人参土壤微生物群落结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在人参产业发展过程中,农田栽参产量低、病害重,林下护育山参存苗率低、形体少有纯野山参的形体特征以及人参红皮病、连作障碍等问题一直是困扰人参产业持续发展的关键。土壤环境的改变是上述问题产生的主要因素,土壤微生物对所生存的土壤坏境十分敏感,能对土壤生态机制变化和环境胁迫做出反应,导致群落结构的改变。所以,土壤微生物群落被认为是土壤生态系统变化的预警及敏感指标,指示土壤质量变化,决定着土壤的生态功能。前人关于人参栽培对于土壤的理化性状影响的研究较多,对土壤微生物学特性的研究较少,而对土壤微生物代谢功能多样性、遗传基因多样性及群落结构多样性的研究尚属空白。本文采用磷脂脂肪酸(PLFA)法测定了两份纯野山参根区土样、不同年生的护育山参根区土样、不同年生伐林栽参根区土样、不同年生农田栽参根区土样的微生物群落结构的变化情况。以期从微生物群落结构出发揭示不同环境下人参生长对土壤微生物的影响,为人参产业的持续健康发展提供理论指导。通过对实验数据进行相关分析、方差分析、主成分分析,得出以下主要结论:
     1.不同年生野山参土壤微生物群落结构变化:1号野山参(12年左右)土壤和其对照土壤微生物群落结构多样性显著不同于2号野山参(25年左右)土壤和其对照土壤。2号野山参土壤微生物群落结构多样性大于其对照土壤,而1号野山参土壤微生物群落结构多样性却小于其对照土壤。与相应对照土壤相比,真菌/细菌值在1号野山参土壤中较大,在2号野山参土壤中较低,而G+/G-值在1号野山参土壤中变化不大,在2号野山参土壤中较大。群落结构的不同主要是微生物总生物量和细菌量的不同。
     2.不同年生伐林栽参土壤微生物群落结构变化:2年生~4年生土壤微生物群落结构多样性呈逐渐降低趋势,其中2年生土壤微生物群落结构显著大于3年生和4年生土壤。真菌/细菌值在3年生、4年生土壤中较大,而G+/G-值在3年生土壤中较大。群落结构的不同主要是微生物总生物量的不同。
     3.不同年生农田栽参土壤微生物群落结构变化:1年生~4年生土壤微生物群落结构多样性呈“V”型趋势变化,2年生为最低点,不同年生之间无显著差异。真菌/细菌值在2年生土壤中较大,而G+/G-值在1年生、4年生土壤中较大。群落结构的不同主要是微生物总生物量和细菌量的不同。
     4.不同年生林下护育山参土壤微生物群落结构变化:2年生、3年生、4年生、5年生、10年生、15年生土壤微生物群落结构多样性呈“И”型趋势变化,4年生和10年生为转折点。其中,2年生、3年生、4年生、10年生土壤的微生物群落结构与5年生、15年生土壤差异显著。真菌/细菌值在5年生、15年生土壤中较大,而G+/G-值在2年生、3年生、4年生、15年生土壤中较大。群落结构的不同主要是微生物总生物量和细菌量的不同。
     5.相同年生不同人参土壤微生物群落结构变化:4年生林下护育山参土壤微生物群落结构多样性显著大于同年生伐林栽参土壤和农田栽参土壤,而伐林栽参土壤与农田栽参土壤的微生物群落结构多样性差异较小。1号野山参土壤与10年生林下护育山参土壤的微生物群落结构多样性差异较小。不同人参土壤的主导群落都为真菌,其中伐林栽参土壤中的真菌/细菌值最大。G+/G-值在4年生伐林栽参土壤中较大,10年生林下护育山参土壤的值大于1号野山参土壤的。群落结构的不同主要是微生物总生物量和细菌量的不同。
In the course of ginseng development, there were many plagued issues. Cultivate ginseng in farmland was low-yield and heavy disease. Wild ginseng soil under forest was low seeding survival and few physical characteristics of pure wild mountain ginseng. There were erythroderma, contionuous cropping obstacle and other issues.The main facter of above-mentioned problems was changes of soil environment.Its microorganisms could be sensitive to its changes, respond to changes of soil ecological mechanisms and environmental stress, and lead to changes in community structure.So soil microbial community was considered an early warning and sensitive indicators of soil ecosystem changes.It could instruct soil quality changes and determine soil ecosystem. There were many studies on the impact of physical and chemical properties by ginseng cultivation, few studies on soil microbial characteristics, and blank on soil microbial metabolic function, genetic and community structure diversity. In this paper, we used phospholipid fatty acid analysis to investigate the microbial community structural characteristics of ginseng root zone soil, including two pure wild mountain ginseng soil, different cropping year’s conversion of forest to cultivate ginseng soil, cultivate ginseng soil in farmland and wild ginseng soil under forest. In order to reveal the impact of soil microbie by ginseng growth in different circumstances, and provide supported theories for ginseng industry. Experimental data was analysed with the correlation analysis, variance analysis and principal component analysis.Main original conclusions were shown as follows.
