表面活性剂对PAHs微生物界面行为的影响及调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂增效生物修复(SEBR)是最具发展潜力的有机污染土壤修复技术之一。人们研究发现表面活性剂能增溶洗脱、促进微生物降解有机污染物,强化修复有机污染土壤。但迄今表面活性剂对污染物的土-水界面,特别是微生物-水界面行为的调控及其机制仍不完全清楚。为此,本文在评述微生物降解土壤有机污染物相关界面行为的基础上,研究了表面活性剂对多环芳烃(PAHs1在土壤-溶液-细菌等界面迁移转化行为的影响及调控机制,试图为发展经济高效的有机污染土壤修复技术提供科学依据。论文取得了一些有价值的结果:
     (1)发现鼠李糖脂-Tween80混合表面活性剂能协同增强洗脱土壤中PAHs,其洗脱效率和速率与混合表面活性剂组成相关,质量比1:9的鼠李糖脂-Tween80对土壤中菲和芘的最大洗脱效率分别是单一表面活性剂之和的1.16和1.19倍;达到相同洗脱效果(约60%),混合表面活性剂的用量仅为单一表面活性剂的三分之一;混合表面活性剂还能显著降低阴离子表面活性剂的生态毒性。
     (2)阐明了表面活性剂增强细菌(Klebsiella oxytoca PYR-1)表面吸附是促进PAHs降解的前提,降解率增加值(Bd*/Bd)与细菌吸附系数增加值(Kd*/Kd)呈线性正相关:Bd*/Bd=0.636Kd*/Kd+0.390(P<0.0001).揭示了表面活性剂促进细菌吸附PAHs的作用机制,即表面活性剂分子吸附在细胞表面亲/疏水点位,改变细胞表面疏水性,提高了菌体吸附PAHs的能力;其程度与表面活性剂的HLB值相关,随HLB值减小(烷基链增大),新增疏水点位对芘的分配能力越强。
     (3)揭示了表面活性剂对细菌细胞膜性质及PAHs跨膜传输的影响。发现Tween80等表面活性剂可诱导细胞膜不饱和脂肪酸含量的增加,提高细胞膜通透性,有利于PAHs的跨膜传输;而Triton X-100则会破坏细胞的完整性,影响其正常功能。
Surfactant-enhanced bioremediation (SEBR) has been considered as a promising technology for the treatment of organic contaminated soil. It is found that surfactants enhanced the desorption of hydrophobic organic compounds (HOCs) from soil matrix, as well as the biodegradation of HOCs. However, litter information on the surfactants controlling the HOCs behaviors in multiple interfaces such as soil-water and microbe-water interfaces and underlying mechanisms is available. Based on the review of interfacial processes of HOCs biodegradation and the surfactant affect, this thesis systematically studied the effects and controlling mechanisms of surfactants on the soil-water-bacteria interfacial processes of PAHs, such as soil-water desorption, bacteria-water sorption and transmembrane transport. The main results of this thesis are shown below:
     (1) Rhamnolipid-Tween80mixed surfactants synergistically enhanced the washout of PAHs from contaminated soils, and the washing rate as well as the efficiency positive correlated with the compose of mixed surfactants. The mixed surfactant of rhamnolipid and Tween80with1:9ratios did synergistically enhance the washing efficiency,1.16and1.19times higher than the sum of single surfactants for phenanthrene and pyrene, respectively. Compared with single rhamnolipid and Tween80, the volume of mixed surfactants was less than one third with the same efficiency (60%). Furthermore, the addition of nonionic surfactant significantly reduced the bacterial toxicity of anionic surfactants, such as SDBS and rhamnolipids.
     (2) It was illustrated that the influence of surfactants on the bacterial sorption of PAHs was the premise of their effects on PAHs biodegradation. A highly correlation between biodegradation enhancement (Bd*/Bd) and sorption improvement (Kd*/Kd) in the presence of surfactants was found. In the presence of surfactants, the biodegradation efficiency of PAHs could be predicted as Bd*/Bd=0.636Kd*/Kd+0.390(P<0.0001). The mechanisms of surfactant-enhanced bacterial sorption of PAHs were also explored:the interactions between surfactant molecule and bacterial surface resulted in changes of cell surface hydrophobicity (CSH) and consequent enhancement of sorption ability. The extents of CSH and bacterial sorption ability for PAHs were correlated with the HLB values negatively (or alkyl chain long positively).
     (3) Surfactants could affect the bacterial membrane properties and the transmembrane process of PAHs. It was found that surfactants such as Tween80induced the production of unsaturated fatty acid in bacterial membrane. These resulted in the increase of membrane permeability, facilitating the transmembrane transport of PAHs. However, disrupted the cell membrane and affected adversely the foundational functions due to its powerful solubilization property.
引文
1. Xu, S.; Liu, W.; and Tao, S. Emission of polycyclic aromatic hydrocarbons in China Environmental Science & Technology,2006,40,702-708
    2. Kelly, B.C.; Ikonomou, M.G.; Blair, J.D.; Morin, A.E.; and Gobas, F. Food web-specific biomagnification of persistent organic pollutants. Science,2007,317(5835),236-239
    3. Maruya, K.A. and Lee, R.E. Biota-sediment accumulation and trophic transfer factors for extremely hydrophobic polychlorinated biphenyls. Environmental Toxicology and Chemistry,1998,17(12),2463-2469
    4. McLachlan, M.S. Bioaccumulation of hydrophobic chemicals in agricultural feed chains. Environmental Science & Technology,1996,30(1),252-259
    5. Reilley, K.A.; Banks, M.K.; and Schwab, A.P. Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. Journal of Environmental Quality,1996,25(2),212-219
    6. 朱利中.土壤及地下水有机污染的化学与生物修复.环境科学进展,1999,7,65-71.
