉虫)体内提取了一类纤溶酶,研究了其溶栓作用、抗血管生成作用和抑制肿瘤作用等性质。并对这两种昆虫的纤溶酶氨基酸序列进行了分析,利用生物信息学方法模拟了它们的三维结构,找到了这两种酶的活性中心。设计并合成一种新型高分子化合物,模拟该类纤溶酶。为深入研究该类纤溶酶的药理性质,开发廉价的新型溶栓药物奠定了理论基础。
     本文利用离子交换层析技术和凝胶层析技术,从黄粉虫和地鳖体内分离纯化了两种纤溶酶,分别命名为黄粉虫纤溶酶(YFP)和地鳖纤溶酶(EFP)。利用硫酸蒽酮法,测量了这两种纤溶酶的含糖量;利用SDS-聚丙烯酰胺凝胶电泳测量了这两种纤溶酶的相对分子量;纤维蛋白平板实验证明这两种酶都具有纤溶活性,并研究了金属离子、EDTA、尿素、巯基乙醇对这两种酶活性的抑制作用,以及他们最适宜的温度和pH值。用红外光谱表征了两种纤溶酶;鸡胚尿囊膜实验证明这两种纤溶酶都能抑制血管生成;荷瘤小鼠动物实验证明这两种纤溶酶都具有抑制肿瘤细胞的效果。研究结果表明:黄粉虫纤溶酶相对分子质量约为56.1kD,糖含量为7.084%,Na+和K+对黄粉虫纤溶酶的纤溶活力基本无影响,而Mg2+和Ca2+则对其活力有一定的抑制作用,EDTA、尿素和巯基乙醇也能抑制其纤溶活性。黄粉虫纤溶酶的最适宜反应温度为25℃-45℃,最适宜pH值为7.5。做酶促反应动力学实验检测了黄粉虫纤溶酶对不同底物的Km值,得出结论:该酶跟不同的底物结合能力是不一样的。跟酯键结合能力较强,跟酰胺键结合能力次之,跟酪蛋白肽键结合能力最弱。地鳖纤溶酶相对分子质量约为41.3kD,糖含量为10.05%。Na+与K+对地鳖纤溶酶活性几乎没有影响,Mg2+,Ca2+对其活性有一定的抑制作用,EDTA、尿素和巯基乙醇也能抑制其纤溶活性。地鳖纤溶酶的最适宜反应温度为40℃,最适宜pH为8.0。利用caspase-3活性检测试剂盒,检测了地鳖纤溶酶诱导H22和S180肿瘤细胞凋亡时caspase-3的活性,得出结论,地鳖纤溶酶体内诱导的S180和H22肿瘤细胞凋亡的其中一个通路是caspase-3活化机制。
     利用生物信息学方法,对黄粉虫纤溶酶和地鳖纤溶酶进行了结构分析,用biosun软件的同源模建技术,模拟了它们的三维结构。利用goldkey软件,对这两种酶的氨基酸序列进行了分析,重点讨论了其柔性、亲水性、等电点跟催化活性之间的关系。找到了它们的活性中心和底物结合部位。这两种昆虫纤溶酶的活性中心都是组氨酸、丝氨酸和天冬氨酸三个氨基酸残基,都位于球蛋白中心凹穴处,底物结合部位都是丝氨酸、天冬氨酸和甘氨酸。从微观分子水平上阐述了该类酶水解纤维蛋白的机理是催化精氨酸-赖氨酸之间的肽键水解,与报道的纤维蛋白的溶解机理相符,为模拟酶的合成提供了思路。比较这两种昆虫纤溶酶,发现他们的同源性很高,三维结构类似,柔性相近,亲水性和等电点有一定的差异。
     纤溶酶活性中心是组氨酸、丝氨酸和天冬氨酸三个氨基酸残基,其侧链的官能团分别是:咪唑基、羟基和羧基。因此设计乙烯基咪唑、丙烯醇和丙烯酸三元共聚,合成一种新型高分子共聚物(模拟酶)。该共聚物在国内外均未见报道,其主链为碳链,侧链布满了咪唑基、羟基和羧基。以渗透压法,测量了模拟酶的数均分子量;以纤维蛋白平板实验中纤溶圈的面积,表征模拟酶的活性,得到模拟酶的最佳合成条件;研究了金属离子和pH值对模拟酶纤溶活性的影响。凝胶色谱实验,得到模拟酶的平均分子量,以及分子量分布;利用不同环境下模拟酶的粘度检测,对其微观结构作了初步探讨。得出结论,该模拟酶的数均分子量为:4.7×104;最佳反应条件为:乙烯基咪唑、丙烯酸、丙烯醇按投料比1:20:1;苯为溶剂;偶氮二异丁基腈为引发剂;反应温度为80℃。体外血块溶解实验证明,20%的模拟酶溶液能很好的在体外溶解血块,模拟酶浓度越高,溶栓能力越强。金属离子对模拟酶的纤溶活性没有显著性影响,pH为6和9时,模拟酶纤溶活性最高。并用红外、核磁共振表征了模拟酶的结构。
With the development of economic and life level, cardiovascular disease, such as acute myocardial infarction and stroke, are one of the life-threatening diseases that affect more and more people each year. The thrombolysis is a main therapeutic approach to treat thrombosis disease. Despite its tremendous clinical success, several major limitations of the therapy still need to be addressed, including bleeding and high price. Thus, identifying new therapeutic targets and developing safe and efficient thrombolytic agents are the focal points in the field of thrombolysis. In this thesis, two kinds of insects' plasmins were extracted from Tenibrio molitor (yellow mealworm beetle) and Eupolyphaga sinensis (ground beetle), and their properties of thrombolysis, anti-angiogenesis and tumor-suppression were studied. The amino acid sequences of the plasmins were analyzed, while their three-dimensional structures and active sites were determined by the method of bioinformatics. A novel of polymer (mimic enzyme) was designed and synthesized to simulate the plasmins, which would lay a necessary theory and practical foundation for the development of new thrombolytic drugs.
