地下水环境脆弱性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水环境脆弱性(也称地下水脆弱性)反映地下水系统遭受污染的潜在可能性。地下水脆弱性研究成果可以为土地利用规划、地下水水资源保护规划、地下水水质监测等提供参考,也可以提高公众关于地下水污染的风险意识,树立以防为主的思想。
    地下水脆弱性评价方法主要有三类:迭置指数法,过程数学模拟法和统计方法。这三类方法互有优缺点。
    本文在借鉴国内外研究经验的基础上,进一步深入系统地研究地下水脆弱性问题,以唐山市平原区为研究区,建立了适应研究区具体情况的由地下水埋深等6个因子组成的脆弱性评价因子体系,开发了基于GIS技术的综合性地下水脆弱性模型并将其成功地应用在唐山市平原区的地下水本质脆弱性评价中。该模型以参数系统法为基础,将数学模型和统计方法嵌入该综合模型中,通过HYDRUS模型进行数值模拟来建立评价因子的评分体系,权重体系由主成分-因子分析法得到。该综合性模型综合了地下水脆弱性评价中常用的三类方法,使之相互补充,以克服单一方法的不足,提高了评价结果的客观性和科学性。
    本文还以ArcView GIS软件为平台,利用Arc-SDM扩展模块,应用WOE方法(实证权重法)对唐山市平原区地下水硝酸盐氮特殊脆弱性进行了研究。选用农家肥施用量等8个参数为预测因子,以硝酸盐氮浓度为响应因子,应用WOE方法得到了硝酸盐氮浓度大于10mg/L的后验概率分布图,并通过多种途径检验了研究结果的客观合理性。
    综合性地下水脆弱性模型还被分别应用在北京市平原区地下水脆弱性评价和北京郊区中心镇饮用水源保护区的地下水脆弱性评价中,评价结果分别为分析和预测雨洪滞蓄对地下水环境的影响和饮用水源保护区的地下水保护工作提供参考。
Groundwater vulnerability reflects the relative potential possibility of groundwater system to be polluted. The results of groundwater vulnerability research can provide a useful tool in land use planning, groundwater protection planning and groundwater quality monitoring. They can also help the pubic know more about groundwater pollution risk and have the idea of prevention taking priority in groundwater protection.
    There are three major classes of groundwater vulnerability assessment methods: overlay and index methods, methods employing process-based simulation models and statistical methods. The above three classes of methods all have their own advantages and disadvantages.
    Using the research experiences gained home and abroad for reference, groundwater vulnerability is systematically studied further in this paper. Taking Tangshan plain area as the study area and based on the specific conditions of the study area, six parameters such as depth to groundwater are selected to form the vulnerability assessment factor system and an integrated groundwater vulnerability model is developed which has been successfully applied in the intrinsic vulnerability assessment in Tangshan plain area. The model has overlay and index method as the basic, mathematical model and statistical method embedded to form an integrated model. The HYDRUS model is performed to obtain the rating system, and principal component analysis and factor analysis are used to get the weighting system. The integrated model employs three major classes of groundwater vulnerability assessment methods that are used together to overcome the shortcomings of the single class of methods and to
    
    strengthen the objective and scientific foundation of the assessment results.
    WOE (Weights of evidence) method is used to study the pecific vulnerability of nitrate nitrogen in Tangshan plain area, which is conducted on the extension module of Arc-SDM with ArcView GIS software as the platform. Farmyard manure application amount and other seven parameters are selected as predictor variables and nitrate nitrogen is the response variable. WOE method is used to obtain the posterior probability distribution map of nitrate nitrogen concentration greater than 10mg/L. The objectivity and reasonability of the output is tested through various methods.
    The integrated vulnerability model is also applied in Beijing plain area and the central town drinking water source protective zones in Beijing suburb to assess groundwater vulnerability. The study results provide a useful tool for analyzing and forecasting the influence of storm water runoff retention to groundwater environment and for groundwater protection in drinking water source protective zones separately.
引文
[1] 张文渊. 对地下水污染的根源及其治理浅析. 地下水,1999,21(3): 109~111
    [2] 朱学愚,钱孝星. 地下水环境影响评价的工作要点. 水资源保护,1998,(4): 48~53
    [3] 张丽君,贾跃明,刘明辉. 国外环境地质研究和工作的主要态势. 水文地质工程地质,1999,(6): 1~5
    [4] 杨晓婷,王文科,乔晓英等. 关中盆地地下水脆弱性评价指标体系的探讨. 西安工程学院学报,2001,23(2): 46~49
    [5] 孙才志,潘俊. 地下水脆弱性的概念、评价方法与研究前景. 水科学进展,1999,10(4): 444~449
    [6] 孙才志,林山杉. 地下水脆弱性概念的发展过程与评价现状及研究前景. 吉林地质,2000,19(1): 30~36
    [7] 姜桂华. 地下水脆弱性研究进展. 世界地质,2002,21(1): 33~38
    [8] Thomas Anders Evans, B.S.M.E., et al. M.S.E. A spatial and statistical assessment of vulnerability of Texas groundwater to nitrate contamination.
    http://civil.ce.utexas.edu/centers/crwr/reports/online.html
    [9] Gogu R C, Dassargues A. Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental Geology. 2000, 39(6):549-559
    [10] Lasserre F, Razack M, Banton O. A GIS-linked model for the assessment of nitrate contamination in groundwater. Journal of Hydrology. 1999, 224:81-90
    [11] Michael R, Burkart, Dana W, Kolpin, et al. Assessing groundwater vulnerability to agrichemical contamination in the midwest U.S. Wat. Sci. Tech. 1999, 39(3):103-112
    [12] 蒋益平. 一种新的水文地质图件——地下水易污性图简介. 世界地质,1996,15(3): 71~73
    [13] 杨庆,栾茂田. 地下水易污性评价方法——DRASTIC指标体系. 水文地质工程地质,1999,(2): 4~9
    [14] Todd G Fritch, Cleavy L Mcknight, Joe C Yelderman. An aquifer vulnerability assessment of the Paluxy aquifer, central Texas, USA, using GIS and modified DRASTIC approach. Environmental Management. 2000, 25(3):337-345
    