    7. Megharaj, M.; Ramakrishnan, B.; Venkateswarlu, K.; Sethunathan, N.; and Naidu, R. Bioremediation approaches for organic pollutants:A critical perspective. Environment International,2011,37(8),1362-1375
    8. Kim, Y.M.; Ahn, C.K.; Woo, S.H.; Jung, G.Y.; and Park, J.M. Synergic degradation of phenanthrene by consortia of newly isolated bacterial strains. Journal of Biotechnology, 2009,144(4),293-298
    9. Churchill, P.F.; Dudley, R.J.; and Churchill, S.A. Surfactant-enhanced bioremediation. Waste Management,1995,15(5-6),371-377
    10. Gao, Y.Z. and Zhu, L.Z. Phytoremediation for phenanthrene and pyrene contaminated soils. Journal of Environmental Sciences-China,2005,17(1),14-18
    11. Zhu, L.Z. and Feng, S.L. Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic-nomonic surfactants. Chemosphere,2003,53(5),459-467
    12. Zhu, L.Z. and Chiou, C.T. Water solubility enhancements of pyrene by single and mixed surfactant solutions. Journal of Environmental Sciences-China,2001,13(4),491-496
    13. Kile, D.E. and Chiou, C.T. Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration Environmental Science & Technology,1989,23(7),832-838
    14. Zhou, W.J. and Zhu, L.Z. Efficiency of surfactant-enhanced desorption for contaminated soils depending on the component characteristics of soil-surfactant-PAHs system. Environmental Pollution,2007,147(1),66-73
    15. Yang, K.; Zhu, L.Z.; and Xing, B.S. Enhanced soil washing of phenanthrene by mixed solutions of TX100 and SDBS. Environmental Science & Technology,2006,40(13), 4274-4280
    16. Rosen, M.J., Surfactants and Interfacial phenomena.2004:Wiley-Interscience
    17. Edwards, D.A.; Luthy, R.G.; and Liu, Z.B. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environmental Science & Technology,1991,25(1),127-133
    18. America Petroleum Institute. Underground movements of gasoline on groundwater and enhanced recovery by surfactants. API Publication,1979, No.4317
    19. William, C. and Anderson, P.E. Innovative site remediation technology:Soil washing/soil flushing.1993, EPA 542-B-93-012
    20. Abdul, A.S.; Gibson, T.L.; Ang, C.C.; Smith, J.C.; and Sobczynski, R.E. In situ surfactant washing of polychlorinated biphenyls and oils from a contaminated site. Ground Water, 1992,30(2),219-231
    21. Jawitz, J.W.; Annable, M.D.; Rao, P.S.C.; and Rhue, R.D. Field implementation of a Winsor type I surfactant/alcohol mixture for in situ solubilization of a complex LNAPL as a single phase microemulsion. Environmental Science & Technology,1998,32(4), 523-530
    22. Menger, F.M. and Littau, C.A. Gemini surfactants-A new class of self-assembling molecules. Journal of the American Chemical Society,1993,115(22),10083-10090
    23. Lu, L. and Zhu, L.Z. Effect of a cationic surfactant on the volatilization of PAHs from soiL Environmental Science and Pollution Research,2012,19,1515-1523
    24. Chang, C.H. and Franses, E.I. Adsorption dynamics of surfactants at the air/water interfae-A critical review of mathematical models, data, and mechanisms. Colloids and Surfaces A-Physicochemical and Engineering Aspects,1995,100,1-45
    25. Zhou, W.J. and Zhu, L.Z. Enhanced desorption of phenanthrene from contaminated soil using anionic/nonionic mixed surfactant Environmental Pollution,2007,147(2),350-357
    26. Zhu, H.B. and Aitken, M.D. Surfactant-enhanced desorption and biodegradation of polycyclic aromatic hydrocarbons in contaminated soil. Environmental Science & Technology,2010,44(19),7260-7265
    27. Volkering, F.; Breure, A.M.; Vanandel, J.G.; and Rulkens, W.H. Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology,1995,61(5),1699-1705
    28. Tiehm, A. Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Applied and Environmental Microbiology,1994,60(1),258-263
    29. Sponza, D.T. and Gok, O. Effect of rhamnolipid on the aerobic removal of polyaromatic hydrocarbons (PAHs) and COD components from petrochemical wastewater. Bioresource Technology,2010,101(3),914-924
    30. Laha, S. and Luthy, R.G. Inhibition of phenanthrene mineralization by nonionic surfactants in soil-water systems. Environmental Science & Technology,1991,25(11), 1920-1930
    31. Garcia-Junco, M.; Gomez-Lahoz, C.; Niqui-Arroyo, J.L.; and Ortega-Calvo, J.J. Biosurfactant-and biodegradation-enhanced partitioning of polycyclic aromatic hydrocarbons from nonaqueous-phase liquids. Environmental Science & Technology, 2003,37(13),2988-2996
    32. Garcia, J.M.; Wick, L.Y.; and Harms, H. Influence of the nonionic surfactant Brij 35 on the bioavailability of solid and sorbed dibenzofuran. Environmental Science & Technology, 2001,35(10),2033-2039
    33. Bueno-Montes, M.; Springael, D.; and Ortega-Calvo, J.J. Effect of a nonionic surfactant on biodegradation of slowly desorbing PAHs in contaminated soils. Environmental Science & Technology,2011,45(7),3019-3026
    34. Backhus, D.A.; Picardal, F.W.; Johnson, S.; Knowles, T.; Collins, R.; Radue, A.; and Kim, S. Soil-and surfactant-enhanced reductive dechlorination of carbon tetrachloride in the presence of Shewanella putrefaciens 200. Journal of Contaminant Hydrology,1997,28(4), 337-361
    35. Allan, I.J.; Semple, K.T.; Hare, R.; and Reid, B.J. Cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and phenols in contaminated soil slurries. Environmental Science & Technology,2007,41(15),5498-5504
    36. Zhang, D. and Zhu, L.Z. Effects of Tween 80 on the removal, sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1. Environmental Pollution,2012,164,169-174
    37. Tao, S.; Cui, Y.H.; Xu, F.; Li, B.G.; Cao, J.; Liu, W.; Schmitt, G.; Wang, X.L.; Shen, W.; Qing, B.P.; and Sun, R. Polycyclic aromatic hydrocarbons (PAHs) in agriculture soil and vegetables from Tianjin Science of the Total Environment,2004,320,11-24
    38. Morillo, E.; romero, A.S.; Maqueda, C.; Madrid, L.; Ajmone-Marsan, F.; Grcman, H.; Davidson, C.M.; Hursthouse, A.S.; and Villaverde, J. Soil pollution by PAHs in urban soils:A comparison of three European cities. Journal of Environmental Monitor,2007,9, 1001-1008
    39. 沈菲,朱利中.钢铁工业区附近农田蔬菜PAHs的浓度水平及分布.环境科学,2007,28,669-672
    40. Shen, C.; Chen, Y.; Huang, S.; Wang, Z.; Yu, C.; Qiao, M.Q.; Xu, Y.; Setty, K.; Zhang, J.; Zhu, Y.; and Lin, Q. Dioxin-like compounds in agricultural soils near e-waste recycling sites from Taizhou area, China:Chemical and bioanalytical characterization. Environment International,2009,35,50-55
    41. Cai, Q.Y.; Mo, C.H.; Wu, Q.T.; Katsoyiannis, A.; and Zeng, Q.Y. The status of soil contamination by semivolatile organic chemicals (SVOCs) in China:A review. Science of the Total Environment,2008,389(2-3),209-224
    42. Kipopoulou, A.M.; Manoli, E.; and Samara, C. Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environmental Pollution,1999, 106,369-380
    43. Samsoe-Petersen, L.; Larsen, E.H.; Larsen, P.B.; and Bruun, P. Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environmental Science& Technology,2002,36,3057-3063
