生物炭技术缓解温室气体排放的潜力评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物炭(Biochar)是一种富含碳的产品,是生物质原料在无氧或缺氧的条件通过热转化过程(<700°C)而得到的一种细粒度、多孔性的碳质材料。生物炭因其在土壤改良、缓解温室效益等方面具有的巨大潜力成为目前研究的热点问题,并取得了大量的研究成果。本文将对生物炭技术缓解我国温室气体排放的潜力进行评估,同时对生物炭生产和应用过程中的能源投入、产出情况进行分析,以考察该技术的应用对于缓解我国温室气体排放压力和改善能源结构方面的潜力。同时,经济因素是一项新兴技术被接受和广泛应用的基础因素,因此本文还对生物炭技术生产和应用过程的经济可行性进行了分析。最后,基于上述评估、分析的基础上,利用SWOT(是指Strength:优势、Weakness:弱点、Opportunity:机遇和Threat:挑战四个单词的首字母缩写)方法对我国发展和应用生物炭技术的前景进行系统、全面的分析。本文的研究结果期望能够为我国缓解温室气体排放、改善能源结构提供一条可行的途径,为废弃生物质资源的资源化利用提供一种有效的技术手段。同时,还期望能够为我国发展和应用生物炭技术提供科学的数据和理论支持。本文的主要研究结果如下:
     (1)通过对生物炭技术固碳、减排主要途径的探讨,可知固碳、减排途径主要包括以下几个方面:生物炭自身的碳封存潜力;可再生能源生产取代化石能源而获得的减排潜力;作物生物量增加而从大气中吸收更多的CO_2;抑制农业土壤中N2O的排放;减少化肥使用量而获得的减排潜力;减少土壤有机碳(SOC)分解而获得的减排潜力。
     (2)通过建立生命周期(LCA,Life CycleAssessment)评估模型,对不同生物质原料的生物炭生产及应用的全生命周期过程的温室气体和能源平衡情况进行定量分析。研究结果表明:农业、林木、家畜粪便和城市有机废弃物的温室气体平衡(以CO_(2e)计,CO_(2e)为CO_2当量)依次为-829.30、-1105.83、-742.37、-1953.70kg t-1原料,都表现出积极的固碳、减排效果;从生命周期阶段来看,前三种原料的固碳、减排潜力最大的是生物炭的土壤封存和能源生产抵消化石能源使用获得的减排,生物炭在农业生产应用过程中获得的潜力相对较小,而城市有机废弃物最大减排量是避免原处理过程产生的CH4排放;四种原料的能源生产潜力依次为334.06、-512.80、466.12、544.47MJ t~(-1)原料,林木原料由于在收集阶段需要消耗大量的能源,因此使得整个过程的能量平衡表现出净负的结果;从生命周期阶段来看,能源投入的主要阶段为生物炭田间施用、原料收集和运输三个阶段(合计的能量投入超过了总能量投入的90%以上)。
     (3)在对不同原料的生物炭温室气体和能源平衡的生命周期分析结果的基础上,结合对我国四种生物质资源的可持续利用总量的调查,计算了我国利用生物炭技术能够获得的缓解温室气体排放和能量生产潜力。研究结果表明:我国四种生物质资源总量为23.14×10~8t,可持续用于生物炭生产的总量为14.02×10~8t;在上述资源背景下,我国能够获得的缓解温室气体排放总潜力为12.70×10~8t,相当于我国2005年温室气体排放总量的17%;我国能够获得的可再生能源潜力为49.50×10~(10)MJ,相当于13.75×10~(10)kWh。可见,生物炭技术对于同时缓解我国温室气体排放和改善能源结构具有巨大的潜力。
     (4)经济性是影响一项新兴技术被接受和广泛应用的重要基础,因此在本研究中还对生物炭技术应用的经济可行性进行了分析。研究结果表明:碳减排市场交易价格和生物炭施用周期是影响生物炭技术应用经济可行性的两个重要因素。在低碳减排价格下,大部分原料(除城市有机废弃物外)生物炭都具有正的生产成本,在此情景确定的生物炭价格,农民应用生物炭除了在长的施用周期(10年)外,其它施用周期时都表现出负的经济效益;而在高减排价格下,生物炭的生产成本都呈负的(除了林木生物炭),在此情景确定的生物炭价格下,农民应用生物炭在任何施用周期具有积极的经济效益产出;利用城市有机废弃物为原料,在评估的任何情景中都表现出较大的经济潜力。根据本次经济分析的结果可知,随着未来温室气体排放压力的不断增大,碳减排价格必将升高,从而生物炭技术应用的经济吸引力也将逐步提高。另外,通过加强长期试验研究,选择一个合适的生物炭施用周期,对于解决目前生物炭应用过程中存在的经济问题也具有重要意义。
     (5)最后本研究利用SWOT(方法对我国发展和应用生物炭技术的前景进行了系统全面的分析。通过分析可知:生物炭技术在固碳、减排、农业生产、可更新能源生产、抑制农业源污染、潜在经济吸引力和我国拥有丰富的生物质资源等方面具有显著的优势,而在可依靠的技术基础和研发水平、资金投入渠道少、生物质资源时空分布的差异性和生物炭应用预期效益的不稳定等方面存在一定的弱势;同时外部环境还为该技术带来了多方面的机遇和挑战:机遇表现在对减少农业源温室气体排放、缓解农业源污染和土壤酸化、加强可更新能源、降低农业生产成本和提高农民收入等方面的需求,挑战表现生物炭应用的不可逆性、碳减排评估和认证机制的缺失、面临与生物质能源之间的竞争、相关政策研究和制定的落后等多方面挑战。总体的研究表明,生物炭技术在我国的发展具有广阔的前景。
Biochar is a carbon-rich, fine-grained and porous product, which is produced bypyrolysis of organic materials under limited supply of oxygen and at relatively lowtemperatures (<700°C). Because of its potential in soil amelioration and mitigation ofgreenhouse gas (GHG) emissions, biochar has become a hot topic in many researchfields. In this thesis, The potential of biochar technology in mitigating GHG emissionswas assessed. Meanwhile, the energy input and output in biochar production was alsoanalysed. Based on these results, the potential of biochar technology in mitigating thepressure from GHG emissions and improving the energy structure for our country wasinvestigated. Moreover, economics is a fundamental factor for a new technology thatis accepted and widely used in the initial stadges. Therefore, an economic analysis forbiochar’s production and application was conducted. Finally, the prospect ofdevelopment and application of biochar technology in our country was analyzed usingthe SWOT (Abbreviation of four words: Strength, Weakness, Opportunities andThreat) method. The results of this study are hoped to provide a feasible way tomitigate GHG emissions, improve energy structure and provide an effectivetechnology for utilizing the waste biomass resources. In the meanwhile, scientific dataand theoretical support would be provided in development and application of biochartechnology. The main results of this study are as following:
     (1) The ways of carbon sequestration and GHG abatementusing biochar havebeen explored, including the following aspects: the carbon stored in biochars; theGHG abatement from renewable energy production, which can be alternative forfossil fuel; the carbon sequestration from increased biomass, which may absorb moreCO_2from atmosphere through photosynthesis; the abatement from reduction of soilN2O emissions; the GHG abatement from the reduced demand for synthetic fertilizers;the GHG abatement from suppressing soil organic carbon decomposition.
