黄土半干旱区主要造林树种蒸腾耗水及冠层蒸腾模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树木蒸腾耗水量的准确测算是防护林体系优化配置、造林树种选择以及造林密度等林业生态工程建设技术中最关键、最核心的问题。本文针对黄土半干旱区水土保持防护林体系建设中影响林分稳定的水分环境年际盈亏变化特点,2004年~2009年在山西省方山县北京林业大学径流林业试验地,以主要造林树种侧柏(Platycladus orientalis)、油松(Pinus tabulaeformis)、白榆(Ulmus pumila)和刺槐(Robinia pseudoacacia)为研究对象,以林地土壤水分动态、林木水分生理及其林下植被的生长过程为主要研究内容,通过对林木冠层蒸腾模拟,进行林地蒸散耗水系统研究,并得出以水量平衡为基础的耗水—林分密度关系。该研究可为最终确定与当地自然降水水分生产潜力相适应的适度生物量和覆盖度,客观科学评价半干旱地区林业生态建设的潜力及发展前景提供理论依据。
     主要研究结果如下:
     (1)研究地区(1945-2009)多年平均年降水量为503mm,年际间的降水变幅较大,其多水年和少水年的降水量可相差1-2倍。降水集中于盛夏,春末夏初降水偏少,年降水变率为20.01%,生长季(5~9月)降水变率为23.86%。
     (2)通过不同林分林下植被的生长状况调查及植被数量特征和生物多样性的分析,结果表明:无论是刺槐、白榆还是油松,高密度林分内林木的树高、胸径、冠幅等生长指标值,均比低密度林分内的低。密度过高的林分林内的水分供给已不能满足林木正常生长的需要,导致林木的生长滞缓,成为大片“小老树”;在密度较大的白榆林内,大量的树木出现的严重的枯梢现象,表明林内水分环境已严重恶化。
     (3)利用盆栽试验,用PSYPRO露点水势仪研究不同造林树种的叶水势、萎蔫系数与耗水指数,分析了各树种耐旱机理,结果表明各树种叶水势对环境因子的响应不尽相同,侧柏在干旱胁迫下存活的时间最长,萎蔫系数的大小为:白榆(4.58%)>油松(4.25%)>侧柏(4.08%);而土壤水分利用效率的大小为:侧柏(80.57%)>油松(79.76%)>白榆(78.19%),说明在相同的土壤和水分条件下,侧柏、油松对干旱环境的适应自身调节能力更强。对林木水分生理对土壤含水量的响应进行分析,确定了林木生长适宜的土壤水分范围分别为侧柏:9.88%-13.21%;油松:10.14%-14.66%;白榆:10.78%~13.71%。
     (4)通过热扩散茎流计(TDP)技术对林木树干液流速率实时监测并计算得到冠层蒸腾速率(Ec),结果表明太阳辐射(Rs)、大气水分亏缺(VPD)是影响树冠蒸腾变化的主导环境要素,Ω系数描述了冠层与大气的耦联程度也表示叶或冠层蒸腾对气孔导度调节的敏感性,冠层蒸腾极大地受控于气孔导度(gc)。各环境因子与gc之间均呈显著相关,但受VPD和Rs影响更加显著,相关系数为VPD>Rs>Ta。
     (5)应用两种理论模型对林木冠层气孔导度和冠层蒸腾进行模拟和验证,建立了模型参数。
     方法一利用茎流计实测数据回算冠层气孔导度,根据Jarvis-type模型进行参数率定后模拟实测冠层气孔导度进而利用Penman-Monteith方程模拟侧柏、油松和白榆的冠层蒸腾,分别可以解释85%(侧柏)、90%(油松)、80%(白榆)的变量,其全天的整体相对误差分别为3.12%,4.42%和5.81%,取得了较好的结果。这比使用Li-1600稳态气孔计计算叶片气孔阻力之后进行尺度扩展进而模拟蒸腾的日变化过程具有更高的精度。
     而另外一种基于Jarvis-Stewart阶乘模型的半经验公式即直接利用基于环境变量的阶乘方程模拟冠层蒸腾从而避免了先通过回算Penman-Monteith方程得出冠层气孔导度这一过程,从结果看该方法同样表现出很好的拟合效果,但从理论角度分析,该方法忽略了湍流交换和能量平衡法则,计算所产生的误差不可估。
     (6)预测不同树种生长发育期的实际耗水量,研究实际蒸散量和潜在蒸散量,并对试验地降水资源的环境容量进行了分析。
     应用模型分析黄土半干旱区2009年生长季侧柏、油松与白榆的林木蒸腾耗水量分别为:侧柏156.95 mm,油松171.72 mm,白榆238.91 mm;林地实际蒸散量分别为侧柏林440.10 mm,油松林463.08 mm,白榆林527.92 mm;根据降水资源环境容量理论和水量平衡原理,计算得出降水资源环境容量分别为:坡面拍光处理集水造林,17年生侧柏林分的林木集水面积不小于3 m2,林分理论密度不大于3236株hm-2,白榆林分的林木集水面积不小于7 m2,林分理论密度不大于1382株hm-2;自然坡集水造林,油松林分的林木集水面积不小于6 m2,林分密度不大于1689株hm-2。
Estimating plant water use is an important step in assessing the effects of increasing vegetation cultivation on the hydrological cycle especially in the semi-arid Loess Plateau of China. In this study, water movement monitoring in Soil-Plant and Plant-Atmosphere system combined with sap flow techniques provided a low-cost option to study the canopy physiological transpiration of main tree species-Platycladus orientalis, Pinus tabulaeformis, Ulmus pumila and Robinia pseudoacacia response to environmental factors on a continuous basis. This research was conducted atTuqiaogou watershed of Fangshan County in Shanxi province. With the guidance of SPAC theory, we analyzed the dynamic changes of precipitation resource in plot, the soil water in forest land, the physiological moisture characteristics of different trees and the content of undergrowth. After modeling the water transpired by tree canopy, we studied the stand evaportranspiration and water requirements of different trees, consequently the relationship between water consumption and forest density was concluded based on water balance theory. These studies could provide the scientific bases for assessment of water environment capacity and the potentiality of forest constructions in semi-arid region.