    44. Lighty, J.S.; Silcox, G.D.; Pershing, D.W.; Cundy, V.A.; and Linz, D.G. Fundamentals for the thermal remediation of contaminated soils-Particle and bed desorption models. Environmental Science & Technology,1990,24(5),750-757
    45. Yeung, A.T. and Gu, Y.Y. A review on techniques to enhance electrochemical remediation of contaminated soils. Journal of Hazardous Materials,2011,195,11-29
    46. Siegrist, R.L.; West, O.R.; Morris, M.I.; Pickering, D.A.; Greene, D.W.; Muhr, C.A.; Davenport, D.D.; and Gierke, J.S. In-situ mixed region vapor stripping in low-permeability media.2. Full scale field experiments. Environmental Science & Technology,1995,29(9),2198-2207
    47. Pignatello, J.J.; Oliveros, E.; and MacKay, A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science & Technology,2006,36(1),1-84
    48. MacKinnon, L.K. and Thomson, N.R. Laboratory-scale in situ chemical oxidation of a perchloroethylene pool using permanganate. Journal of Contaminant Hydrology,2002, 56(1-2),49-74
    49. Jonsson, S.; Lind, H.; Lundstedt, S.; Haglund, P.; and Tysklind, M. Dioxin removal from contaminated soils by ethanol washing. Journal of Hazardous Materials,2010,179(1-3), 393-399
    50. Schnoor, J.L. Phytoremediation. Technology Evaluation Report for Ground-Water Remediation Technologies Analysis Center,1997, TE-98-01
    51. Zhu, L.Z.; Lu, L.; and Zhang, D. Mitigation and remediation technologies for organic contaminated soils. Frontiers of Environmental Science & Engineering,2010,4(4), 373-386
    52. Gray, P.H.H. and Thornton, H.G. Soil bacteria that decompose certain aromatic compounds. Centr Bakt Parasitenk IIAbt,1928,73,74-96
    53. Strawinski, R.J. and Stone, R.W. Conditions governing the oxidation of naphthalene and the chemical analysis of its products. Journal of Bacteriology,1943,45,16
    54. Chacko, C.I. and Lockwood, J.L. Chlorinated hydrocarbon pesticides:Degradation by microbes. Science,1966,154(3751),893-895
    55. Ko, S.O. and Lockwood, J.L. Conversion of DDT to DDD in soil and the effect of these compounds on soil microorganisms. Canadian Journal of Microbiology,1968,14, 1069-1073
    56. Wedemeyer, G. Dechlorination of DDT by Aerobacter aerogenes. Science,1966, 152(3722),647-647
    57. Pfaender, F.K. and Alexander, M. Extensive microbial degradation of DDT in Vitro and DDT metabolism by natural communities. Journal of Agricultural and Food Chemistry, 1972,20(4),842-846
    58. Johnson, B.T. and Kennedy, J.O. Biomagnification of p,p'-DDT and methoxychlor by bacteria Applied Microbiology,1973,26(1),66-71
    59. Patil, K.C.; Matsumura, F.; and Boush, G.M. Degradation of endrin, aldrin, and DDT by soil microorganisms. Applied Microbiology,1970,19(5),879-881
    60. Davies, J.I. and Evans, W.C. Oxidative metabolism of naphthalene by soil Pseudomonads. Biochemical Journal,1964,91(2),251-261
    61. Castro, T.F. and Yoshida, T. Effect of organic matter on the biodegradation of some organochlorine insecticides in submerged soils. Soil Science and Plant Nutrition,1974, 20(4),363-370
    62. Ahmed, M. and Focht, D.D. Degradation of polychlorinated biphenyls by two species of Achromobacter. Canadian Journal of Microbiology,1973,19,47-52
    63. Siddaramappa, R. and Sethunathan, N. Persistence of gamma-BHC and beta-BHC in Indian rice soils under flooded conditions. Pesticide Science,1975,6(4),395-403
    64. Venkateswarlu, K.; Gowda, T.K.S.; and Sethunathan, N. Persistence and biodegradation of carbofuran in flooded soils. Journal of Agricultural and Food Chemistry,1977,25(3), 533-536
    65. Siddaramappa, R.; Rajaram, K.P.; and Sethunathan, N. Degradation of parathion by bacteria isolated from flooded soil. Applied Microbiology,1973,26,846-849
    66. Gowda, T.K.S. and Sethunathan, N. Endrin decomposition in soils as influenced by aerobic and anaerobic conditions. Soil Science,1977,124,5-9
    67. Cho, D.Y. and Ponnamperuma, F.N. Influence of soil temperature on the chemical kinetics of flooded soils and the growth of rice. Soil Science,1971,112(3),184-194
    68. Smith, M.S. Persistence of DDT and benzene hexachloride in soil. Nature,1948, 161(4085),246-246
    69. Voerman, S. and Besemer, A.F.H. Residues of dieldrin, lindane, DDT, and parathion in a light sandy soil after repeated application throughout a period of 15 years. Journal of Agricultural and Food Chemistry,1970,18(4),717-719
    70. Ep., L.; Tw., F.; and Schulz, K.R. Persistence and vertical distrubition of DDT, lindane, and aldrin residues,10 and 15 years after single soil application Journal of Agricultural and Food Chemistry,1971,19(4),718-721
    71. Voerman, S. and Besemer, A.F.H. Persistence of dieldrin, lindane, and DDT in a light sandy soil and their uptake by grass. Bulletin of Environmental Contamination and Toxicology,1975,13(4),501-505
    72. Forsyth, D.J.; Peterle, T.J.; and Bandy, L.W. Persistence and transfer of CL-36-DDT in the soil and biota of an old-field ecosystem-A 6-year balance study. Ecology,1983,64(6), 1620-1636
    73. Samuel, T.; Agarwal, H.C.; and Pillai, M.K.K. Persistence and binding of DDT and gamma-HCH in a sandy loam soil under field conditions in Delhi, India Pesticide Science, 1988,22(1),1-15
    74. Verma, A. and Pillai, M.K.K. Bioavailability of soil-bound residues of DDT and HCH to certain plants. Soil Biology & Biochemistry,1991,23(4),347-351
    75. Samuel, T. and Pillai, M.K.K. Impact of repeated application on the binding and persistence of C-14 DDT and C-14 HCH in a tropical soil. Environmental Pollution,1991, 74(3),205-216
    76. Alexander, M. How toxic are toxic chemicals in soil. Environmental Science & Technology,1995,29(11),2713-2717
    77. Mitra, J. and Raghu, K. Rice straw amendment and the degradation of DDT in soils. Toxicological and Environmental Chemistry,1986,11(3),171-181
    78. Brodkorb, T.S. and Legge, R.L. Ehanced biodegradation of phenanthrene in oil tar-contaminated soils supplemented with Phanerochaete chrysosporium. Applied and Environmental Microbiology,1992,58(9),3117-3121
    79. Carriere, P.P.E. and Mesania, F.A. Enhanced biodegradation of creosote-contaminated soil. Waste Management,1995,15(8),579-583
    80. VanKemenade, I.; Anderson, W.A.; Scharer, J.M.; and Moo Young, M. Bioremediation enhancement of phenanthrene contaminated soils by chemical pre-oxidation. Hazardous Waste & Hazardous Materials,1995,12(4),345-355
    81. Rahman, K.S.M.; Banat, I.M.; Thahira, J.; Thayumanavan, T.; and Lakshmanaperumalsamy, P. Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant Bioresource Technology,2002,81(1),25-32
    82. Rosenberg, E. Microbial surfactants. Critical Reviews in Biotechnology,1985,3(2), 109-132
    83. Johnsen, A.R.; Wick, L.Y.; and Harms, H. Principles of microbial PAH-degradation in soil. Environmental Pollution,2005,133(1),71-84
    84. Paria, S. Surfactant-enhanced remediation of organic contaminated soil and water. Advances in Colloid and Interface Science,2008,138(1),24-58
    85. Zhao, B.W.; Zhu, L.Z.; Li, W.; and Chen, B.L. Solubilization and biodegradation of phenanthrene in mixed anionic-nonionic surfactant solutions. Chemosphere,2005,58(1), 33-40