     (2) The balances of GHG and energy of biochar technology were quantitativeanalysis using LCA method. The balance of GHG for biochar production from crop residues, forest residues, livestock excrement and municipal organic waste are-829.30,-1105.83,-742.37and~(-1)953.70kg CO_(2e) t~(-1)biomass, respectively, all showthe positive results. For crop residues, forest residues and livestock excrement, thegreatest contribution to carbon abatement is carbon sequestration in biochars, and thenext largestproportionis renewable energy production and fossil fuel offset,agricultural effects of biochar application show a relatively smaller amount. For themunicipal organic waste, the greatest contribution to carbon abatement is reduction ofCH4emission. The net energy production for these four feedstocks are334.06,-512.80,466.12,544.47MJ t~(-1)biomass, respectively. The forest residues shows anegative result because of the collection stage, which would consume a lot of energy.The main processes of energy input for all feedstocks in biochar technology are theprocesses of biochar application into field, feedstock collection and transport, totallyaccounting for90%of total energy input.
     (3) Based on the LCA results of biochar carbon abatement and energy production,combining with the survey of the potential in biomass sustainable utilization in ourcountry, the carbon abatement and energy production potential of biochar applicationwas assessed. The total amount of biomass resource for these four feedstocks in Chinaare23.14×10~8t, and thesustainable utilization potential are14.02×10~8t. In thisresources background, the total carbon sequestration and abatement are12.70×10~8t,equivalent to17%of total GHG emissionsin China in2005. The total renewableenergy production are49.50×10~(10)MJ, equivalent to13.75×10~(10)kWh. Therefore, itmay conclude that biochar technology has high potential to mitigate China’s GHGemissions and improve the structure of energy supply.
     (4) The economic feasibility of biochar technology was also explored. Theresults demonstrate that the price of carbon abatement in the carbon trade market andthe cycle of biochar application are the critical factors to the economic feasibility ofbiochar technology. In the context of low carbon abatement price, most of biocharsfrom different materials have a plus production cost, and then farmers employ thebiochar in this scenario will obtain negative economic profits when the applied cycleis lower than ten years. In the contrary, at high carbon abatement price, excluding forest residues biochar, other three biochars may obtain negative production cost, andthen in this scenario farmers employ biochars have positive economic profits in everyapplied cycle. Employing municipal organic waste in biochar production may bring abigger economic potential than any other feedstocks. According to these results, wemay conclude that, with increasing pressure of GHG emissions in future, the carbonabatement price and the economically attractive of biochar technology will increase.Additional, choosing a suitable biochar applied cycle through strengthening thelong-term research also may improve the economic performance of biochartechnology.
     (5) The prospects of biochar technology in China was also employed usingSWOT analysis method. The results reviewed and assessed the factors of strengths,weaknesses, opportunities, and threats of biochar technology. The strengths of biocharincluded the potential in carbon abatement, agricultural production, renewable energyproduction, inhibiting the pollution from agricultural sources, and high economicattractiveness. Abundant biomass resources in China is also the significant strengthfor biochar technology. The weaknesses of biochar can be listed as follow: the relativelow level of the reliable technology base and research, less funding channels,differences in spatial and temporal distribution of biomass resources, and instability ofthe expected benefits. In addition to the internal factors of biochar technology, theexternal environment also brings opportunities and threats to biochar technology. Thedemand for reducing agricultural sources of greenhouse gas emissions and pollution,easing soil acidification, strengthening renewable energy, reducing the cost ofagricultural production, increasing farmers’ income are the opportunities to biochar.The threats of biochar included: irreversibility of biochar application, lacking ofassessment and certification mechanism of carbon emission reduction, competitionbetween facing biomass energy, backward of related policy research and establishment. The overall studies show that biochar technology has broad prospectsin the development of our country.
引文
[1] IPCC, Climate change2007[R]: The physical science basis,2007: Geneva, Switzerland.
    [2] Lehmann J, Biological carbon sequestration must and can be a win-win approach [J]. ClimaticChange,2009.97(3-4):459-463.
    [3] Lal R, Soil carbon sequestration to mitigate climate change [J]. Geoderma,2004.123(1-2):1-22.
    [4] Glaser, Balashov, Haumaier, Guggenberger, et al., Black carbon in density fractions ofanthropogenic soils of the Brazilian Amazon region [J]. Organic Geochemistry,2000.31(7-8):669-678.
    [5] Glaser B, Haumaier G, Guggenberger, et al., The 'Terra Preta' phenomenon: a model forsustainable agriculture in the humid tropics [J]. Naturwissenschaften,2001.88(1):37-41.
    [6] Lehmann J, Gaunt J, Rondon M, Bio-char Sequestration in Terrestrial Ecosystems–A Review[J]. Mitigation and Adaptation Strategies for Global Change,2006.11(2):395-419.