     1.Different cropping year’s wild mountain ginseng soil had the different microbial community structural characteristics. No.1(about 12-year-old )and its contrast soil’s microbial community structures were greatly different from No.2(about 25-year-old) and its contrast soil’s. No.2 soil’s microbial community structure was better than its contrast soil’s,but No.1 soil’s was worse than its contrast soil’s.Compared with theirs contrasts ,the contents of fungi/bacteria were higher in No.1 soil and lower in No.2 soil ,or the contents of G+/G- were higher in No.2 soil and similar with No.1 soil.The main differences of microbial community structures were the differences of the biomass of total microbe and fungi.
     2.Different cropping year’s conversion of forest to cultivate ginseng soil had the different microbial community structural characteristics.2-year-old to 4-year-old soil’s microbial community structures were gradually decreased and 2-year-old soil’s was greatly better than 3-year-old and 4-year-old soil’s. The content of fungi/bacteria was higher in 3-year-old and 4-year-old soil, or the content of G+/G- was higher in 3-year-old soil.The main differences of microbial community structures were the difference of the total microbial biomass .
     3. Different cropping year’s cultivate ginseng soil in farmland had the different microbial community structural characteristics. 1-year-old to 4-year-old soil’s microbial community structures had a gradually "V"-shaped change and the lest point was 2-year-old soil’s. There were not greatly changes among different cropping year’s soil. The content of fungi/bacteria were higher in 2-year-old soil,or the content of G+/G- were higher in 1-year-old and 4-year-old soil.The main differences of microbial community structures were the differences of the biomass of total microbe and fungi.
     4. Different cropping year’s wild ginseng soil under forest had the different microbial community structural characteristics.2-year-old、3-year-old、4-year-old、5-year-old、10-year-old and 15-year-old soil’s microbial community structures had a gradually "И"-shaped change and the turning point was 4-year-old and 10-year-old soil’s. 2-year-old、3-year-old、4-year-old、10-year-old soil’s microbial community structures were greatly different form 5-year-old and 15-year-old soil’s. The content of fungi/bacteria were higher in 5-year-old and 15-year-old soil,or the content of G+/G- were higher in 2-year-old、3-year-old、4-year-old and 15-year-old soil.The main differences of microbial community structures were the differences of the biomass of total microbe and fungi.
     5. Different type but the same cropping year’s ginseng soil had the different microbial community structural characteristics.4-year-old wild ginseng soil under forest’s microbial community structure was greatly better than 4-year-old conversion of forest to cultivate ginseng soil’s and 4-year-old cultivate ginseng soil in farmland’s.But 4-year-old conversion of forest to cultivate ginseng soil’s microbial community structure was the same with 4-year-old cultivate ginseng soil in farmland’s.No.1 wild mountain ginseng soil’s was the same with 10-year-old wild ginseng soil under forest’s.The ginseng soil’s main structure all was fungi .The contents of fungi/bacteria and G+/G- were higher in 4-year-old conversion of forest to cultivate ginseng soil and 10-year-old wild ginseng soil under forest’s content of G+/G- was higher than No.1 wild mountain ginseng soil’s.The main differences of microbial community structure were the differences of the biomass of total microbe and fungi.
引文
1.白清云.土壤微生物群落结构的化学估价方法.农业环境保护,1997,16(6):252~256.
    2.白容霖,张惠丽,曲力涛.施用鹿粪对参地土壤改良效果的研究.特产研究,2000,(3):26~28.
    3.白震,何红波,张威,等.磷脂脂肪酸技术及其在土壤微生物研究中的应用.生态学报,2006,26(7):2387~2393.
    4.白震,张明,宋斗研,等.长期施肥对农田黑土微生物群落的影响.中国科学院研究生院学报,2008,25(4):479~486.