    86. Chan, S.M.N.; Luan, T.; Wong, M.H.; and Tam, N.F.Y. Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum. Environmental Toxicology and Chemistry,2006,25(7),1772-1779
    87. Chen, B.L.; Wang, Y.S.; and Hu, D.F. Biosorption and biodegradation of polycyclic aromatic hydrocarbons in aqueous solutions by a consortium of white-rot fungi. Journal of Hazardous Materials,2010,179(1-3),845-851
    88. Bressleer, D.C. and Gray, M.R. Transport and reaction processes in bioremediation of organic contaminants.1. Review of bacterial degradation and transport International Journal of Chemical Reactor Engineering,2003,1, R3
    89. Zheng, X.J.; Blais, J.F.; Mercier, G.; Bergeron, M.; and Drogui, P. PAH removal from spiked municipal wastewater sewage sludge using biological, chemical and electrochemical treatments. Chemosphere,2007,68(6),1143-1152
    90. Shi, T.; Fredrickson, J.K.; and Balkwill, D.L. Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas strains isolated from the terrestrial subsurface. Journal of Industrial Microbiology & Biotechnology,2001,26(5),283-289
    91. Ortiz, I.; Velasco, A.; and Revah, S. Effect of toluene as gaseous cosubstrate in bioremediation of hydrocarbon-polluted soil. Journal of Hazardous Materials,2006, 131(1-3),112-117
    92. Cheng, K.Y.; Lai, K.M.; and Wong, J.W.C. Effects of pig manure compost and nonionic-surfactant Tween 80 on phenanthrene and pyrene removal from soil vegetated with Agropyron elongatum. Chemosphere,2008,73(5),791-797
    93. Kim, I.S.; Park, J.S.; and Kim, K.W. Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Applied Geochemistry,2001, 16(11-12),1419-1428
    94. Tiehm, A.; Stieber, M.; Werner, P.; and Frimmel, F.H. Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil. Environmental Science & Technology,1997,31(9),2570-2576
    95. Joner, E.J.; Johansen, A.; Loibner, A.P.; Dela Cruz, M.A.; Szolar, O.H.J.; Portal, J.M.; and Leyval, C. Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil. Environmental Science & Technology,2001,35(13),2773-2777
    96. Hultgren, J.; Pizzul, L.; Castillo, M.D.; and Granhall, U. Degradation of PAH in a creosote-contaminated soil. A comparison between the effects of Willows (Salix Viminalis), Wheat straw and a nonionic surfactant. International Journal of Phytoremediation,2010,12(1),54-66
    97. Doong, R.A. and Lei, W.G. Solubilization and mineralization of polycyclic aromatic hydrocarbons by Pseudomonas putida in the presence of surfactant Journal of Hazardous Materials,2003,96(1),15-27
    98. Cuypers, C.; Pancras, T.; Grotenhuis, T.; and Rulkens, W. The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-beta-cyclodextrin and Triton X-100 extraction techniques. Chemosphere,2002,46(8),1235-1245
    99. Boonchan, S.; Britz, M.L.; and Stanley, G.A. Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia. Biotechnology and Bioengineering,1998,59(4),482-494
    100. Bernardez, L.A. A rotating disk apparatus for assessing the biodegradation of polycyclic aromatic hydrocarbons transferring from a non-aqueous phase liquid to solutions of surfactant Brij 35. Bioprocess and Biosystems Engineering,2009,32(3),415-424
    101. Zhao, Z.Y.; Selvam, A.; and Wong, J.W.C. Effects of rhamnolipids on cell surface hydrophobicity of PAH degrading bacteria and the biodegradation of phenanthrene. Bioresource Technology,2011,102(5),3999-4007
    102. Schippers, C.; Gessner, K.; Muller, T.; and Scheper, T. Microbial degradation of phenanthrene by addition of a sophorolipid mixture. Journal of Biotechnology,2000, 83(3),189-198
    103. Noordman, W.H.; Wachter, J.H.J.; de Boer, G.J.; and Janssen, D.B. The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. Journal of Biotechnology,2002,94(2),195-212
    104. Kang, S.W.; Kim, Y.B.; Shin, J.D.; and Kim, E.K. Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid Applied Biochemistry and Biotechnology,2010,160(3),780-790
    105. Jahan, K.; Ahmed, T.; and Maier, W.J. Factors affecting the nonionic surfactant-enhanced biodegradation of phenanthrene. Water Environment Research,1997,69(3),317-325
    106. Holman, H.Y.N.; Nieman, K.; Sorensen, D.L.; Miller, C.D.; Martin, M.C.; Borch, T.; McKinney, W.R.; and Sims, R.C. Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studies. Environmental Science & Technology,2002,36(6), 1276-1280
    107. Fava, F. and Di Gioia, D. Effects of Triton X-100 and Quillaya Saponin on the ex situ bioremediation of a chronically polychlorobiphenyl-contaminated soil. Applied Microbiology and Biotechnology,1998,50(5),623-630
    108. Wang, J.M.; Maier, R.M.; and Brusseau, M.L. Influence of hydroxypropyl-beta-cyclodextrin (HPCD) on the bioavailability and biodegradation of pyrene. Chemosphere,2005,60(5),725-728
    109. Shao, Y.; Gao, S.X.; Zhang, H.; Cai, B.C.; and Wang, L.S. Influence of nonionic surfactants and hydroxypropyl-beta-cyclodextrin on the biodegradation of nitrobenzene. World Journal of Microbiology & Biotechnology,2003,19(8),783-790
    110. Yu, H.S.; Zhu, L.Z.; and Zhou, W.J. Enhanced desorption and biodegradation of phenanthrene in soil-water systems with the presence of anionic-nonionic mixed surfactants. Journal of Hazardous Materials,2007,142(1-2),354-361
    111. Willumsen, P.A.; Karlson, U.; and Pritchard, P.H. Response of fluoranthene-degrading bacteria to surfactants. Applied Microbiology and Biotechnology,1998,50(4),475-483
    112. Wong, J.W.C.; Fang, M.; Zhao, Z.Y.; and Xing, B.S. Effect of surfactants on solubilization and degradation of phenanthrene under thermophilic conditions. Journal of Environmental Quality,2004,33(6),2015-2025
    113. Kaczorek, E.; Urbanowicz, M.; and Olszanowski, A. The influence of surfactants on cell surface properties of Aeromonas hydrophila during diesel oil biodegradation. Colloids and Surfaces B-Biointerfaces,2010,81(1),363-368
    114. Fuchedzhieva, N.; Karakashev, D.; and Angelidaki, I. Anaerobic biodegradation of fluoranthene under methanogenic conditions in presence of surface-active compounds. Journal of Hazardous Materials,2008,153(1-2),123-127
    115. Hadibarata, T. and Tachibana, S. Characterization of phenanthrene degradation by strain Polyporus sp S133. Journal of Environmental Sciences-China,2010,22(1),142-149
    116. McGuire, T. and Hughes, J.B. Effects of surfactants on the dechlorination of chlorinated ethenes. Environmental Toxicology and Chemistry,2003,22(11),2630-2638
    117. Mata-Sandoval, J.C.; Karns, J.; and Torrents, A. Influence of rhamnolipids and Triton X-100 on the biodegradation of three pesticides in aqueous phase and soil slurries. Journal of Agricultural and Food Chemistry,2001,49(7),3296-3303
    118. Franzetti, A.; Di Gennaro, P.; Bestetti, G.; Lasagni, A.; Pitea, D.; and Collina, E. Selection of surfactants for enhancing diesel hydrocarbons-contaminated media bioremediation Journal of Hazardous Materials,2008,152(3),1309-1316