    [7] Lehmann J, Black Is The New Green [J]. Nature.,2006.442(10):624-626.
    [8] Lehmann J, A handful of carbon [J]. Nature,2007.447(7141): p.143-144.
    [9] Sohi S, Lopez-Capel E, Krull E, et al., Biochar, climate change and soil a review to guidefuture research [R]. CSIRO Land and Water Science Report series,2009.
    [10] Lehmann J, Joseph S, Biochar for environmental management: An introduction [M]. InBiochar for environmental management science and technology, J. Lehmann and S. Joseph,Editors.2009, Earthscan: London.1-12.
    [11] Schahczenski, Biochar and Sustainable Agriculture [R].2010NCAT,2010.
    [12] Manya J J, Pyrolysis for biochar purposes: a review to establish current knowledge gaps andresearch needs [J]. Environmental Science and Technology,2012.46(15):7939-54.
    [13] Barrow C J, Biochar: Potential for countering land degradation and for improving agriculture[J]. Applied Geography,2012.34:21-28.
    [14] Downie A, Crosky A, Munroe P, Physical Properties of Biochar [M]. In Biochar forenvironmental management science and technology, J. Lehmann and S. Joseph, Editors.2009,Earthscan: London.13-32.
    [15] Verheijen F S, Jeffery A C, Bastos, et al., Biochar Application to Soils-A Critical ScientificReview of Effects on Soil Properties, Processes and Functions [R]. JRC Scientific andTechnical Report.2010.
    [16] Brown R, Biochar Production Technology [M]. In Biochar for environmental managementscience and technology, J. Lehmann and S. Joseph, Editors.2009, Earthscan: London.127-146.
    [17] Yuan J-H, Xu R-K, Zhang H, The forms of alkalis in the biochar produced from crop residuesat different temperatures [J]. Bioresource Technology,2011.102(3):3488-3497.
    [18] Mukherjee A, Zimmerman A R, Harris W, Surface chemistry variations among a series oflaboratory-produced biochars [J]. Geoderma,2011.163(3-4):247-255.
    [19] Lehmann J, Czimczik C, Laird D, et al., Stability of Biochar in the Soil [M]. In Biochar forenvironmental management science and technology, J. Lehmann and S. Joseph, Editors.2009,Earthscan: London.183-205.
    [20] Zimmerman A R, Abiotic and Microbial Oxidation of Laboratory-Produced Black Carbon(Biochar)[J]. Environmental Science and Technology,2010.44(4):1295-1301.
    [21] Cheng C-H Lehmann J, Ageing of black carbon along a temperature gradient [J].Chemosphere,2009.75(8):1021-1027.
    [22] Major J, Lehmann J, Rondon M, et al., Fate of soil-applied black carbon: downwardmigration, leaching and soil respiration [J]. Global Change Biology,2010.16(4):1366-1379.
    [23] Spokas K A, Review of the stability of biochar in soils: predictability of O:C molar ratios [J].Carbon Management,2010.1(2):289-303.
    [24] Lehmann J, Bio-energy in the black [J]. Frontiers in Ecology and the Environment,2007.5(7):381-387.
    [25] Jeffery S, Verheijen F G A, van der Velde M, et al., A quantitative review of the effects ofbiochar application to soils on crop productivity using meta-analysis [J]. Agriculture,Ecosystems and Environment,2011.144(1):175-187.
    [26] Atkinson C J, Fitzgerald J D, and Hipps N A, Potential mechanisms for achieving agriculturalbenefits from biochar application to temperate soils: a review [J]. Plant and Soil,2010.337(1-2):1-18.
    [27] Liang B, Lehmann J, Solomon D, et al., Black carbon increases cation exchange capacity insoils [J]. Soil Sci Soc Am J,2006.70(5):1719-1730.
    [28] Steiner C, Teixeira W, Lehmann J, et al., Long term effects of manure, charcoal and mineralfertilization on crop production and fertility on a highly weathered Central Amazonian uplandsoil [J]. Plant and Soil,2007.291(1):275-290.
    [29]袁金华,徐仁扣,稻壳制备的生物质炭对红壤和黄棕壤酸度的改良效果[J].生态与农村环境学报,2010.26(05):472-476.
    [30] Steiner C, Glaser B, Geraldes Teixeira W, et al., Nitrogen retention and plant uptake on ahighly weathered central Amazonian Ferralsol amended with compost and charcoal [J].Journal of Plant Nutrition and Soil Science,2008.171(6):893-899.
    [31] Blackwell P, Krull E, Butler G, et al., Effect of banded biochar on dryland wheat productionand fertiliser use in south-western Australia: an agronomic and economic perspective [J].Australian Journal of Soil Research,2010.48(7):531-545.
    [32] Yoder J, Galinato S, Granatstein D, et al., Economic tradeoff between biochar and bio-oilproduction via pyrolysis [J]. Biomass and Bioenergy,2011.35(5):1851-1862.
    [33] Roberts K G, Gloy B A, Joseph S, Scott, and Lehmann, Life Cycle Assessment of BiocharSystems: Estimating the Energetic, Economic, and Climate Change Potential [J].Environmental Science and Technology,2010.44(2):827-833.
    [34] Pratt K, Moran D, Evaluating the cost-effectiveness of global biochar mitigation potential [J].Biomass and Bioenergy,2010.34(8):1149-1158.
    [35] Ji L, Wan Y, Zheng S, et al., Adsorption of tetracycline and sulfamethoxazole on cropresidue-derived ashes: implication for the relative importance of black carbon to soil sorption[J]. Environmental Science and Technology,2011.45(13):5580-6.
    [36] Sun K, Gao B, Ro K S, et al., Wang, Herbert, and Xing, Assessment of herbicide sorption bybiochars and organic matter associated with soil and sediment [J]. Environmental Pollution,2012.163:167-73.
    [37] Yang Y, Sheng G, Enhanced Pesticide Sorption by Soils Containing Particulate Matter fromCrop Residue Burns [J]. Environmental Science and Technology,2003.37(16):3635-3639.