    
    [15] Rupert M G. Calibration of the DRASTIC ground water vulnerability mapping method. Ground Water. 2001, 39(4):625-630
    [16] Tim U Sunday, Jain Dharmesh, Liao Hsiu-Huka. Interactive modeling of ground-water vulnerability within a geographic information system environment. Ground Water. 1996, 34(4):618-627
    [17] Loague Keith, Bernknopf R L, Green R E, et al. Uncertainty of groundwater vulnerability assessment for agricultural regions in Hawaii: Review. J. Environ. Qual. 1996, 25:475-490
    [18] Anthony J Tesoriero, Frank D Voss. Predicting the probability of elevated nitrate concentrations in the Puget Sound Basin: Implication for aquifer susceptibility and vulnerability. Ground Water. 1997, 36(5):1029-1039
    [19] Bates L E, Barber C and Otto C J. Aquifer vulnerability mapping using GIS and Bayesian Weights of Evidence: Review of application. In: Hydro GIS'96, 1996. 7~14
    [20] Alberti L, De Amicis M, Masetti M, et al. Bayes' rule and GIS for evaluating sensitivity of groundwater to contamination. In: IAMG Annual Conference, 2001
    [21] Soutter Marc, Musy Andre. Coupling 1D Monte-Carlo simulations and geostatistics to assess groundwater vulnerability to pesticides contamination on a regional scale. Journal of Contaminant Hydrology. 1998, 32:25-39
    [22] 杨庆,栾茂田,崇金著等. DRASTIC指标体系法在大连市地下水易污性评价中的应用. 大连理工大学学报,1999,35(9): 684~688
    [23] 姜志群,朱元生. 地下水污染敏感性评价中DRASTIC法的应用. 河海大学学报,2001,29(2): 100~103
    [24] 付素蓉,王焰新,蔡鹤生等. 城市地下水污染敏感性分析. 地球科学——中国地质大学学报,2000,25(5): 482~486
    [25] 刘淑芳,郭永海. 区域地下水防污性能评价方法及其在河北平原的应用. 河北地质学院学报,1996,19(1): 41~45
    [26] 陈守煜,伏广涛,周惠成等. 含水层脆弱性模糊分析评价模型与方法. 水利学报,2002,(7):23~30
    [27] 王国利,周惠成,杨庆. 基于DRASTIC的地下水易污染性多目标模糊模式识别模型. 水科学进展,2002,11(2):173~179
    [28] 林山杉,武健强,张勃夫. 地下水环境脆弱程度图编图方法研究. 水文地质工程地质,2000,(3):6~8
    