    119. Sartoros, C.; Yerushalmi, L.; Beron, P.; and Guiot, S.R. Effects of surfactant and temperature on biotransformation kinetics of anthracene and pyrene. Chemosphere,2005, 61(7),1042-1050
    120. Macur, R.E. and Inskeep, W.P. Effects of a nonionic surfactant on biodegradation of phenanthrene and hexadecane in soil. Environmental Toxicology and Chemistry,1999, 18(9),1927-1931
    121. Jimenez, I.Y. and Bartha, R. Solvent-augmented mineralization of pyrene by a Mycobacterium sp. Applied and Environmental Microbiology,1996,62(7),2311-2316
    122. Prak, D.J.L. and Pritchard, P.H. Degradation of polycyclic aromatic hydrocarbons dissolved in Tween 80 surfactant solutions by Sphingomonas paucimobilis EPA 505. Canadian Journal of Microbiology,2002,48(2),151-158
    123. Billingsley, K.A.; Backus, S.M.; and Ward, O.P. Effect of surfactant solubilization on biodegradation of polychlorinated bipbenyl congeners by Pseudomonas LB400. Applied Microbiology and Biotechnology,1999,52(2),255-260
    124. Hu, X.K.; Zhao, X.H.; and Hwang, H.M. Comparative study of immobilized Trametes versicolor laccase on nanoparticles and kaolinite. Chemosphere,2007,66(9),1618-1626
    125. Shin, K.H.; Kim, K.W.; and Seagren, E.A. Combined effects of pH and biosurfactant addition on solubilization and biodegradation of phenanthrene. Applied Microbiology and Biotechnology,2004,65(3),336-343
    126. Elgh-Dalgren, K.; Arwidsson, Z.; Ribe, V.; Waara, S.; von Kronhelm, T.; and van Hees, P.A.W. Bioremediation of a soil Industrially contaminated by wood preservatives-degradation of polycyclic aromatic hydrocarbons and monitoring of coupled arsenic translocation Water Air and Soil Pollution,2011,214(1-4),275-285
    127. Quintero, J.C.; Moreira, M.T.; Feijoo, G.; and Lema, J.M. Effect of surfactants on the soil desorption of hexachlorocyclohexane (HCH) isomers and their anaerobic biodegradation. Journal of Chemical Technology and Biotechnology,2005,80(9),1005-1015
    128. Chao, W.L.; Lin, C.M.; Shiung, Ⅱ; and Kuo, Y.L. Degradation of di-butyl-phthalate by soil bacteria Chemosphere,2006,63(8),1377-1383
    129. Avramova, T.; Sotirova, A.; Galabova, D.; and Karpenko, E. Effect of Triton X-100 and rhamnolipid PS-17 on the mineralization of phenanthrene by Pseudomonas sp cells. International Biodeterioration & Biodegradation,2008,62(4),415-420
    130. Yeom, I.T. and Ghosh, M.M. Mass transfer limitation in PAH-contaminated soil remediation. Water Science and Technology,1998,37(8),111-118
    131. Bramwell, D.A.P. and Laha, S. Effects of surfactant addition on the biomineralization and microbial toxicity of phenanthrene. Biodegradation,2000,11(4),263-277
    132. Jin, D.Y.; Jiang, X.; Jing, X.; and Ou, Z.Q. Effects of concentration, head group, and structure of surfactants on the degradation of phenanthrene. Journal of Hazardous Materials,2007,144(1-2),215-221
    133. Wyrwas, B.; Chrzanowski, L.; Lawniczak, L.; Szulc, A.; Cyplik, P.; Bialas, W.; Szymanski, A.; and Holderna-Odachowska, A. Utilization of Triton X-100 and polyethylene glycols during surfactant-mediated biodegradation of diesel fuel. Journal of Hazardous Materials,2011,197,97-103
    134. Laha, S.; Liu, Z.B.; Edwards, D.A.; and Luthy, R.G., Surfactant solubilization of phenanthrene in soil-aqueous systems and its effects on biomineralization, in Aquatic Chemistry:Interfacial and Interspecies Processes, C.P. Huang, C.R. Omelia, and J.J. Morgan, Editors.1995. p.339-361
    135. Kim, H.S. and Weber, W.J. Preferential surfactant utilization by a PAH-degrading strain: Effects on micellar solubilization phenomena Environmental Science & Technology,2003, 37(16),3574-3580
    136. Goudar, C.; Strevett, K.; and Grego, J. Competitive substrate biodegradation during surfactant-enhanced remediation. Journal of Environmental Engineering-Asce,1999, 125(12),1142-1148
    137. Deschenes, L.; Lafrance, P.; Villeneuve, J.P.; and Samson, R. Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil. Applied Microbiology and Biotechnology,1996,46(5-6),638-646
    138. Mahanty, B.; Pakshirajan, K.; and Dasu, V.V. Synchronous fluorescence as a selective method for monitoring pyrene in biodegradation studies. Polycyclic Aromatic Compounds, 2008,28(3),213-227
    139. Hickey, A.M.; Gordon, L.; Dobson, A.D.W.; Kelly, C.T.; and Doyle, E.M. Effect of surfactants on fluoranthene degradation by Pseudomonas alcaligenes PA-10. Applied Microbiology and Biotechnology,2007,74(4),851-856
    140. Nash, R.G. and Woolson, E.A. Persistence of chlorinated hydrocarbon insecticides in soils. Science,1967,157(3791),924-927
    141. Hatzinger, P.B. and Alexander, M. Effect of aging of chemicals in soil on their biodegradability and extractability. Environmental Science & Technology,1995,29(2), 537-545
    142. Bosma, T.N.P.; Middeldorp, P.J.M.; Schraa, G.; and Zehnder, A.J.B. Mass transfer limitation of biotransformation:Quantifying bioavailability. Environmental Science & Technology,1997,31(1),248-252
    143. Chen, C.S.; Rao, P.S.C.; and Delfino, J.J. Oxygenated fuel induced cosolvent effects on the dissolution of polynuclear aromatic hydrocarbons from contaminated soil. Chemosphere,2005,60(11),1572-1582
    144. Kumar, B.; Tikariha, D.; Ghosh, K.K.; and Quagliotto, P. Effect of short chain length alcohols on micellization behavior of cationic gemini and monomeric surfactants. Journal of Molecular Liquids,2012,172,81-87
    145. Mulligan, C.N.; Yong, R.N.; and Gibbs, B.F. Surfactant-enhanced remediation of contaminated soil:A review. Engineering Geology,2001,60(1-4),371-380
    146. Di Gennaro, P.; Franzetti, A.; Bestetti, G.; Lasagni, M.; Pitea, D.; and Collina, E. Slurry phase bioremediation of PAHs in industrial landfill samples at laboratory scale. Waste Management,2008,28(8),1338-1345
    147. Guha, S. and Jaffe, P.R. Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants. Environmental Science & Technology,1996,30(4), 1382-1391
    148. Zhou, W.J. and Zhu, L.Z. Influence of surfactant sorption on the removal of phenanthrene from contaminated soils. Environmental Pollution,2008,152(1),99-105
    149. Lu, L. and Zhu, L.Z. Reducing plant uptake of PAHs by cationic surfactant-enhanced soil retention. Environmental Pollution,2009,157(6),1794-1799
    150. Zhang, M. and Zhu, L.Z. Effect of SDBS-Tween 80 mixed surfactants on the distribution of polycyclic aromatic hydrocarbons in soil-water system. Journal of Soils and Sediments, 2010,10(6),1123-1130
    151.周文军.阴-非离子混合表面活性剂增溶、洗脱土壤有机污染的作用及机理.浙江大学博士学位论文,2006
    152. Zhou, W.J. and Zhu, L.Z. Solubilization of pyrene by anionic-nonionic mixed surfactants. Journal of Hazardous Materials,2004,109(1-3),213-220
    153. Yang, K.; Zhu, L.Z.; and Zhao, B.W. Minimizing losses of nonionic and anionic surfactants to a montmorillonite saturated with calcium using their mixtures. Journal of Colloid and Interface Science,2005,291(1),59-66
    154. Zhou, W.J. and Zhu, L.Z. Solubilization of polycyclic aromatic hydrocarbons by anionic-nonionic mixed surfactant. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2005,255(1-3),145-152