    [38] Zheng W, Guo M, Chow T, et al., Sorption properties of greenwaste biochar for two triazinepesticides [J]. Journal of Hazardous Materials,2010.181(1-3):121-126.
    [39]陈宝梁,周丹丹,朱利中等,生物碳质吸附剂对水中有机污染物的吸附作用及机理[J].中国科学(B辑:化学),2008.38(6):530~537.
    [40] Spokas K A, Koskinen W C, Baker J M, et al., Impacts of woodchip biochar additions ongreenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil [J].Chemosphere,2009.77(4):574-581.
    [41] Wang T-T, Cheng X-J, Liu, et al., Effect of biochar amendment on the bioavailability ofpesticide chlorantraniliprole in soil to earthworm [J]. Ecotoxicology and EnvironmentalSafety,2012.83(0):96-101.
    [42] Park J, Choppala G, Bolan N, et al., Biochar reduces the bioavailability and phytotoxicity ofheavy metals [J]. Plant and Soil,2011.384(1-2):439-451.
    [43] Uchimiya M, Lima I M, Thomas Klasson K, et al., Immobilization of Heavy Metal Ions (CuII,CdII, NiII, and PbII) by Broiler Litter-Derived Biochars in Water and Soil [J]. Journal ofAgricultural and Food Chemistry,2010.58(9):5538-5544.
    [44] Cao X, Ma L, Gao B, et al., Dairy-Manure Derived Biochar Effectively Sorbs Lead andAtrazine [J]. Environmental Science and Technology,2009.43(9):3285-3291.
    [45] Shackley S, Hammond J, Gaunt J, et al., The feasibility and costs of biochar deployment inthe UK [J]. Carbon Management,2011.2(3):335~356.
    [46] Thomas H D, MacKenzie M D, Gundale M J, Biochar Effects on Soil NutrientTransformations [M]. In Biochar for environmental management science and technology, J.Lehmann and S. Joseph, Editors.2009, Earthscan: London.251-270.
    [47] Ma ek O, Budarin V, Gronnow M, et al., Microwave and slow pyrolysisbiochar—Comparison of physical and functional properties [J]. Journal of Analytical andApplied Pyrolysis,2013.100:41-48.
    [48] Macquarrie D J, Clark J H, Fitzpatrick E, The microwave pyrolysis of biomass. Biofuels [J],Bioproducts and Biorefining,2012.6(5):549-560.
    [49] Woolf D, Amonette J E, Street-Perrott F A, et al., Sustainable biochar to mitigate globalclimate change [J]. Nature Communication,2010.1(56):1-9.
    [50] Hammond J, Shackley S, Sohi S, et al., Prospective life cycle carbon abatement for pyrolysisbiochar systems in the UK [J]. Energy Policy,2011.39(5):2646-2655.
    [51] Zhang A, Liu Y, Pan G, et al., Effect of biochar amendment on maize yield and greenhousegas emissions from a soil organic carbon poor calcareous loamy soil from Central ChinaPlain [J]. Plant and Soil,2011.351(1-2):263-275.
    [52] Wang J, Pan X, Liu Y, et al., Effects of biochar amendment in two soils on greenhouse gasemissions and crop production [J]. Plant and Soil,2012.360(1-2):287-298.
    [53] Cao X, Ma L, Liang Y, et al., Simultaneous Immobilization of Lead and Atrazine inContaminated Soils Using Dairy-Manure Biochar [J]. Environmental Science and Technology,2011.45(11):4884-4889.
    [54]张阿凤,程琨,潘根兴等,秸秆生物黑炭农业应用的固碳减排计量方法学探讨[J].农业环境科学学报,2011.30(9):1811~1815.
    [55] Matovic D, Biochar as a viable carbon sequestration option: Global and Canadian perspective[J]. Energy,2011.36(4):2011-2016.
    [56] Gaunt J, Cowie A, Biochar, Greenhouse Gas Accounting and Emissions Trading [M]. InBiochar for environmental management science and technology, J. Lehmann and S. Joseph,Editors.2009, Earthscan: London.317-340.
    [57] Gaunt J, Lehmann J, Energy Balance and Emissions Associated with Biochar Sequestrationand Pyrolysis Bioenergy Production [J]. Environmental Science and Technology,2008.42(11):4152-4158.
    [58] Brown T R, Wright M M, Brown R C, Estimating profitability of two biochar productionscenarios: slow pyrolysis vs fast pyrolysis [J]. Biofuels, Bioproducts and Biorefining,2011.5(1):54-68.
    [59] Van Zwieten L, Kimber S, Downie A, Sinclair, Joseph, and Chan, Agro-economic valuationof biochar using field-derived data [R],2009: Gold Coast, Australia.
    [60] Chan K Y, Van Zwieten L, Meszaros L, et al., Agronomic values of greenwaste biochar as asoil amendment [J]. Australian Journal of Soil Research,2007.45(8): p.629-634.
    [61] IPCC, Climate Change2007: The Physical Science Basis [R]. Geneva, Switzerland: Geneva,Switzerland IPCC,2007.
    [62]曹国良,张小曳,郑方成等,中国大陆秸秆露天焚烧的量的估算[J].资源科学,2006.28(1):9-13.
    [63]董红敏,李玉娥,陶秀萍等,中国农业源温室气体排放与减排技术对策[J].农业工程学报,2008.24(10):269-273.
    [64]李秀芬,朱金兆,顾晓君等,农业面源污染现状与防治进展[J].中国人口资源与环境,2010.20(4): p.81~84.
    [65] Guo J H, Liu X J, Zhang Y, et al., Significant Acidification in Major Chinese Croplands [J].Science,2010.327(5968):1008-1010.
    [66] Sutherland W J, Clout M, C téI M, et al., A horizon scan of global conservation issues for2010[J]. Cell: Trends in Ecology and Evolution,2010.25(1):1-7.
    [67] Downie A, Munroe P, Cowie A, et al., Biochar as a Geoengineering Climate Solution: HazardIdentification and Risk Management [J]. Critical Reviews in Environmental Science andTechnology,2011.42(3):225-250.