     Two kinds of insects' plasmins were purified form yellow mealworm beetles and Eupolyphaga sinensis, by DEAE-32cellulose chromatography column and SephadexG-75dextran gel column, which named YFP(fibrinolytic protein form Yellow mealworm beetle) and EFP(fibrinolytic protein form Eupolyphaga sinensis). The fibrinolytic activity were detected by the fibrin plate method; their sugar content were detected by the anthrone-sulfuric acid method, and their molecular weight were estimated by SDS-PAGE. The chick embryo chorioallantoic membrane experiment proved that the two kinds of plasmins could inhibit angiogenesis, and both of them had anti-tumor effects, through animal experiment of tumor-bearing mice. The results showed that the relative molecular mass of YFP was about56.1kD; sugar content of YFP was7.084percent; The fibrinolytic activity of YFP had no influence on Na+and K+, while the Mg2+, Ca2+, EDTA, urea and mercaptoethanol has some inhibitory effect to its vitality; the optimal reaction pH value and temperature of YFP were pH7.5and25℃-45℃, respectively. The Km of YFP were tested by the experiments of enzymatic kinetic reaction, It could be concluded that the capability of the YFP with various substrates was in the follwing order:ester bond>amide bond>peptide bond. The relative molecular mass of EFP was about41.3kD; sugar content of EFP was10.05percent; The fibrinolytic activity of EFP had no influence on Na+and K+ while the Mg2+, Ca2+,EDTA, urea and mercaptoethanol has some inhibitory effect to its vitality:the optimal reaction pH value and temperature of EFP were pH8.0and40℃. respectively. The EFP had anti-tumor effects on SI80and H22solid tumors, and one pathway of apoptosis of S180and H22tumor cells induced by EFP was activation of caspase-3.
     using the bioinformatics methods, the3D-structures of EFP and YFP were simulated by the the "biosun" computer program, while the isoelectric point, hydrophilicity, and flexibility of the sequences were analyzed by the the "goldkey" computer program. The acive sites of the YFP and EFP both were Histidine, Serine and Aspartic acid, and in the same position, while the Substrate binding sites both were Serine, Aspartic acid and Glycine. the plasmins' catalytic mechanism was the catalyzing hydrolysis of the peptide bonds between the Arginine and the Lysine.