    155. Zhou, W.J. and Zhu, L.Z. Enhanced soil flushing of phenanthrene by anionic-nonionic mixed surfactant Water Research,2008,42(1-2),101-108
    156. Zhu, L.Z. and Zhang, M. Effect of rhamnolipids on the uptake of PAHs by ryegrass. Environmental Pollution,2008,156(1),46-52
    157. Ahimou, F.; Denis, F.A.; Touhami, A.; and Dufrene, Y.F. Probing microbial cell surface charges by atomic force microscopy. Langmuir,2002,18(25),9937-9941
    158. Rogers, S.W.; Ong, S.K.; Kjartanson, B.H.; Golchin, J.; and Stenback, G.A. Natural attenuation of poly cyclic aromatic hydrocarbon contaminated sites:Review. Proctice Periodical of Hazardous, Toxic, and Radioactive Waste Management,2002,6(3),141-155
    159. Dimitriou-Christidis, P.; Autenrieth, R.L.; McDonald, T.J.; and Desai, A.M. Measurement of biodegradability parameters for single unsubstituted and methylated polycyclic aromatic hydrocarbons in liquid bacterial suspensions. Biotechnology and Bioengineering, 2007,97(4),922-932
    160. Ye, J.S.; Yin, H.; Mai, B.X.; Peng, H.; Qin, H.M.; He, B.Y.; and Zhang, N. Biosorption of chromium from aqueous solution and electroplating wastewater using mixture of Candida lipolytica and dewatered sewage sludge. Bioresource Technology,2010,101(11), 3893-3902
    161. Sahan, T.; Ceylan, H.; Sahiner, N.; and Aktas, N. Optimization of removal conditions of copper ions from aqueous solutions by Trametes versicolor. Bioresource Technology, 2010,101(12),4520-4526
    162. Hasan, S.H.; Srivastava, P.; and Talat, M. Biosorption of lead using immobilized Aeromonas hydrophila biomass in up flow column system:Factorial design for process optimization. Journal of Hazardous Materials,2010,177(1-3),312-322
    163. Vijayaraghavan, K. and Yun, Y.S. Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution. Journal of Hazardous Materials,2007,141(1),45-52
    164. Gao, J.F.; Zhang, Q.; Su, K.; and Wang, J.H. Competitive biosorption of Yellow 2G and Reactive Brilliant Red K-2G onto inactive aerobic granules:Simultaneous determination of two dyes by first-order derivative spectrophotometry and isotherm studies. Bioresource Technology,2010,101(15),5793-5801
    165. Janos, P.; Coskun, S.; Pilarova, V.; and Rejnek, J. Removal of basic (Methylene Blue) and acid (Egacid Orange) dyes from waters by sorption on chemically treated wood shavings. Bioresource Technology,2009,100(3),1450-1453
    166. Aksu, Z. Application of biosorption for the removal of organic pollutants:A review. Process Biochemistry,2005,40(3-4),997-1026
    167. Stringfellow, W.T. and Alvarez-Cohen, L. Evaluating the relationship between the sorption of PAHs to bacterial biomass and biodegradation. Water Research,1999,33(11), 2535-2544
    168. Xiao, L.; Qu, X.; and Zhu, D.Q. Biosorption of nonpolar hydrophobic organic compounds to Escherichia coli facilitated by metal and proton surface binding. Environmental Science & Technology,2007,41(8),2750-2755
    169. Thompson, K.; Zhang, J.Y.; and Zhang, C.L. Use of fugacity model to analyze temperature-dependent removal of micro-contaminants in sewage treatment plants. Chemosphere,2011,84(8),1066-1071
    170. Chakraborty, S. and Mukherji, S. Surface hydrophobicity of petroleum hydrocarbon degrading Burkholderia strains and their interactions with NAPLs and surfaces. Colloids and Surfaces B-Biointerfaces,2010,78(1),101-108
    171. Noda, Y. and Kanemasa, Y. Determination of hydrophobicity on bacterial surfaces by nonionic surfactants. Journal of Bacteriology,1986,167(3),1016-1019
    172. Gorna, H.; Lawniczak, L.; Zgola-Grzeskowiak, A.; and Kaczorek, E. Differences and dynamic changes in the cell surface properties of three Pseudomonas aeruginosa strains isolated from petroleum-polluted soil as a response to various carbon sources and the external addition of rhamnolipids. Bioresource Technology,2011,102(3),3028-3033
    173. Wick, L.Y.; Pasche, N.; Bernasconi, S.M.; Pelz, O.; and Harms, H. Characterization of multiple-substrate utilization by anthracene-degrading Mycobacterium frederiksbergense LB501T. Applied and Environmental Microbiology,2003,69,6133-6142
    174. Das, K. and Mukherjee, A.K. Differential utilization of pyrene as the sole source of carbon by Bacillus subtilis and Pseudomonas aeruginosa strains:role of biosurfactants in enhancing bioavailability. Journal of Applied Microbiology,2007,102,195-203
    175. Whyte, L.G.; Slagman, S.J.; Pietrantonio, F.; Bourbonniere, L.; Koval, S.F.; Lawrence, J.R.; Inniss, W.E.; and Greer, C.W. Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Applied and Environmental Microbiology,1999,65,2961-2968
    176. Zeng, G.M.; Liu, Z.F.; Zhong, H.; Li, J.B.; Yuan, X.Z.; Fu, H.Y.; Ding, Y.; Wang, J.; and Zhou, M.F. Effect of monorhamnolipid on the degradation of n-hexadecane by Candida tropicalis and the association with cell surface properties. Applied Microbiology and Biotechnology,2011,90(3),1155-1161
    177. Obuekwe, C.O.; Al-Jadi, Z.K.; and Al-Saleh, E.S. Sequential hydrophobic partitioning of cells of Pseudomonas aeruginosa gives rise to variants of increasing cell-surface hydrophobicity. FEMS Microbiology Letters,2007,270(2),214-219
    178. Mohanty, S. and Mukherji, S. Alteration in cell surface properties of Burkholderia spp. during surfactant-aided biodegradation of petroleum hydrocarbons. Applied Microbiology and Biotechnology,2012,94(1),193-204
    179. Gillelan, H.E.; Stinnett, J.D.; Roth, I.L.; and Eagon, R.G. Freeze-etch study of Pseudomonas aeruginosa-Localization within cell wall of an ethylenediaminetera-acetate-extractable component. Journal of Bacteriology,1973,113(1),417-432
    180. Paria, S. and Khilar, K.C. A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface. Advances in Colloid and Interface Science,2004,110(3), 75-95
    181. Yuan, X.Z.; Ren, F.Y.; Zeng, G.M.; Zhong, H.G.; Fu, H.Y.; Liu, J.X.; and Xu, X.M. Adsorption of surfactants on a Pseudomonas aeruginosa strain and the effect on cell surface lypohydrophilic property. Applied Microbiology and Biotechnology,2007,76(5), 1189-1198
    182. Zhang, Y. and Miller, R.M. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Applied and Environmental Microbiology,1994,60,2101-2116
    183. Neu, T.R. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiological Reviews,1996,60(1),151-166
    184. Brown, D.G. and Jaffe, P.R. Effects of nonionic surfactants on the cell surface hydrophobicity and apparent hamaker constant of a Sphingomonas sp. Environmental Science & Technology,2006,40(1),195-201
    185. Zhong, H.G.; Zeng, G.M.; Liu, J.X.; Xu, X.M.; Yuan, X.Z.; Fu, H.Y.; Huang, G.H.; Liu, Z.F.; and Ding, Y. Adsorption of monorhamnolipid and dirhamnolipid on two Pseudomonas aeruginosa strains and the effect on cell surface hydrophobicity. Applied Microbiology and Biotechnology,2008,79(4),671-677
    186. Zhong, H.; Zeng, G.M.; Yuan, X.Z.; Fu, H.Y.; Huang, G.H.; and Ren, F.Y. Adsorption of dirhamnolipid on four microorganisms and the effect on cell surface hydrophobicity. Applied Microbiology and Biotechnology,2007,77(2),447-455