    [68] Cowie A L, Downie A E, George B H, et al., Is sustainability certification for biochar theanswer to environmental risks?[J]. Pesquisa Agropecuária Brasileira,2012.47:637-648.
    [69] Atkinson C, Fitzgerald J, Hipps N, Potential mechanisms for achieving agricultural benefitsfrom biochar application to temperate soils: a review [J]. Plant and Soil,2010.337(1):1-18.
    [70] Asai H, Samson B K, Stephan H M, et al., Biochar amendment techniques for upland riceproduction in Northern Laos:1. Soil physical properties, leaf SPAD and grain yield [J]. FieldCrops Research,2009.111(1-2):81-84.
    [71] Antal M J, Gronli M, The art, science, and technology of charcoal production [J]. Industrialand Engineering Chemistry Research,2003.42(8):1619-1640.
    [72] Yang H, Yan R, Chen H, et al., Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel,2007.86(12-13):1781-1788.
    [73] Yaman S, Pyrolysis of biomass to produce fuels and chemical feedstocks [J]. EnergyConversion and Management,2004.45(5):651-671.
    [74] Singh B, Singh B P, and Cowie A L, Characterisation and evaluation of biochars for theirapplication as a soil amendment [J]. Australian Journal of Soil Research,2010.48(7):516-525.
    [75] Demirbas A, Effects of temperature and particle size on bio-char yield from pyrolysis ofagricultural residues [J]. Journal of Analytical and Applied Pyrolysis,2004.72(2):243-248.
    [76] Laird D A, Brown R C, Amonette J E, et al., Review of the pyrolysis platform forcoproducing bio-oil and biochar [J]. Biofuels, Bioproducts and Biorefining,2009.3(5):547-562.
    [77] Shrestha G, Traina S, Swanston C, Black Carbon's Properties and Role in the Environment: AComprehensive Review [J]. Sustainability,2010.2(1):294-320.
    [78] Cheng C-H, Lehmann J, Thies J E, et al., Oxidation of black carbon by biotic and abioticprocesses [J]. Organic Geochemistry,2006.37(11):1477-1488.
    [79] Nguyen B T, Lehmann J, Black carbon decomposition under varying water regimes [J].Organic Geochemistry,2009.40(8):846-853.
    [80] Nguyen B T, Lehmann J, Hockaday W C, et al., Temperature Sensitivity of Black CarbonDecomposition and Oxidation [J]. Environmental Science and Technology,2010.44(9):3324-3331.
    [81] Hilscher A, Heister K, Siewert C, et al., Mineralisation and structural changes during theinitial phase of microbial degradation of pyrogenic plant residues in soil [J]. OrganicGeochemistry,2009.40(3):332-342.
    [82] Kuzyakov Y, Subbotina L, Chen H, et al., Black carbon decomposition and incorporation intosoil microbial biomass estimated by14C labeling [J]. Soil Biology and Biochemistry,2009.41(2):210-219.
    [83] Zavalloni C, Alberti G, Biasiol S, et al., Microbial mineralization of biochar and wheat strawmixture in soil: A short-term study [J]. Applied Soil Ecology,2011.50:45-51.
    [84] Skjemstad J O, Janik L J, Taylor J A, Non-living soil organic matter: what do we know aboutit?[J]. Australian Journal of Experimental Agriculture,1998.38(7):667-680.
    [85] Schmidt M W I, Noack A G, Black carbon in soils and sediments: Analysis, distribution,implications, and current challenges [J]. Global Biogeochem. Cycles,2000.14(3):777-793.
    [86] Uzoma K C, Inoue M, Andry H, et al., Effect of cow manure biochar on maize productivityunder sandy soil condition [J]. Soil Use and Management,2011.27(2):205-212.
    [87] Bruun S, EL-Zehery T, Biochar effect on the mineralization of soil organic matter [J].Pesquisa Agropecuária Brasileira,2012.47:665-671.
    [88] Lehmann J, Sohi S, Comment on Fire-Derived Charcoal Causes Loss of Forest Humus [J].Science,2008.321(5894):1295.
    [89] Silber A, Levkovitch I, Graber E R, pH-dependent mineral release and surface properties ofcornstraw biochar: agronomic implications [J]. Environmental Science and Technology,2010.44(24):9318-23.
    [90] Vaccari F P, Baronti S, Lugato E, et al., Biochar as a strategy to sequester carbon and increaseyield in durum wheat [J]. European Journal of Agronomy,2011.34(4):231-238.
    [91] Suh S, Lenzen M, Treloar G J, et al., System Boundary Selection in Life-Cycle InventoriesUsing Hybrid Approaches [J]. Environmental Science and Technology,2003.38(3):657-664.
    [92]李树君,杨炳南,王俊友等,主要农作物秸秆收集技术发展[J].农业机械,2008.(16):23-26.
    [93]赵黛青,中国可再生能源规模化发展项目,“基于农林类生物质资源发电技术的全生命周期综合评价”的咨询服务[R].2009,中国科学院广州能源研究所:广州.
    [94] Zhao Z, Yan H, Assessment of the biomass power generation industry in China [J].Renewable Energy,2012.37(1):53-60.
    [95] Yanli Y, Peidong Z, Wenlong Z, et al., Quantitative appraisal and potential analysis forprimary biomass resources for energy utilization in China [J]. Renewable and SustainableEnergy Reviews,2010.14(9):3050-3058.
    [96]刘刚,沈镭,中国生物质能源的定量评价及其地理分布[J].自然资源学报,2007.22(1):9~19.
    [97]侯坚,张培栋,张宝茸等,中国林业生物质能源资源开发利用现状与发展建议[J].可再生能源,2009.27(6):113~117.
    [98] Whittaker C, Mortimer N, Murphy R, et al., Energy and greenhouse gas balance of the use offorest residues for bioenergy production in the UK [J]. Biomass and Bioenergy,2011.35(11):4581-4594.
    [99]贾传兴,彭绪亚,刘国涛等,城市垃圾中转站选址优化模型的建立及其应用[J].环境科学学报,2006.26(11):1927-1931.