    5.白震,张明,闫颖,等.长期施用氮、磷及有机肥对农田黑土PLFA的影响.浙江大学学报(农业与生命科学版),2008,34(1):73~80.
    6.白震,张旭东,何红波,等.长期氮肥施用对农田黑土NLFA与PLFA特性的影响.土壤学报,2007,44(4):709~716.
    7.曹志强,金慧,宋心东.参地土壤改良及永续栽参.人参研究,2002,14(1):29~35.
    8.常维春,张连学,赵立波,等.农田栽参是中国人参栽培的发展方向.全国首届人参学术研讨会论文集,1990,179~182.
    9.车玉伶,王慧,胡洪营,等.微生物群落结构和多样性解析技术研究进展.生态环境,2005,14(1):127~133.
    10.代连奎,张大克,赵万智.参地土壤酶活性及泥炭土壤改良剂对参地土壤酶活性的影响.土壤肥料,1989,(6):45~47.
    11.邓小宽,张新宜,田敏.现代生物技术在分子微生物生态学中的应用.国外医药抗生素分册,2006,27(4):164~170.
    12.窦森,张晋京,江源,等.栽参对土壤化学性质的影响.吉林农业大学学报,1996,18(3):67~73.
    13.高涛,王立莹.我国人参市场现状及前景展望.人参研究,2006,(3):5~6.
    14.关松荫,张德生,张志明.土壤酶及其研究法.北京:农业出版社,1986.
    15.郭春景,关兆红,李玉文,等.生物有机肥料对人参重茬栽培地土壤微生态环境的影响研究.生物技术,2004,14(3):55~56.
    16.郭瑞英,陈清,李晓林.土壤微生物—抑病性与土壤健康.中国蔬菜,2005(增刊):78~82.
    17.郭淑华,王玉香,耿运琪,等.栽参对土壤微生物生态的影响.生态学报,1990,10(3):286~287.
    18.韩雪梅,郭卫华,周娟,等.土壤微生物生态学研究中的非培养方法.生态科学,2006,25(1):87~90.
    19.郝文英.中国农业百科全书·土壤卷.北京:农业出版社,1996,385~400.
    20.何永明.人参本草史考证.中成药.2001,23(5):384~386.
    21.胡洪营,童中华.微生物醌指纹法在环境微生物群体组成研究中的应用.微生物学通报,2002,29(4):95~98.
    22.贾书刚,王淑平,窦森.栽培人参对床土化学性质的影响.吉林农业大学学报,1992,14(2):42~46.
    23.焦晓丹,吴凤芝.土壤微生物多样性研究方法的进展.土壤通报,2004,35(6):789~792.
    24.李刚,姜晓莉,车熙哲.EM处理老参地对土壤酶活性影响的研究.农业与技术,2001,21(2):33~35+38.
    25.李世昌,刘梅娟,卢凤勇,等.栽参对土壤微生物生态及土壤酶活性的影响.生态学报,1983,3(1):29~34.
    26.李学军,张益武.野生人参的生长环境及形态特征.人参研究,2006,(2):16.
    27.梁小兵,万国江,黄荣贵.PCR-RFLP技术在环境地球化学研究中的应用及展望.地质地球化学,2001,29(1):94~98.
    28.刘兴权,王荣生,钱素文,等.野生人参的生长发育规律.中国林副特产,1992,(1):6~7.
    29.马万里.土壤微生物多样性研究的新方法.土壤学报,2004,41(1):103~107.
    30.钱少军,李学芝.不同用量生物菌肥、人参专用肥对西洋参产量质量的影响.人参研究,1999,11(1):12~14.
    31.任守让,王瑞霞,王韵秋.长白山区参地土壤微生物生态研究——第Ⅰ报γ-射线的土壤灭菌效应.吉林农业科学,1987,(1):78~80.
    32.任一猛,王秀全,王德清.农田栽培人参土壤改良培肥作用的研究.第六届全国药用植物与植物药学术研讨会,2006,107~110.
    33.时亚南,张奇春,王光火,等.不同施肥处理对水稻土微生物生态特性的影响.浙江大学学报(农业与生命科学版),2007,33(5):551~556.
    34.宋晓霞,张亚玉,孙海,等.人参与西洋参土壤脲酶活性对比研究.特产研究,2008,(2):33~35.