     The acive sites of the insects' plasmins were Histidine, Serine and Aspartic acid, and the functional groups of the three amino acids were Imidazole, hydroxyl and carboxyl groups. So a novel of polymer (mimic enzyme) was designed and synthesized through by copolymerization with raw materials of acrylic acid, allyl alcohol and vinyl imidazole. The molecular weight of the mimic enzyme were estimated by osmotic method, and The fibrinolytic activity of the mimic enzym were detected by the fibrin plate method.The optimum reaction conditions were vinyl imidazole. acrylic acid, allyl alcohol in the ratio of1:20:1, benzene as solvent. zobisisobutylnitrile as initiator, and80℃. In the optimum reaction conditions, the molecular weight of the mimic enzyme was4.7×104. As the concentrations increased, the fibrinolytic activity of the mimic enzyme was increasing, and blood clots could be dissolved in20%mimic enzyme solution. The fibrinolytic activity of the mimic enzyme had no significant influence by metal ions, and the optimal pH of the mimic enzyme were6and9. The polymer was characterized by IR and NMR, and it's viscosity was studied also.
引文
[1]王荣端.蚯蚓纤溶酶多组分的分离与活性比较[D].河北医科大学硕士学位论文.2000.
    [2]刘东璞,卢凤美,王抒.病理学[M].北京:人民卫生出版社,2009:216.
    [3]王中枢.纤维蛋白溶解的生物化学[M].北京:科学出版社,1991:12-25.
    [4]Reed G., Lin L., Parhami S. B. et al. Identification of plasminogen binding region in streptokinase that is necessary for the creation of functional streptokinase-plasminogen activator complex [J]. Biochemistry.1995,34(32):10266~10271.
    [5]Medved L. V., Solovjov D. A., Ingham K. C. et al.Domain structure, stability and interactions in streptokinase [J]. European Journal of Biochemistry.1996,239(2): 333~339.
    [6]Sumi H., Hamada H., Nakanishi K., et al. Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase [J]. Acta Haematologica.1990,84(3): 139~143.
    [7]Strogin A. Y. A., Tzotova, L. S., Abarmov. Z. T., et al. Intracellular serine protease of Bacillus subtilis:sequence homology with extracellular subtilisin [J]. Journal of Bacteriology 1978,133(3):1401~1411.
    [8]Chang C. T., Fan M. H., Kuo, F. C. et al. A potent fibrinolytic enzyme form a mutant of Bacillus subtilis IMR-NKI [J]. Journal of Agricultural and Food Chemistry.2000,48(8): 3210-3216.
    [9]Yong K. J., Jeong U. P., Hyun B., et al. Purification and biochemical characterization of a fibrinolytic enzyme form Bacillus subtilis BK-17 [J]. World Journal of Microbiology and Biotechnology.2001,17:89~92.
    [10]Ko J. H., Yan J. P., Zhu L. et al. Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02 [J]. Comparative Biochemistry and physiology:Part C.2003, 137(1),65~74.
    [11]Matsubara K., Hori K., Matsuura, Y. et al. A fibrinolytic enzyme from a marine green alga, Codium latum [J]. Phytochemistry.1999,52(6):993~999.
    [12]Fan Q., Wu C., Li L., et al. Some features of intestinal absorption of intact fibrinolytic enzyme Ⅲ-1 from lumbricus rubellus [J]. Biochimica et Biophysica Acta (BBA) General Subjects.2001,1526(3):286~292.
    [13]Katrin T., Heiki, V., Juhan, S. et al. MALSI-TOF mass spectrometry analysis of substrate specificity of lebetase, a direct-acting fibrinolytic metalloproteinase form Viper a lebetina snak venom [J]. Biochimica et Biophysica Acta, Protein Structure and Molecular Enzymology.2000,1476(2):331~336.
    [14]Liang X., Chen J., Zhou Y, Qiu P. and Yan G. Purification and biochemical characterization of Flla. a fibrinolytic enzyme form Agkistrodon acutus venom [J]. Toxicon.2001,39:133~1139.
    [15]Koh Y. S., Chung K. H., Kim, D. S.. Biochemical haracterization of a thrombin-like enzyme and a fibrinolytic serine protease from snake(Agkistrodon saxatilis) venom [J]. Toxicon.2001,39(4):555-560.
    [16]Juho K., Hyangguang L. Sangak L. The effect of culture components on the production of the fibrinolytic enzyme by Bacillus natto strain 89 [J]. Natural Science.1996,42: 100~105.