    187. Singer, S.J. and Nicolson, G.L. Fluid mosaic model of structure of cell membranes. Science,1972,175(4023),720-731
    188. Yeagle, P.L., The structure of biological membranes, second edition ed.2005, New York: CRC Press.
    189. Helenius, A. and Simons, K. Solubilization of membranes by detergents. Biochimica Et Biophysica Acta,1975,415(1),29-79
    190. Sikkema, J.; Debont, J.A.M.; and Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews,1995,59(2),201-222
    191. Rauchova, H.; Drahota, Z.; and Koudelova, J. The role of membrane fluidity changes and thiobarbituric acid-reactive substances production in the inhibition of cerebral cortex Na+/K+-ATPase activity. Physiological Research,1999,48(1),73-78
    192. Pande, A.H.; Qin, S.; and Tatulian, S.A. Membrane fluidity is a key modulator of membrane binding, insertion, and activity of 5-lipoxygenase. Biophysical Journal,2005, 88(6),4084-4094
    193. Green, D.E.; Fry, M.; and Blondin, G.A. Phospholipids as the molecular instruments of ion and solute transport in biological membranes. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences,1980,77(1),257-261
    194. Carriere, B. and Legrimellec, C. Effects of benzyl alcohol on enzyme activities and D-glucose transport in kidney brush border membranes. Biochimica Et Biophysica Acta, 1986,857(2),131-138
    195. Gregory, G., Liposome Technology.2007, CRC press:New York.
    196. Marcelino, J.; Lima, J.; Reis, S.; and Matos, C. Assessing the effects of surfactants on the physical properties of liposome membranes. Chemistry and Physics of Lipids,2007, 146(2),94-103
    197. Bombelli, C.; Giansanti, L.; Luciani, P.; and Mancini, G. Gemini surfactant based carriers in gene and drug delivery. Current Medicinal Chemistry,2009,16(2),171-183
    198. Aronson, D.; M., C.; K., S.; H., P.; and H., H.P. Aerobic biodegradation of organic chemicals in environmental media:a summary of field and laboratory studies.1999; Available from:http://epa. gov/osw/hazard/wastetypes/wasteid/hwirwste/pdf/risk/reports/ s0549.pdf
    199. Vander, J.; Sherman, J.; and Luciano, D., Human physiology:the mechanisms of body function.8th ed.2001, New York:McGraw-Hill Higher Education.
    200. Stein, W.D., The movement of molecules across cell membranes.1967, New York: Academic Press.
    201. Van Hamme, J.D.; Singh, A.; and Ward, O.P. Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnology Advances, 2006,24(6),604-620
    202. Shoji, Y.; Igarashi, T.; Nomura, H.; Eitoku, T.; and Katayama, K. Liposome solubilization induced by surfactant molecules in a microchip. Analytical Sciences,2012,28(4),339-343
    203. Sujatha, J. and Mishra, A.K. Effect of ionic and neutral surfactants on the properties of phospholipid vesicles:Investigation using fluorescent probes. Journal of Photochemistry and Photobiology A-Chemistry,1997,104(1-3),173-178
    204. Guerin, W.F. and Jones, G.E. Mineralization of phenanthrene by a Mycobacterium sp. Applied and Environmental Microbiology,1988,54(4),937-944
    205. Van der werf, M.J.; Hartmans, S.; and Vandentweel, W.J.J. Permeabilization and lysis of Pseudomonas pseudoalcaligenes cells by Triton X-100 for efficient production of D-malate. Applied Microbiology and Biotechnology,1995,43(4),590-594
    206. Nazari, M.; Kurdi, M.; and Heerklotz, H. Classifying surfactants with respect to their effect on lipid membrane order. Biophysical Journal,2012,102(3),498-506
    207. Hengstenberg, W. Solubilization of the membrane bound lactose specific component of the staphylococcal pep dependant phosphotransferase system. FEBS Letters,1970,8(5), 277-280
    208. Schnaitm, C. Solubilization of cytoplasmic membrane of Escherichia coli by Triton X-100. Journal of Bacteriology,1971,108(1),545-552
    209. Umbreit, J.N. and Stroming, J.I. Relation of detergent HLB number to solubilization and stabilization of D-alanine carboxypeptidase from Bacillus subtilis membranes. Proceedings of the National Academy of Sciences of the United States of America,1973, 70(10),2997-3001
    210. Hildebrand, A.; Beyer, K.; Neubert, R.; Garidel, P.; and Blume, A. Temperature dependence of the interaction of cholate and deoxycholate with fluid model membranes and their solubilization into mixed micelles. Colloids and Surfaces B-Biointerfaces,2003, 32(4),335-351
    211. Keller, S.; Tsamaloukas, A.; and Heerklotz, H. A quantitative model describing the selective solubilization of membrane domains. Journal of the American Chemical Society, 2005,127(32),11469-11476
    212. Mueller, J.G.; Devereux, R.; Santavy, D.L.; Lantz, S.E.; Willis, S.G.; and Pritchard, P.H. Phylogenetie and physiological comparisons of PAH-degrading bacteria from geographically diverse soils. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology,1997,71(4),329-343
    213. Cerniglia, C.E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 1992,3,351-368
    214. Bumpus, J.A. and Aust, S.D. Biodegradation of DDT 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane by the white rot fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology,1987,53(9),2001-2008
    215. BoundyMills, K.L.; deSouza, M.L.; Mandelbaum, R.T.; Wackett, L.P.; and Sadowsky, M.J. The atzB gene of Pseudomonas sp strain ADP encodes the second enzyme of a novel atrazine degradation pathway. Applied and Environmental Microbiology,1997,63(3), 916-923
    216. Karlsson, A.; Parales, J.V.; Parales, R.E.; Gibson, D.T.; Eklund, H.; and Ramaswamy, S. Crystal structure of naphthalene dioxygenase:Side-on binding of dioxygen to iron. Science,2003,299(5609),1039-1042
    217. Poulos, T.L. Cytochrome P450. Current Opinion in Structural Biology,1995,5(6), 767-774
    218. Schlichting, I.; Berendzen, J.; Chu, K.; Stock, A.M.; Maves, S.A.; Benson, D.E.; Sweet, B.M.; Ringe, D.; Petsko, G.A.; and Sligar, S.G. The catalytic pathway of cytochrome P450cam at atomic resolution Science,2000,287(5458),1615-1622
    219. Spain, J.C. Biodegradation of nitroaromatic compounds. Annual Review of Microbiology, 1995,49,523-555