    35.宿艳霞,陈峰,宿艳丽,等.山参内在质量研究.人参研究,2004,(3):32~35.
    36.孙宏德,李军,朱平,等.山参生态环境和土壤特性的调查研究.土壤肥料,1992,(8):12~14.
    37.孙三省,张继,刘宝玲,等.论野山参和移山参的性状特性、变异与鉴别.人参研究,1999,11(3):17~26.
    38.孙艳君,周百娟,曹学旺,等.人参床土根际性质的初步研究.吉林农业大学学报,1994,16(4):82~86.
    39.王爱杰,阚洪晶,于振国,等.SSCP技术分析活性污泥微生物群落结构的条件优化及检验.微生物学通报,2008,35(7):1164~1169.
    40.王荣生.老参地栽参问题的综述.特产研究,1979,(4):1~7.
    41.王铁生.中国人参.沈阳:辽宁科学技术出版社,2001.54~55.
    42.王亚芬.应用磷脂脂肪酸技术解析人工湿地微生物群落结构的研究.中国科学院研究生院硕士学位论文,2007.
    43.吴金水.土壤微生物生物量测定方法及其应用.北京:气象出版社北京图书发行部,2007.22.
    44.向光明,张颖,张旭东,等.东北黑土在不同处理条件下微生物量与菌群多样性的变化.江西农业学报,2007,19(6):68~71.
    45.谢忠凯,肖桂秀,杨振玲,等.长白山区新林地人参栽培土壤养分动态变化研究.人参研究,2006,(1):10~12.
    46.谢忠凯,徐厚来.长白山区人参地连作障碍的研究——人参地土壤酸化初报.人参研究,1996,(2):28~30.
    47.谢忠凯.长白山区人参地连作障碍的研究——人参地土壤磷富集的分析.人参研究,1996,(2):31~33.
    48.许见春.人参在实际应用中的药理作用.时珍国医国药,2006,17(4):578.
    49.薛振东,魏汉莲,庄敬华.不同腐殖质改土对农田人参增产效应的研究.园艺博览,2007,(14):8~9.
    50.薛振东,魏汉莲,庄敬华.有机肥改土对农田土壤结构及人参质量的影响.安徽农业科学,2007,35(20):6190~6191.
    51.颜慧,钟文辉,李忠佩,等.长期施肥对红壤水稻土磷脂脂肪酸特性和酶活性的影响.应用生态学报,2008,19(1):71~75.
    52.严昶升,周礼恺,张德生.土壤肥力研究法.北京:农业出版社,1988.
    53.杨芳,徐秋芳.土壤微生物多样性研究进展.浙江林业科技,2002,22(6):39~41+55.
    54.杨靖春,郝绍卿,姜丛.老参地轮作胡枝子和施肥对人参根际微生物区系的影响.东北师大学报(自然科学版),1982,(3):65~73.
    55.杨靖春,惠慧,刘照惠,等.老参地轮作天麻后栽参对人参土壤微生物特性影响的研究.东北师大学报(自然科学版),1982,(2):129~135.
    56.杨靖春,张春丽,辛华,等.老参地轮作不同年限的紫穗槐对人参土壤微生物区系的影响研究.东北师大学报(自然科学版),1985,(2):101~109.
    57.姚槐应,何振立,黄昌勇.不同土地利用方式对红壤微生物多样性的影响.水土保持学报,2003,17(2):51~54.
    58.于得荣,赵寿经,曹秀英,等.农田土壤与高产人参腐殖土壤的理化性状对比研究.土壤学报,1990,27(2):228~232.
    59.于慧瑛,吕国忠,孙晓东.不同生长年限人参根际土壤真菌种类及数量的初步研究.人参研究,2006,(4):9~11.
    60.于慧瑛,吕国忠,孙晓东,等.病健人参根际土壤真菌种类及数量的研究.安徽农业科学,2007,35(26):8279~8291.
    61.喻曼,曾光明,陈耀宁,等.PLFA法研究稻草固态发酵中的微生物群落结构变化.环境科学,2007,28(11):2603~2608.
    62.于树,汪景宽,李双异.应用PLFA方法分析长期不同施肥处理对玉米地土壤微生物群落结构的影响.生态学报,2008,28(9):4221~4227.
    63.赵寿经,于得荣,曹秀英,等.人参栽培适宜土壤条件的研究.特产研究,1992,(1):16~19.