    [17]Kim, H. K., Kim. G. T., Kim. D. K., Choi, W. A., Park. S. H., Jeong, Y. K., and Kong I. S. Purification and characterization of a novel fibrinolytic enzyme from Bacillus sp. KA38 originated from fermented fish [J]. Journal of Fermantation Bioengineering.1997,84(4): 307~312.
    [18]Yong Peng, Xiao-Juan Yang, Lu Xiao et al. Cloning and expression of a fibrinolytic enzyme (subtilisin DFE) gene form Bacillus amyloliquefaciens DC-4 in Bzcillus subtilis [J]. Research in Microbiology.2004,155(3):167~173.
    [19]杨耀芳.土鳖虫药效的实验研究进展[J].中药材.2002.225(2):150-152.
    [20]王淑敏,赵学良,王本祥,等.中药土鳖虫溶栓成分的分离纯化研究[J].分析化学.2005,33(10):1385-1388.
    [21]李卫星,王中枢.地鳖血纤维蛋白溶酶原激活物样成分的研究[J].中国生物化学与生物物理学报.1989,21(4):299-306.
    [22]谢文光,魏钰书,王会信,等.活血化瘀中药的纤溶和纤溶抑制作用[J].中国医药学报.1996,11(6):18-21.
    [23]贺卫和,成细华,徐爱良.土鳖虫提取液对家兔抗凝血作用的实验研究[J].湖南中医学院学报.2003,23(2):7-9.
    [24]许俊杰,孟庆棣,佟丽,等.土鳖虫水提物对大鼠抗凝血的实验研究[J].第一军医大学学报.1990,10(3):262-265.
    [25]龙子江,盛炎炎,董宏超.土鳖虫总生物碱对家兔心泵功能的影响[J].安徽中医学 院学报.1988,8(3):84-86.
    [26]周春凤,莱萌.王秀华,等.土鳖虫对大鼠血液流变学的影响[J].中草药.1994,25(1):28-29.
    [27]王怡,翁维良,刘剑刚.动物类活血化淤药对血液流变性作用的比较研究[J].中药药理与临床.1997,13(3):1-4.
    [28]钱宗云,陈聪聪,陈连枝.几种动物类中药对兔耳静脉血栓溶解作用的实验观察[J].浙江中医杂志.1991,26(1):512-515.
    [29]罗佩强.土鳖虫促进骨折愈合的实验研究[J].中国骨伤.1992,5(6):6-7.
    [30]杨耀芳,余则秋.土鳖虫总生物碱对动物耐缺氧的影响[J].中草药,1989,20(6):20-22.
    [31]王巍,王晋桦,赵德忠,等.鸡血藤、鬼箭羽和土鳖虫调脂作用的比较[J].中国中药杂志.1991,16(5):299-301.
    [32]Kroeker E. M., Walder V.K.D. Evelopmental expression and hormonal regulation of a desiccation stress protein in Tenbrio molitor [J]. Insect Biochemistry.1991,21(6): 631-640.
    [33]Lee-Kwang Moon, Kim-DaeHee, Lee-Young Hoon et al. Bacterial expression of teneein3, an insect antifungal Protein isolated from Tenebrio molitor, and its effieient purification [J]. Molecules-and-Cells,1998,8(6):786~789.
    [34]Lee-Keun Hyeung, Hong-Sung Yu. oh-Jong Eun et al. Synthesis and structure-function study about teneeinl an antibacterial 1 protoin from larvae of Tenebrio molitor L. [J]. JFEBS-Letters.1998,439(1):41~45.
    [35]Moon HJ, Lee SY, Kurata S et al.Purification and molecular cloning of cDNA for an inducible antibacterial protein from larvae of Coleoptera:Tenebrio molitor L. [J]. Biochemistry,1994,116(1):53~58.
    [36]Tatterson J. L., Duman J. G. The role of thermal hysteresis producing proteins in the low temperature tolerance and water balance of larvae of the mealworm, Tenebrio molitor [J]. J. Exp. Zool.1978,210:361-367
    [37]Iou-Yih Chemg, Tocilj-A, Davies-PL, et al. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein [J]. Nature-London.2000,406 (6793):322~324.
    [38]Markus J., Rantala, Raine Kortet, et al. Condition dependence of pheromones and immune function in the grain beetle Tenebrio molitor [J]. Functional Ecology.2003, 17(8):534~540.