    [100] McCarl B A, Peacocke C, Chrisman R, et al., Economics of Biochar Production, Utilizationand Greenhouse Gas Offsets [M]. In Biochar for environmental management science andtechnology, J. Lehmann and S. Joseph, Editors.2009, Earthscan: London.341-357.
    [101]刘俊伟,田秉晖,张培栋等,秸秆直燃发电系统的生命周期评价[J].可再生资源,2009.27(5):102~106.
    [102]贾顺平,毛保华,刘爽等,中国交通运输能源消耗水平测算与分析[J].交通运输系统工程与信息,2010.10(1):22-27.
    [103]贺成龙,吴建华,刘文莉,水泥生态足迹计算方法[J].生态学报,2009.29(7):3549-3558.
    [104]杨建新,刘炳江,中国钢材生命周期清单分析[J].环境科学学报,2002.22(4):519-522.
    [105]丁宁,高峰,王志宏等,原铝与再生铝生产的能耗和温室气体排放对比[J].中国有色金属学报,2012.22(10):2908-2915.
    [106] Antal M J, Allen X, Dai X, et al., Attainment of the Theoretical Yield of Carbon fromBiomass [J]. Industrial and Engineering Chemistry Research,2000.39(11):4024-4031.
    [107] Meyer S, Glaser B, Quicker P, Technical, Economical, and Climate-Related Aspects ofBiochar Production Technologies: A Literature Review [J]. Environmental Science andTechnology,2011.45(22):9473-9483.
    [108] Titiladunayo I, McDonald A, Fapetu O, Effect of Temperature on Biochar Product Yieldfrom Selected Lignocellulosic Biomass in a Pyrolysis Process [J]. Waste and BiomassValorization,2012.3(3):311-318.
    [109] z imen D, Ersoy-Meri boyu A, Characterization of biochar and bio-oil samples obtainedfrom carbonization of various biomass materials [J]. Renewable Energy,2010.35(6):1319-1324.
    [110] Tsai W-T, Liu S-C, Chen H-R, et al., Textural and chemical properties ofswine-manure-derived biochar pertinent to its potential use as a soil amendment [J].Chemosphere,2012.89(2):198-203.
    [111] Brownsort P A, Biomass pyrolysis processes-performance parameters and their influence onbiochar system benefits [D], University of Edinburgh: London,2009.
    [112] Goyal H B, Seal D, Saxena R C, Bio-fuels from thermochemical conversion of renewableresources: A review [J]. Renewable and Sustainable Energy Reviews,2008.12(2):504-517.
    [113] Van Zwieten L, Kimber S, Morris S, et al., Effects of biochar from slow pyrolysis ofpapermill waste on agronomic performance and soil fertility [J]. Plant and Soil,2010.327(1):235-246.
    [114] Hass A, Gonzalez J M, Lima I M, et al., Chicken manure biochar as liming and nutrientsource for acid Appalachian soil [J]. J Environmental Quality,2012.41(4):1096-106.
    [115] West T O, Marland G, A synthesis of carbon sequestration, carbon emissions, and net carbonflux in agriculture: comparing tillage practices in the United States [J]. Agriculture,Ecosystems&Environment,2002.91(1-3):217-232.
    [116]张强,巨晓棠,张福锁,应用修正的IPCC2006方法对中国农田N2O排放量重新估算[J].中国生态农业学报,2010.18(1):7~13.
    [117] Rondon M, Ramirez J, Lehmann J, Charcoal additions reduce net emissions of greenhousegases to the atmosphere[R], in Proceedings of the3rd USDA Symposium on GreenhouseGases and Carbon Sequestration in Agriculture and Forestry.2005, University of Delaware:Baltimore.208.
    [118] Rondon M A, Molina D, Hurtado M, et al., Major, and Amezquita, Enhancing theproductivity of crops and grasses while reducing greenhouse gas emissions through bio-charamendments to unfertile tropical soils [R], in18th World Congress of Soil Science2006,International Union of Soil Sciences: Philadelphia, Pennsylvania, USA.9-15.
    [119] Yanai Y, Toyota K, Okazaki M, Effects of charcoal addition on N2O emissions from soilresulting from rewetting air-dried soil in short-term laboratory experiments [J]. Soil Scienceand Plant Nutrition,2007.53(2):181-188.
    [120] Spokas K A, Reicosky D C, Impacts of sxteen different biochars on soil greenhouse gasproduction [J]. Annals of Environmental Science,2009.3:179-193.
    [121] Cayuela M L, Oenema O, Kuikman P J, et al., Bioenergy by-products as soil amendments?Implications for carbon sequestration and greenhouse gas emissions [J]. GCB Bioenergy,2010.2(4):201-213.
    [122] Spokas K A, Baker J, Reicosky D, Ethylene: potential key for biochar amendment impacts[J]. Plant and Soil,2010.333(1-2):443-452.
    [123] van Zwieten L, Kimber S, Morris S, et al., Influence of biochars on flux of N2O and CO2from Ferrosol [J]. Soil Research,2010.48(7):555-568.
    [124] Zhang A, Cui L, Pan G, et al., Effect of biochar amendment on yield and methane andnitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture [J],Ecosystems& Environment,2010.139(4):469-475.
    [125] Rogovska N, Laird D, Cruse R, et al., Impact of Biochar on Manure Carbon Stabilizationand Greenhouse Gas Emissions [J]. Soil Sci. Soc. Am. J.,2011.75(3):871-879.
    [126] Taghizadeh-Toosi A, Clough T J, Condron L M, et al., Biochar Incorporation into PastureSoil Suppresses in situ Nitrous Oxide Emissions from Ruminant Urine Patches [J]. Journal ofEnvironment Quality,2011.40(2):468-476.
    [127] Wang J, Zhang M, Xiong Z, et al., Effects of biochar addition on N2O and CO2emissionsfrom two paddy soils [J]. Biology and Fertility of Soils,2011.47(8):887-896.
    [128] Augustenborg C A, Hepp S, Kammann C, et al., Biochar and Earthworm Effects on SoilNitrous Oxide and Carbon Dioxide Emissions [J]. Journal of Environment Quality,2012.41(4):1203.