    64.张常钟,杨靖春,陈珊,等.喷洒B9对吉林人参土壤微生物区系数量与土壤营养成分的影响研究.农业与技术,1992,(4):13~14.
    65.张常钟,杨靖春,刘东波,等.喷洒生化营养素对人参增产的试验研究——喷洒生化营养素对人参土壤微生物区系数量与土壤营养成分的影响.农业与技术,1992,(4):7~9.
    66.张海龙,石竹.分子生物学技术在土壤微生物多样性研究中的应用.山东教育学院学报,2006,(6):145~149.
    67.张利红,章培军.人参的药用研究.大同义学专科学校学报,2003,(1):31~32.
    68.张梦昌,金裕姬,马晶,等.老参地改良后微生物生态类群的变化.吉林农业大学学报,1990,(4):42~46+105.
    69.张睿,刘志恒,杨红,等.吉林省人参根际土壤真菌群落生态特征及区系分析.吉林农业科学,2008,33(1):47~50.
    70.张瑞福,崔中利,李顺鹏.土壤微生物群落结构研究方法进展.土壤,2004,36(5):476~480.
    71.张薇,魏海雷,高洪文,等.土壤微生物多样性及其环境影响因子研究进展.生态学杂志,2005,24(1):48~52.
    72.张雅玉,孙长伟.我国栽参土壤的研究进展.中国林副特产,1997,(3):49~50.
    73.张镇瑗,陈珊,夏红梅,等.不同土壤栽参后对土壤分解微生物生态和有机质的分解作用.东北师大学报自然科学版,1993,(2):95~99.
    74.郑荣庆.人参药材资源开发与应用研究概况.时珍国药研究,1993,4(1):42~44.
    75.中国药典2005年.2005:增补本.
    76.钟文辉,蔡祖聪.土壤管理措施及环境因素对土壤微生物多样性影响研究进展.生物多样性,2004,12(4):456~465.
    77.钟文辉,蔡祖聪.土壤微生物多样性研究方法.应用生态学报,2004,15(5):899~904.
    78.周丽霞,丁明懋.土壤微生物学特性对土壤健康的指示作用.生物多样性,2007,15(2):162~171.
    79.周琳,张晓君,李国勋,等.DGGE/TGGE技术在土壤微生物分子生态学研究中的应用.生物技术通报,2006,(5):67~71.
    80.朱平,孙宏德,李军,等.参地土壤的酶活性.土壤通报,1990,(1):33~34+37.
    81. Bligh E.G.,Dyer W.J. A rapid method of total lipid extraction and purification.Canadian Journal Biochemistry Physiology,1959,(37):911~917.
    82. Boehm M.J.,Wu T.,Stone A.G., et al. Crosspolarized magicangle spinning 13C nuclear magnetic resonance spectroscopic characterization of soil organic matter relative to culturable bacterial species composition and sustained biological control of Pythium root rot. Applied Environmental Microbiology,1997, (63):162~168.
    83. Cortez J., Bouche M. Decomposition of Mediterranean leaf litters by Nicodrilus meridionalis (Lumbricidae) in laboratory and field experiments. Soil Biology and Biochemistry,2001, (33):2023~2035.
    84. Crossman Z. M., lneson P., Evershed R. P. The use of C-13 labelling of bacterial lipids in the characterization of ambient methane—oxidising Bacteria in soils. Organic Geochemistry,2005,36(5):769~778.
    85. Edwards C. A. Impact of herbicideson soil ecosystems . Critical Reviews in PlantScience,1989,(8):221~257.
    86. Fang J., Barcelona M. J., Alvarez P.J. A direct comparison between fatty acid and intact phospholipid profiling for microbial identification.Organic Geochemistry, 2000, 31(9): 881~887.
    87. Frotegard A., Baath E., Tunlid A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipids fatty acid analysis. Soil Biology and Biochemistry,1993, 25(6):723~732.
    88. Frotegard A., Baath E. The use of phosphlipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 1996,22(1):59~65.
    89. Heckman D.S.,Geiser D.M.,Eidell B.R., et al.Molecular evidence for the early colonization of land by fungi and plants. Science,2001,(293):1129~1133.
    90. Heuer H., Wueland G., Schonfeld J., et al. Bacterial community profiling using DGGE or TGGE analysis.Environmental Molecular Microbiology: Protocols and Applications, 2001,(9):177~190.
    91. Holben W. E., Harris D.DNA-based monitoring of total bacterial community structure in environmental samples.Molecular Ecology, 1995,(4):627~631.