    [39]Yannick Moret, Michael T., Siva-Jothy. Adaptive innate immunity Responsive- mode prophylaxis in the mealworm beetle, Tenebrio molitor [J]. Proceedings the Royal of society B.2003,270(1532):2475~2480.
    [40]V. B. Wigglesworth. The Structure and Deposition of the Cuticle in the Adult Mealworm, Tenebrio Molitor L. (Coleoptera) [J]. Journal of Microscopical Science.1948,6: 197~216.
    [41]M. C. ARENDSE. Magnetic field detection is distinct from light detection in the invertebrates Tenebrio and Talitrus [J]. Nature.1978,274(7):358~362.
    [42]Jean-Paul Delbecque, Michel Him, Jean Delachamber, et al. Cuticular cycle and molting hormone levels during the metamorphosis of Tenebrio molitor (Insecta Soleoptera) [J]. Developmental Biology.1978,65(5):11~30.
    [43]M. W. HOLDGATE, M. SEAL. The Epicuticular Wax Layers of the Pupa of Tenebrio Molitor L [J]. Journal of Experimental Biology.1956,33(3):82~106.
    [44]崔蕊静,林学岷,周丽艳.黄粉虫蛹水解蛋白质发酵营养液的研制[J].食品科学.1999,1:42-44.
    [45]陈彤.黄粉虫养殖与利用[M].北京:金盾出版社,2000:27-28.
    [46]贾春生,由士江,高文韬,等.利用黄粉虫分离土壤昆虫病原真菌[J].昆虫知识.2006,43(2):260-261.
    [47]杨兆芬,林跃鑫,陈寅山,等.黄粉虫幼虫营养成分分析和保健功能的实验研究[J].昆虫知识.1999,36(2):94,97-100.
    [48]杨兆芬,林跃鑫,张东驰,等.黄粉虫复合氨基酸的提取及氨基酸虫酒的制作[J].昆虫知识.1998,35(5):290-292.
    [49]吴蕾,陈庆森,刘晋生,等.黄粉虫中提取纯化超氧化歧化酶的工艺研究[J].食品科学.2007,28(9):281-283.
    [50]刘玉升.黄粉虫[M].北京:中国农业出版社,2002:53-56.
    [51]高爱华,陈月明.浅谈黄粉虫[J].中学生物学.2005,21(1):17-18.
    [52]Lei Yu,Ya-Li Han, Zhu-Jun Tan, Purification of a protease with fibrinolytic activity from the yellow mealworm beetles, Tenebrio molitor [J]. advance matieral rescher.2012,396: 103~105.
    [53]Hardin C., East-wood M. P., Prentiss M., et al. Folding Funnels:the key to robust protein structure prediction [J]. J. Comput. Chem..2002,23(1):138~146.
    [54]Brooks R., Bruccoleri E.. Olafson B..et al. CHARMM:A Program for Macromolecular Energy, Minimization, and Dynamics Calculations [J]. J. Comput. Chem..1983.4(2): 187~217.
    [55]Tetsu Narumi, Ryutaro Susukita, Toshikazu Ebisuzaki, et al. Molecular dynamics machine:Special -purpose compmer for molecular dynamics simulations [J]. Molecular Simulation.1999,21(5/6):401~415.
    [56]M. P. Eastwood, C. Hardin, Z. Luthey-Schulten, et al. Evaluating protein structure prediction schemes using energy landscape theory [J]. IBM Journal of Research and Development.2001,45(3/4):475~497.
    [57]李林.蛋白质组学的进展[J].生物化学与生物物理进展.2000,27(3):227-231.
    [58]Liwo A., Kazmierkiewicz R., Czaplewski C., et al. United-residue force field for off-lattice protein-structure simulations:Ⅲ. Origin of backbone hydrogen-bonding cooperativity in united-residue potentials [J]. Journal of Computational Chemistry.1998, 19(3):259~276.
    [59]阎隆飞,孙之荣.蛋白质分子结构[M].北京:清华大学出版社,1999:56-62.
    [60]罗静初.基于Pc/kinux的分子生物信息数据库查询系统[J].科学通报.2000,45(9):1006-1008.
    [61]王彦力,来鲁华,韩玉真,等.新型平均势函数在蛋白质反向折叠中的应用[J].生物物理学报.1995,11(1):67-74.
    [62]来鲁华等.蛋白质的结构预测与分子设计[M].北京:北京大学出版社,1993:49-61.