    
    [29] 马金珠. 塔里木盆地南缘地下水脆弱性评价. 中国沙漠,2001,21(2):170~174
    [30] 蔡道基,朱忠林,单正军等. 涕灭威对地下水污染敏感区的预测与区划试点. 环境科学进展,1995,3(1):11~37
    [31] 朱忠林,单正军,华晓梅等. 涕灭威农药污染地下水的影响因子分析. 农村生态环境(学报),1994,10(1):25~28
    [32] 董亮. GIS支持下西湖流域水环境非点源污染研究:[博士学位论文]. 杭州:浙江大学,2001
    [33] Aller L, Bennet T, Lehr J H, et al. DRASTIC: A standardised system for evaluating ground water pollution potential using hydrogeologic settings. USEPA Report 600/2-87/035, 1987
    [34] Yvonne J Meeks, Member, ASCE, et al. Evaluating groundwater vulnerability to pesticides. Journal of Water Resources Planning and Management. 1990, 116(5):693-707
    [35] Shukla S, Mostaghimi S, Shanholtz V O, et al. A GIS-based modeling approach for evaluating groundwater vulnerability to pesticides. Journal of the American Water Resources Association. 1998, 34(6):1275-1293
    [36] Bonham-Carter G F, Agterberg F P, Wright D F. Weights of evidence modelling: a new approach to mapping mineral potential. Geological Survey of Canada, Paper89/9, 1989, 171-183
    [37] Agterberg F P, Bonham-Carter G F, Wright D F. Statistical pattern integration for mineral exploration. In: Gaal, Gabor and Merriam, Daniel F, eds. Computer application in resources estimation prediction and assessment for metal and petroleum, Pergamon Press, Oxford, 1990
    [38] Harris J R, Wilkinson L, Heather K, et al. Application of GIS processing techniques for producing mineral prospectivity maps- a case study: Mesothermal Au in the Swayze Greenstone Belt, Ontario, Canada. Natural Resources Research, 2001, 10(2):91-124
    [39] 韩邵阳. 以ArcView3.2为平台的砂岩铀矿勘查信息系统的研制及应用:[硕士学位论文]. 北京:核工业北京地质研究院,2001
    [40] Kemp, L D, Bonham-Carter G F, Raines G L. Arc-WofE: Arcview extension for weights of evidence mapping. 1999
    http://ntserv.gis.nrcan.gc.ca/wofe
    Barber C, Bates L E, Barron R, et al. Comparison of standardized and region-specific methods for assessment of the vulnerability of groundwater to pollution: a case study in an agricultural catchment. In:
    
    [41] Shallow Groundwater System, Volume 18, International Contribution to Hydrogeology. Verlag Heinz Heise, Hannover, 1996
    [42] Kemp L D, Bonham-Carter G F, Raines G L, et al. Arc-SDM: Arcview extension for spatial data modelling using weights of evidence, logistic regression, fuzzy logic and neural network analysis. 2001
    http://ntserv.gis.nrcan.gc.ca/sdm
    [43] 沈子寅. 海河流域水资源保护管理信息系统的研究:[硕士学位论文]. 北京:清华大学水利系,2000
    [44] 张思聪,沈子寅. 唐山平原区地下水硝酸盐污染变化趋势的研究. 水力发电学报,2002,(1):68~75
    [45] 水利部海河水利委员会,清华大学水利系,河北省唐山市水利局. 唐山市平原区区域地下水水量模型与水质模型研究. 1999
    [46] 唐山市农业区划办公室. 唐山市综合农业区划图集. 1986
    [47] 河北省地质局水文地质工程地质大队. 冀东平原农田供水水文地质勘查报告. 1983
    [48] Kool J B, Van Genuchten M Th. HYDRUS, One-dimensional variably saturated flow and transport model, Including hysteresis and root water uptake, Version 3.4. International Groundwater Modeling Center, 1992
    [49] 吴聿明. 环境统计学. 中国环境科学出版社,1991
    [50] 应农根,刘幼慈. Pij主成分-因子分析赋权研究. 中国环境科学,1987,7(5):65~69
    [51] 王学仁、王松桂编译. 实用多元统计分析. 上海:上海科学技术出版社,1990
    [52] Joseph Domagalski, Lin Chao, Zhou Xinquan, et al. Comparative water quality assessment in the Hai River Basin, People's Republic of Chian, the Delmarva Peninsula, Delaware, Maryland, and Virginia, the San Joaquin Valley, California, and the Sacramento Valley, California. U.S Geological Bureau and Hai River Water Resources Protection Bureau, China. 1999
    [53] 国家环境保护局科技标准司编. 水环境标准工作手册. 1997
    [54] 北京市水利局. 北京市水资源公报. 2000,2001
    [55] 惠士博, 张思聪, 谢森传. 北京市城市雨水利用
    http://www.tjwcb.gov.cn/lwfb/yth6.htm
    [56] 郑桂森,吕金波. 北京地区的水资源. 中国地质,2001,28(4):45~48
    [57] 北京市农业区划委员会办公室编. 北京市农业资源与区划图集. 北京:测绘出版社,1988
    
    
    [58] 纪玉杰. 北京城郊的地面沉降成因浅析. 北京地质,1993,(3):15~19
    [59] 汪慧贞,李宪法. 北京城区雨水入渗设施的计算方法. 中国给水排水,2001,17(11):37~39
    [60] Pitt Robert, Clark Shirley, Field Richard. Groundwater contamination potential from stormwater infiltration practices. Urban Water. 1999, 1(3):217-236

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700