    [129] Case S D C, McNamara N P, Reay D S, et al., The effect of biochar addition on N2O andCO2emissions from a sandy loam soil–The role of soil aeration [J]. Soil Biology andBiochemistry,2012.51:125-134.
    [130] Felber R, Hüppi R, Leifeld J, et al., Nitrous oxide emission reduction in temperatebiochar-amended soils [J]. Biogeosciences Discussions,2012.9(1):151-189.
    [131] Yoo G, Kang H, Effects of biochar addition on greenhouse gas emissions and microbialresponses in a short-term laboratory experiment [J]. Journal of Environmental Quality,2012.41(4):1193-1202.
    [132] Aguilar-Chávez A, Díaz-Rojas M, Cárdenas-Aquino M D R, et al., Greenhouse gasemissions from a wastewater sludge-amended soil cultivated with wheat (Triticum spp. L.) asaffected by different application rates of charcoal [J]. Soil Biology and Biochemistry,2012.52(0):90-95.
    [133] Clough T J, Bertram J E, Ray J L, et al., Unweathered Wood Biochar Impact on NitrousOxide Emissions from a Bovine-Urine-Amended Pasture Soil [J]. Soil Sci. Soc. Am. J.,2010.74(3):852-860.
    [134] Singh B P, Hatton B J, Singh B, et al., Influence of Biochars on Nitrous Oxide Emission andNitrogen Leaching from Two Contrasting Soils [J]. Journal Environ. Qual.,2010.39(4):1224-1235.
    [135] Bruun E W, Müller-St ver D, Ambus P, et al., Application of biochar to soil and N2Oemissions: potential effects of blending fast-pyrolysis biochar with anaerobically digestedslurry [J]. European Journal of Soil Science,2011.62(4):581-589.
    [136] Castaldi S, Riondino M, Baronti S, et al., Impact of biochar application to a Mediterraneanwheat crop on soil microbial activity and greenhouse gas fluxes [J]. Chemosphere,2011.85(9):1464-1471.
    [137] Alho C, Cardoso A, Alves B, et al., Biochar and soil nitrous oxide emissions [J]. PesquisaAgropecuária Brasileira,2012.47(5):722-725.
    [138] Scheer C, Grace P, Rowlings D, et al., Effect of biochar amendment on the soil-atmosphereexchange of greenhouse gases from an intensive subtropical pasture in northern New SouthWales [J], Australia. Plant and Soil,2011.345(1-2):47-58.
    [139] Cheng Y, Cai Z, Chang S, et al., Wheat straw and its biochar have contrasting effects oninorganic N retention and N2O production in a cultivated Black Chernozem [J]. Biology andFertility of Soils,2012.48(8):941-946.
    [140] Liang B, Lehmann J, Sohi S, et al., Black carbon affects the cycling of non-black carbon insoil [J]. Organic Geochemistry,2010.41(2):206-213.
    [141] Hamer U, Marschner B, Brodowski S, et al., Interactive priming of black carbon andglucose mineralisation [J]. Organic Geochemistry,2004.35(7):823-830.
    [142] Wardle D A, Nilsson M C, Zackrisson O, Fire-derived charcoal causes loss of forest humus[J]. Science,2008.320(5876):629.
    [143] Steinbeiss S, Gleixner G, Antonietti M, Effect of biochar amendment on soil carbon balanceand soil microbial activity [J]. Soil Biology and Biochemistry,2009.41(6):1301-1310.
    [144] Tang H, Qiu J, Wang L, et al., Modeling Soil Organic Carbon Storage and Its Dynamics inCroplands of China [J]. Agricultural Sciences in China,2010.9(5):704-712.
    [145] Gathorne-Hardy A, Knight J, Woods J, Biochar as a soil amendment positively interactswith nitrogen fertiliser to improve barley yields in the UK [J]. IOP Conference Series: Earthand Environmental Science,2009.6(37):372052.
    [146] Major J, Rondon M, Molina D, et al., Maize yield and nutrition during4years after biocharapplication to a Colombian savanna oxisol [J]. Plant and Soil,2010.333(1):117-128.
    [147] Uphoff Et Al N, Bio-Char Soil Management on Highly Weathered Soils in the HumidTropics [M]. In Biological Approaches to Sustainable Soil Systems, J. Lehmann and M.Rondon, Editors.2006, CRC Press: USA.517-530.
    [148] Rondon M, Lehmann J, Ramírez J, et al., Biological nitrogen fixation by common beans(Phaseolus vulgaris L.) increases with bio-char additions [J]. Biology and Fertility of Soils,2007.43(6):699-708.
    [149]杜吴鹏,高庆先,张恩琛等,中国城市生活垃圾处理及趋势分析[J].环境科学研究,2006.19(6):115-120.
    [150]乐群,张国君,王铮,中国各省甲烷排放量初步估算及空间分布[J].地理研究,2012.31(9):1559-1570.
    [151]杨军,黄涛,张西华,有机垃圾填埋过程产甲烷量化模型研究[J].环境科学研究,2007.22(5):79-83.
    [152]石磊,赵由才,唐圣钧,垃圾填埋沼气的收集、净化与利用综述[J].中国沼气,2004.22(1):14-17.
    [153]魏宁,李小春,王燕等,城市垃圾填埋场甲烷资源量与利用前景[J].岩土力学,2009.30(6):1687-1692.
    [154] Lou X F, Nair J, The impact of landfilling and composting on greenhouse gas emissions--areview [J]. Bioresource Technology,2009.100(16):3792-3798.
    [155]狄向华,聂祚仁,左铁镛,中国火力发电燃料消耗的生命周期排放清单[J].中国环境科学,2005.25(5):632~635.
    [156]闫湘,我国化肥利用现状与养分资源高效利用研究[D].农业资源与农业区划研究所,中国农业科学院:北京,2008.64-48.
    [157] Maliger V R, Doherty W O S, Frost R L, et al., Thermal Decomposition of Bagasse: Effectof Different Sugar Cane Cultivars [J]. Industrial and Engineering Chemistry Research,2010.50(2):791-798.