    [63]LaVallie Edward R, McCoy John M.. Gene fusion expression systems in Escherichia coli [J]. Curr Opin Biotechnol.1995,6(5):501~506.
    [64]Sambrook J., FriNch E.F., Maniatics T.著,金冬雁,黎孟枫等译.分子克隆实验指南[M].北京:科学出版社,1996:951-953
    [65]张红娟.基于非格点模型的蛋白质结构预测研究[D].大连理工大学硕士研究生论文,2006,大连
    [66]SHI Feng, LI Nana, NIU Xiaohui. Offlattice model in the prediction ofprotein 3D structurue [J]. Wuhan University Journal of Natural Sciences.2007,12(2):235~238
    [67]赵善荣,唐斌,陈凯先.基于知识的蛋白质结构预测[J].生物化学与生物物理进展.1996,23(5):422-426.
    [68]刘次全,温元凯.量子生物学引论[M].北京:科学出版社,1989:171-210.
    [69]Sutcliffe M. J., Haneef 1, Carney D., et al. Knowledge-based modelling of homologous proteins. Part 1:Three-dimensional frameworks derived from simultaneous superposition of multiple structures [J]. Protein Eng..1987,1(5):377~383.
    [70]牛卫东,潘宪明.蛋白质结构预测[J].世界科技研究与发展,1998,01:55-56.
    [71]William Ramsay Taylor. The classification of amino acid conserves [J]. Journal of Theoretical Biology.1986,119(2):205~218.
    [72]M.v.伏尔更斯坦著(苏),刘克译.现代物理学与生物学概论[M].上海:复旦大学出社,1985:62,137-139.
    [73]冯祖康,丁达夫.用于蛋白质分子设计的环区模建方法[J].生物化学与生物物理学报.1995,27(2):173-179
    [74]Moult J., Fidelis K., Rost B., et al. C Critical assessment of methods of protein structure prediction (CASP)-round 6 [J]. Proteins.2005,61(7):3~7.
    [75]Alexey G. Murzin. Progress in protein structure prediction [J]. Nature Structural Biology. 2001,8(2):110~112.
    [76]Kathryn N. Rankin. A Theoretical Study of Hydrogen Bonding Involving Bio-Molecules [D]. Dissertation Submitted to Dalhouse University for the Degree of Doctor of Philosophy, Canada.2001
    [77]陈宁.酶工程[M].北京:中国轻工业出版社,2005:32.
    [78]罗贵民,曹淑桂,张今.酶工程[M].北京:化学工业出版社,2002:48.
    [79]姜涌明.分子酶学导论[M].北京:中国农业大学出版社,2000:53.
    [80]姜忠义,贾琦鹏.分子印迹技术极其应用[J].石油化工,2002,31(8):699-671.
    [81]Blow D. M, Birktoft J. J., Hartley B. S. Role of a buried acid group in the mechanism of action of chymotrypsin [J]. Natrue.1969,221:235~242.
    [82]D. M. Blow. The tortuous story of Asp-His-Ser:structural analysis of a-chymotrypsin [J]. Trends Biochem. Sci..1997,22(10):405~408.
    [83]Gary A. Rogers, Thomas C. Bruice. Mechanisms of acyl group transfer from a tetrahedral intermediate [J]. Journal of the American Chemical Society.1974,96 (8): 2481~2488.
    [84]Gary A. Rogers, Thomas C. Bruice. Synthesis and evaluation of a model for the so-called charge-relay system of the serine esterases [J]. Journal of the American Chemical Society.1974,96 (8):2473~2481.
    [85]D. M. Blow. Structure and mechanism of chymotrypsin [J]. Accounts of Chemical Research.1976,9(4):145~152.
    [86]M. Eigen. L. de Maeyer. Self-Dissociation and Protonic Charge Transport in Water and Ice [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences.1958,247(1251):505-533.
    [87]Jui H. Wang, Facilitated Proton Transfer in Enzyme Catalysis [J]. Science.1968. 161(3839):328~334.
    [88]Jui H. Wang. Directional Character of Proton Transfer in Enzyme Catalysis [J]. Proceedings of the National Academy of Sciences of the United States of America.1970, 66(3):874~881.