    220. Wallar, B.J. and Lipscomb, J.D. Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chemical Reviews,1996,96(7),2625-2657
    221. Carredano, E.; Karlsson, A.; Kauppi, B.; Choudhury, D.; Parales, R.E.; Parales, J.V.; Lee, K.; Gibson, D.T.; Eklund, H.; and Ramaswamy, S. Substrate binding site of naphthalene 1,2-dioxygenase:Functional implications of indole binding. Journal of Molecular Biology, 2000,296(2),701-712
    222. Dean-Ross, D.; Moody, J.D.; Freeman, J.P.; Doerge, D.R.; and Cerniglia, C.E. Metabolism of anthracene by a Rhodococcus species. FEMS Microbiology Letters,2001, 204(1),205-211
    223. Baboshin, M.; Akimov, V.; Baskunov, B.; Born, T.L.; Khan, S.U.; and Golovleva, L. Conversion of polycyclic aromatic hydrocarbons by Sphingomonas sp VKM B-2434. Biodegradation,2008,19(4),567-576
    224. Kauppi, B.; Lee, K.; Carredano, E.; Parales, R.E.; Gibson, D.T.; Eklund, H.; and Ramaswamy, S. Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase. Structure with Folding & Design,1998,6(5),571-586
    225. Schilling, M.; Haetzelt, F.; Schwab, W.; and Schrader, J. Impact of surfactants on solubilization and activity of the carotenoid cleavage dioxygenase, AtCCDl, in an aqueous micellar reaction system. Biotechnology Letters,2008,30(4),701-706
    226. Su, J.H.; Xu, J.H.; and Wang, Z.L. Improving enzymatic production of ginsenoside Rh(2) from Rg(3) by using nonionic surfactant Applied Biochemistry and Biotechnology,2010, 160(4),1116-1123
    227. Nguyen, N.T.; Hsieh, H.C.; Lin, Y.W.; and Huang, S.L. Analysis of bacterial degradation pathways for long-chain alkylphenols involving phenol hydroxylase, alkylphenol monooxygenase and catechol dioxygenase genes. Bioresource Technology,2011,102(5), 4232-4240
    228. Louvado, A.; Coelho, F.; Domingues, P.; Santos, A.L.; Gomes, N.C.M.; Almeida, A.; and Cunha, A. Isolation of surfactant-resistant Pseudomonads from the estuarine surface microlayer. Journal of Microbiology and Biotechnology,2012,22(3),283-291
    229. Nacke, C. and Schrader, J. Micelle based delivery of carotenoid substrates for enzymatic conversion in aqueous media. Journal of Molecular Catalysis B-Enzymatic,2012,77, 67-73
    230. Goncalves, A.M.D.; Aires-Barros, M.R.; and Cabral, J.M.S. Interaction of an anionic surfactant with a recombinant cutinase from Fusarium solani pisi:A spectroscopic study. Enzyme and Microbial Technology,2003,32(7),868-879
    231. Marlowe, E.M.; Wang, J.M.; Pepper, I.L.; and Maier, R.M. Application of a reverse transcription-PCR assay to monitor regulation of the catabolic nahAc gene during phenanthrene degradation Biodegradation,2002,13(4),251-260
    232. Cho, J.; Jeon, S.; Wilson, S.A.; Liu, L.V.; Kang, E.A.; Braymer, J.J.; Lim, M.H.; Hedman, B.; Hodgson, K.O.; Valentine, J.S.; Solomon, E.I.; and Nam, W. Structure and reactivity of a mononuclear non-haem iron(III)-peroxo complex. Nature,2011,478(7370),502-505
    233. Volkering, F.; Breure, A.M.; and Rulkens, W.H. Microbiological aspects of surfactant use for biological soil remediation Biodegradation,1997,8(6),401-417
    234. Song, S.S.; Zhu, L.Z.; and Zhou, W.J. Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant Environmental Pollution,2008,156,1368-1370
    235. Zhou, W.J.; Yang, J.J.; Lou, L.J.; and Zhu, L.Z. Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant Environmental Pollution, 2011,159(5),1198-1204
    236.吕黎.阳离子表面活性剂对PAHs在土壤-作物间迁移的阻控作用及机制.浙江大学博士学位论文,2011
    237. Li, M.; Zhu, L.Z.; and Lin, D.H. Toxicity of ZnO nanoparticles to Escherichia coli: Mechanism and the influence of medium components. Environmental Science& Technology,2011,45,1977-1983
    238. Chiou, C.T.; Peters, L.J.; and Freed, V.H. A physical concept of soil-water equilibria for nonionic organic compounds. Science,1979,206,831-839
    239. Li, F. and Zhu, L.Z. Effect of surfactant-induced cell surface modifications on electron transport system and catechol 1,2-dioxygenase activities and phenanthrene biodegradation by Citrobacter sp SA01. Bioresource Technology,2012,123,42-48
    240. Bogan, B.W. and Lamar, R.T. One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Applied and Environmental Microbiology,1995,61(7),2631-2635
    241. Bogan, B.W.; Lamar, R.T.; and Hammel, K.E. Fluorene oxidiation in vivo by Phanerochaete chrysosporium and in vitro during manganese peroxidase-dependent lipid peroxidation. Applied and Environmental Microbiology,1996,62(5),1788-1792
    242. Bogan, B.W.; Schoenike, B.; Lamar, R.T.; and Cullen, D. Expression of lip genes during growth in soil and oxidation of anthracene by Phanerochaete chrysosporium. Applied and Environmental Microbiology,1996,62(10),3697-3703
    243. Schneider, J.; Grosser, R.; Jayasimhulu, K.; Xue, W.; and Warshawsky, D. Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Applied and Environmental Microbiology, 1996,62(1),13-19
    244. Cerniglia, C.E.; Gibson, D.T.; and Dodge, R.H. Metabolism of benz[a]anthracene by the filamentous fungus Cunninghamella elegans. Applied and Environmental Microbiology, 1994,60(11),3931-3938
    245. Zheng, Z.M. and Obbard, J.P. Oxidation of polycyclic aromatic hydrocarbons (PAH) by the white rot fungus, Phanerochaete chrysosporium. Enzyme and Microbial Technology, 2002,31(1-2),3-9
    246. Gottfried, A.; Singhal, N.; Elliot, R.; and Swift, S. The role of salicylate and biosurfactant in inducing phenanthrene degradation in batch soil slurries. Applied Microbiology and Biotechnology,2010,86(5),1563-1571
    247. Owsianiak, M.; Szulc, A.; Chrzanowski, L.; Cyplik, P.; Bogacki, M.; Olejnik-Schmidt, A.K.; and Heipieper, H.J. Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity. Applied Microbiology and Biotechnology,2009,84(3),545-553
    248. Ibrahim, H.R.; Sugimoto, Y.; and Aoki, T. Ovotransferrin antimicrobial peptide (OTAP-92) kills bacteria through a membrane damage mechanism. Biochimica Et Biophysica Acta-General Subjects,2000,1523(2-3),196-205

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700