    [158] Chan K Y, Van Zwieten L, Meszaros I, et al., Using poultry litter biochars as soilamendments [J]. Australian Journal of Soil Research,2008.46(5): p.437-444.
    [159] Bird M I, Wurster C M, de Paula Silva P H, et al., Algal biochar–production and properties[J]. Bioresource Technology,2011.102(2):1886-1891.
    [160] Hossain M K, Strezov V, Yin Chan K, et al., Agronomic properties of wastewater sludgebiochar and bioavailability of metals in production of cherry tomato (Lycopersiconesculentum)[J]. Chemosphere,2010.78(9):1167-1171.
    [161] Zhou X, Wang F, Hu H, et al., Assessment of sustainable biomass resource for energy use inChina [J]. Biomass and Bioenergy,2011.35(1):1-11.
    [162] Arsenault E, Bonn F, Evaluation of soil erosion protective cover by crop residues usingvegetation indices and spectral mixture analysis of multispectral and hyperspectral data [J].Catena,2005.62(2–3):157-172.
    [163]中华人民共和国国家统计局,中国统计年鉴(2011)[EB/OL].http://www.stats.gov.cn/tjsj/ndsj/2012/indexch.htm,2012.
    [164]国家林业局森林资源管理司,第七次全国森林资源清查及森林资源状况[J].林业资源管理,2010.(1):1~8.
    [165] Novak J M, Lima I, Xing B, et al., Characterization of Designer Biochar Produced atDifferent Temperatures and Their Effects on a Loamy Sand [J]. Annals of EnvironmentalScience,2009.3:195-206.
    [166]潘根兴,林振衡,李恋卿等,试论我国农业和农村有机废弃物生物质碳产业化[J].中国农业科技导报,2011.13(1):75~82.
    [167]张卫峰,李亮科,陈新平等,我国复合肥发展现状及存在的问题[J].磷肥与复肥,2009.24(2):14-16.
    [168]王方浩,马文奇,窦争霞等,中国畜禽粪便产生量估算及环境效应.中国环境科学[J],2006.26(5):614-617.
    [169]陈科梁进社,北京市生活垃圾定价及计量收费研究[J].资源科学,2002.24(5):93-96.
    [170] Liu Y, Yang M, Wu Y, et al., Reducing CH4and CO2emissions from waterlogged paddy soilwith biochar [J]. Journal of Soils and Sediments,2011.11(6):930-939.
    [171] Yao Y, Gao B, Zhang M, et al., Effect of biochar amendment on sorption and leaching ofnitrate, ammonium, and phosphate in a sandy soil [J]. Chemosphere,2012.89(11):1467-1471.
    [172] Kwapinski W, Byrne C M P, Kryachko E, et al., Biochar from Biomass and Waste [J]. Wasteand Biomass Valorization,2010.1(2):177-189.
    [173] Ma L, Wang T, Liu Q, et al., A review of thermal–chemical conversion of lignocellulosicbiomass in China [J]. Biotechnology Advances,2012.30(4):859-873.
    [174] Wu C Z, Yin X L, Yuan Z H, et al., The development of bioenergy technology in China [J].Energy,2010.35(11):4445-4450.
    [175]陈温福,张伟明,孟军等,生物炭应用技术研究[J].中国工程科学,2011(13(2)):83-89.
    [176] Whitman T, Nicholson C F, Torres D, et al., Climate Change Impact of Biochar Cook Stovesin Western Kenyan Farm Households: System Dynamics Model Analysis [J]. EnvironmentalScience and Technology,2011.45(8):3687-3694.
    [177] Torres-Rojas D, Lehmann J, Hobbs P, Joseph, and Neufeldt, Biomass availability, energyconsumption and biochar production in rural households of Western Kenya [J]. Biomass andBioenergy,2011.35(8):3537-3546.
    [178] Garcia-Pérez M, Lewis T, Kruger C E, Methods for Producing Biochar and AdvancedBiofuels in Washington State. Part1: Literature Review of Pyrolysis Reactors [R].Department of Ecology, State of Washington,2011.
    [179] McHenry M P, Agricultural bio-char production, renewable energy generation and farmcarbon sequestration in Western Australia: Certainty, uncertainty and risk[J]. Agriculture,Ecosystems and Environment,2009.129(1-3):1-7.
    [180] Blackwell P, Riethmuller G, Collins M, Biochar application for soil [M]. In Biochar forenvironmental management science and technology, J. Lehmann and S. Joseph, Editors.2009,Earthscan: London.206-226.
    [181]赵建宁,张贵龙,杨殿林,中国粮食作物秸秆焚烧释放碳量的估算.农业环境科学学报,2011.30(4):812~816.
    [182]国家发展改革委,可再生能源中长期发展规划[R].2007.
    [183] Huang Y, Sass R L, Sun W, et al., Reducing Nitrogen Fertilizer Use To Mitigate NegativeEnvironmental Impact in China [R]. James A. Baker III Institution for Public Policy, RiceUniversity,2010.
    [184]赵永宏,邓祥征,战金艳等,我国农业面源污染的现状与控制技术研究.安徽农业科学,2010.38(3):2548~2552.
    [185] Verheijen F G A, Montanarella L, Bastos A C, Sustainability, certification, and regulation ofbiochar [J]. Pesquisa Agropecuária Brasileira,2012.47(5):649-653.
    [186] Sohi S P, Krull E, Lopez-Capel E, et al., A Review of Biochar and Its Use and Function inSoil [M]. In Advances in Agronomy, Donald L S, Editor.2010, Academic Press.47-82.
    [187] IBI, IBI Policy Objectives [EB/OL]. http://www.biochar-international.org/,2012.
    [188] Biofuelwatch, Biochar: A Critical review of science and policy [EB/OL].http://www.biochar-international.org/sites/default/files/Biochar%20Misconceptions%20and%20the%20Science.pdf,2011.
    [189] Amonette J E, Joseph S, Characteristics of Biochar: Microchemical Properties [M]. InBiochar for environmental management science and technology, J. Lehmann and S. Joseph,Editors.2009, Earthscan: London.33-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700