    [89]C. Gardner Swain. John F. Brown Jr.. Concerted Displacement Reactions. Ⅷ. The Mechanism of Acid—Base Catalysis in Non-aqueous Solvents1 [J]. Journal of the American Chemical Society.1952,74(10):2534-2537
    [90]Harry Ladenheim, Herbert Morawets. A new type of polyampholyte:Poly(4-vinyl pyridine betaine) [J]. Journal of Polymer Science.1957,26(113):251~254.
    [91]C. G. Overberger, M. Morimoto. Effect of ethanol-water solvent composition on the poly [4(5)-vinylimidazole]-catalyzed solvolysis of an anionic long-chain substrate [J]. Journal of the American Chemical Society.1971,93(13):3228~3236.
    [92]Astrup T, Mullertz S. The fibrin plate method for estimating of fibrinolytic activity [J]. Archives of Biochemistry and Biophysics.1952,40(2):346~351.
    [93]WANG Jia-Zheng, FAN Ming. Protein Technology Handbook [M]. Beijing:Science Press,2000:77~91
    [94]Michel. DuBois, K. A. Gilles, J. K. Hamilton, et al. Colorimetric Method for Determination of Sugars and Related Substances [J]. Analytical Chemistry.1956,28 (3):350~356
    [95]Theodore leng, Ms, Jason M. Miller, et al. MD, The Chick Chorioallantoic Membrane as a Model Tissue for Surgical Retinal Research and Simulation [J]. Retina, The Journal of Retinal and Vitreous Disease.2004,24(3):427~434.
    [96]James A. Stewart, Jerry E. Dobson. Trypsin-catalyzed Hydrolysis of N-Benzoyl-L-arginine Ethyl Ester at Low pH [J]. Biochemistry.1965,4 (6):1086~1091.
    [97]J.H. Petretski, M. Kanashiro, C.P. Silva et al. Two related thrombin-like enzymes present in Bothrops atrox venom [J]. Brazilian Journal of Medical and Biological Research. 2000,33(11):1293~1300.
    [98]谭竹钧,陈雅雄,等.一种黄粉虫纤溶酶及其制备方法与应用[P].申请号:200910193134.9.
    [99]陈守文.酶工程[M].北京:科学出版社,2008,:12-15
    [100]Folkman J., KlagsbrunM.. Angiogenic factors [J]. Science.1987,235(4787): 442~447.
    [101]Battegay E. J.. Angiogenesis:mechanistic insights, neovascular diseases, and therapeutic prospects [J]. Journal of Molecular Medicine.1995,73(7):333~346.
    [102]Schumacher B., Pecher P., Von Specht B. V., et al.. Clinical Investigation and Reports:Induction of Neoangiogenesis in Ischemic Myocardium by Human Growth Factors:First Clinical Results of a New Treatment of Coronary Heart Disease [J]. Circulation.1998,97 (7):645~650.
    [103]Bengt Mannervik, Arna Runarsdottir, Sanela Kurtovic. Multi-substrate-activity space and quasi-species in enzyme evolution:Ohno's dilemma, promiscuity and functional orthogonality [J]. Biochemical Society Transactions.2009,37:740~744
    [104]Steller H. Mechanisms and genes of cellular suicide [J]. Science,1995,267(5203): 1445~1449.
    [105]Zhang X, Steiner MS, Rinaldy A, et al. Apoptosis induction in prostate cancer cells by a novel gene product, Phyde, involves caspase-3[J]. Oncogene,2001,20(42): 5982~5990.
    [106]韩雅莉,谢昆.土鳖虫糖蛋白的提取及抗肿瘤活性初步研究[J].汕头大学学报(自然科学版).2006,21(4):46-50.
    [107]韩雅莉,李张伟.地鳖虫纤溶成分的分离纯化和活性测定[J].中药材.2006,29(8):765-767.
    [108]韩雅莉,李张伟.地鳖纤溶活性蛋白的纯化及性质研究[J].生物工程学报.2006,22(3):230-235.
    [109]李穗晶,韩雅莉,张冬梅,等.地鳖纤溶活性蛋白(EFP)的分离纯化、红外光谱分析及抑制鸡胚尿囊膜(CAM)血管生成研究[J].高等学校化学学报.2009,30(10):1998-2002.