    92. Hu H. Y., Lim B .R., Goto N., et al. Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples.Journal of Microbiological Methods, 2001,(47):17~24.
    93. Johnsen K., Jacobsen C. S.,Torsvik V. Pesticide effects on bacteiral diversity in agricultural soils—areview. Biology and Fertility of Soils, 2001,(33):443~453.
    94. Lutzoni F., Pagel M.,Reeb V.Major fungal lineages are derived from lichen symbiotic ancestors.Nature,2001,(411):937~940.
    95. Mccaig A. E., Glover L. A., Prosser J. I. Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures.Applied Environmental Microbiology, 1999,(65):1721~1730.
    96. Muyzer G. DGGE/TGGE: a method for identifying genes from natural ecosystems. Current Opinion in Microbiology,1999,(2):317~322.
    97. Orita M.,Iwahana H.,Kanazawa H.,et al.Detection of polymorphisms of human DNA by gel electrophoresis as singlestrand conformation polymorphisms.Proceeding of the National Academy of Science,1989,86(8):2766~2770.
    98. Osborn A. M., Moore E. R. B., Timmis K. N. An evaluation of terminal restriction fragment length polymorphisms (T-RFLP) analysis for the study of microbial community structure and dynamics. Applied Environmental Microbiology,2000, (2):39~50.
    99. Ovreas L., Torsvik V. Microbial diversity and community structure in two different agricultural soil communities. Microbial Ecology, 1998,36(3):303~315.
    100.Priha O., Grayston S. J., Pennanen T., et al. Microbial activities related to C and N cycling and microbial community structure in the rhizospheres of Pinus sylvestris, Picea abies andBetula pendula seedlings in an organic and mineral soil. FEMS Microbiology Ecology, 1999,30(2):187~199.
    101.Ranjard L., Poly F., Nazaret S. Monitoring complex bacterial communities using culture-indep-endent molecular techniques: application to soil environment. Research in Microbiology, 2000,(151):167~177.
    102.Salomonova S., Lamacova J., Rulik M., et al. Determination of phospholipid fatty acids in sediments.Acta Universitatis Palackianae Olomucensis Facultas Rerum Naturalium: Chemica,2003,(42):39~49.
    103.Scholle G., Wolters V., Joergensen R. G. Effects of mesofauna exclusion on the microbial biomass in two modern profiles. Biology and Fertility of Soils, 1992, (12):253~260.
    104.Sundh I., Nilsson M., Borga P. Variation in microbial community structure in two boreal peatlands as determined by analysis of phospholipid fatty acid profiles. Applied Environmental Microbiology, 1997,(63): l476~l482.
    105.Tiquia S. M., Lloyd J., Herms D. A., et al. Effects of mulching and fertilization on soil nutrients,microbial activity and rhizosphere bacterial community structure determined by analysis of TRFLPs of PCR-amplified 16S rRNA genes.Applied Soil Ecology, 2002,(21):31~48.
    106.Topp E.,Valleys T., Soulas G. Pesticides:microbial degradation and effects on microorganisms.In:van Elsas J.D.,Trevors J.T.and Wellington E.M.H(eds.),Modern Soil Microbiology. New York: Dekker,1997,547~575.
    107.Torsvik V.,Goskyr J.,Daae F.L.High diversity in DNA of soil bacteria. Applied Environmental Microbiology, 1990,(56):782~787.
    108.Tunlid A.,White D.C. Biochemical analysis of biomass,community structure nutritional status,and metabolic activity of microbial community in soil. In: Stotzky G., Bollag J. M., eds. Soil Biochemistry. New York: Dekker,1991,229~262.
    109.Turpeinen R., Kairesalo T., Haggblom M. M. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils.FEMS Microbiology Ecology, 2004, 47(1):39~50.
    110.Ulton C.S.J.,Higgins C.F.,Sharp P.M.ERIC sequences:a novel family of repeatitive elements in the genomes of Escherichia coli,Salmonella typhi murium and other enterobacteria. Molecular Microbiology, 1991, 5(4): 825~834.
    111.Wilkinson S. G. Gram-negative bacteria. In: Ratledge C, Wilkinson S. G. Microbial lipids. London: Academic Press, 1988,299~408.
    112.Zelles L.,Bai Q.Y.,Beck T. Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils.Soil Biology & Biochemistry,1992, 24(4):317~323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700