    [110]Lei Yu, Ya-Li Han, Zhu-Jun Tan. Study on S180 and H22 Tumor suppressor and inducing apoptosis on Tumor-Bearing Mice by ground beetle's fibrinolytic Protein [C]. 2011 IEEE International Symposium on IT in Medicine and Education. 2011(12):174~177
    [111]Cryns V. Tuan J. Protease to die for [J]. Genes & Development.1998,12(11): 1551~1570.
    [112]Lukasz Jaroszewski. Leszek Rychlewskil. Zhanwen Li. FFAS03:a server for profile-profile sequence alignments [J]. Nucleic Acids Research.2005.33(2):284~288.
    [113]Zhou Hongyi, Zhou Yaoqi. Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments [J]. Proteins:Structure Function and Bioinformatics.2005,58(2):321~328.
    [114]Venclovas C, Margelevicius M. Comparative modeling in CASP6 using consensus approach to template selection, sequence-structure alignment and structure assessment [J]. Proteins.2005.61 (8):99~105.
    [115]Rajesh Singh R.. Jui-Yoa Chang. Structural stability of human alpha-thrombin studied by disulfide reduction and scrambling [J]. Biochimica et biophysica acta.2003, 1651(1-2):85~92.
    [116]Di Cera E.. Dang Q. D., Ayala Y. M.. Molecular mechanisms of thrombin function [J]. Cellular and Molecular Life Sciences.1997,53(9):701~730
    [117]Wolfram Bode. Structure and interaction modes of thrombin [J]. Blood Cells, Molecules, and Diseases 2006.36(2):122-130
    [118]Blow D. M., Birktoft J. J., Hartley B. S.. Role of a buried acid group in the mechanism of action of chymotrypsin [J]. Nature.1969,25:221 (5178):337-340.
    [119]Stubbs M T, Bode W. A player of many parts:the spotlight falls on thrombin's structure [J]. Thrombosis Research.1993,69(1):1-58
    [120]李兴暖,韩雅莉.地鳖虫纤溶活性蛋白cDNA序列克隆与毕赤酵母表达[J].生物技术通报.2009(11):140-144.
    [121]Li J. W. Biochemistry Experiment Principle and Method [M]. Beijing, University Press,1994:216-223.
    [122]刘有芹,颜芸,沈含熙.模拟酶的研究与发展[J].化学进展,2005,17(6):1067-1073.
    [123]Mustafa Kamal, Jan-Olov Hoog, Rudolf Kaiser, et al.. Isolation, characterization and structure of subtilisin from a thermostable Bacillus subtilis isolate [J].FEBS Letters. 1995,374(3):363-366.
    [124]Craig Binnie, Linda Liao, Eva Walczyk et al. Isolation and characterization of a gene encoding a chymotrypsin-like serine protease from Streptomyces lividans 66 [J].Canadian Journal of Microbiology,1996,42(3):284~288.
    [125]Marcos Mares-Guia, Elliott Shaw. Studies on the Active Center of Trypsin [J]. The Journal of Biological Chemistry.1965,240(4):1579~1585.
    [126]Marcos Mares-Guia. Amintas F. S. Figueiredo. Thermodynamics of the hydrophobic interaction in the active center of trypsin. Investigation with amidines and guanidines [J]. The Journal of Biological Chemistry.1970,9(16):3223~3227.
    [127]Godzhaev N. M. Study of trypsin-substrate and trypsin-inhibitor complexes.1. Conformation of Asp-102, His-57 and Ser-195 residues in the trypsin active center [J]. Molekuliarnaia Biologiia (Moskva).1984,18(5):1432~1435
    [128]Eileen F. O'Shea, Paula M. O'Connor, Paul D. Cotter et al. Synthesis of Trypsin-Resistant Variants of the Listeria-Active Bacteriocin Salivaricin P [J]. Applied and Environmental Microbiology.2010,76(16):5356~5362.
    [129]Paul J. Flory. Statistical Mechanics of Dilute Polymer Solutions [J]. Journal of Chemical Physics.1949,17(8):1347~1348.
    [130]周涛.化工原理[M].北京:科学出版社,2006:7-8
    [131]韩德刚,高执棣,高盘良.物理化学[M].北京:高等教育出版社,2009:501
    [132]Charles L., McCormick, Takamasa Nonaka, et al. Water-soluble copolymers:27. Synthesis and aqueous solution behaviour of associative acrylamid/N-alkylacrylamide copolymers [J]. Polymer.1988,29(4):731~739.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700