     The major findings and conclusions are as follows:
     (1) Dynamic analysis of precipitation in study site. The average annual precipitation (1945~2009) in study site is 503 mm, large amplitude between more and less yearly precipitation. Above 70% of precipitation concentrated in midsummer. Inter-annual variability of precipitation reached 20.01% and 23.86% in growth season.
     (2) Analysis of soil water under different forest land and characteristics of undergrowth diversity. As the planting density increase, the average height, DBH and canopy area will be decreased. A number of trees in Ulmus pumila has been a serious phenomenon of dieback, reflecting that dense forests consumes more water, with the result that catchment yield may decline and even soil desiccation occurred.
     (3) Analysis of the physiological moisture characteristics in different trees, such as leaf water potential, the wither index, soil water depleted index etc. Physiological characteristics of main tree species in Fangshan were discussed. The results show that the mechanisms of leaf water potential response to environmental variables are different, Platycladus orientalis survivals much longer time than others. The wither index reflected as follow:Ulmus pumila (4.58%)> Pinus tabulaeformis (4.25%)> Platycladus orientalis (4.08%); Soil water use efficiency ranked from high to low as Platycladus orientalis (80.57%)> Pinus tabulaeformis (79.76%)> Ulmus pumila (78.19%).
     (4) Analysis of the sap flow characters and canopy conductance & transpiration in main tree species.Canopy transpiration (Ec) calculated from sap flow monitoring of TDP technology, the results show that solar radiation (Rs) and vapor pressure deficit (VPD) is the dominant environmental factors for Ec. The dimensionless decoupling coefficient (Ω) showed transpiration of main tree species in this trial was strongly controlled by stomatal conductance, and the canopy was highly coupled to the atmosphere. Canopy conductance (gc) variation was to be strongly related to atmosphere vapor pressure deficit, solar radiation and weakly to air temperature.
     (5) Model established for predicting the canopy conductance and (or) canopy transpiration with two different methods. The first method was of sap flow based transpiration measurements to parameterize the Jarivis-type model of canopy conductance, and simulate the canopy transpiration using the Penman-Monteith equation. Cross validation shows that this model provided good predictions of canopy conductance and transpiration for Platycladus orientalis, Pinus tabulaeformis and Ulmus pumila, in which 85%,90%, and 80% of the variability was explained respectively. The average relative error of this modeled was found to be less than the traditional porometer method.
     Another method based on Jarvis-Stewart model express Ec as a function of its driving environmental variables, directly estimate the Ec rather than canopy conductance, was found suitable for predicting the canopy transpiration to variation in vapour pressure deficit, solar radiation and air temperature. However, these functional forms ignored law of turbulent exchange and energy balance, the resulting error was not correctly predicted.
     (6) Assessment of actual tree water consumption within growing season and analysis of actual & potential evaportranspiration to estimate water environment capacity in plot. The canopy transpiration of Platycladus orientalis, Pinus tabulaeformis, Ulmus pumila were separately 156.95 mm,171.72 mm and 238.91 mm during the growing season. Actually, evaportranspiration were separately 440.10 mm, 463.08 mm and 527.92 mm. And under the theory of water balance, water environment capacity were calculated as follow:the suitable stand density volume of Platycladus orientalis and Ulmus pumila on tamped slope should be less than 3236 plant hm-2 and 1382 plant hm-2 separately (the rational catchment area should be more than 3 m2 and 7 m-2every tree). The reasonable stand density volume of Pinus tabulaeformis on natural slope should be less than 1689 plant hm-2 with the rational catchment area should be more than 6 m2.
引文
[1]常国梁.青海大通退耕还林工程区林木耗水特性研究[D].北京林业大学,2005.
    [2]陈静.黄土高寒区三种灌木光合特性对水/盐胁迫的响应[D].北京:北京林业大学,2010.
    [3]陈婷婷.青海省大通县常见灌木不同水分条件下水分利用效率及光响应研究[D].北京林业大学,2008.
    [4]陈玉民等主编.中国主要作物需水量与灌溉[M].北京:水利电力出版社,1995:376.
    [5]丛振涛,雷志栋,杨诗秀.基于SPAC理论的田间腾发量计算模式[J].农业工程学报.2004(2):6-9.
    [6]党宏忠,张劲松,赵雨森.应用热扩散技术对柠条锦鸡儿主根液流速率的研究[J].林业科学.2010,46(3):29-36.
    [7]邓东周,范志平,王红,等.林木蒸腾作用测定和估算方法[J].生态学杂志.2008,27(6):1051-1058.
    [8]董治宝,李振山.风成沙粒度特征对其风蚀可蚀性的影响[J].土壤侵蚀与水土保持学报.1998,4(4):1-5.
    [9]杜峰,梁宗锁,山仑,等.利用称重法测定植物群落蒸散[J].西北植物学报.2003,23(8):1411-1415.
    [10]段华平,卞新民,谢小立,等.农田水循环:地表-大气界面水分传输研究进展[J].中国农业气象.2003,24(1):37-41.
    [11]段玉玺.盐池县沙地造林的水分环境容量与区域生态用水研究[D].北京:北京林业大学,2008.
    [12]高清竹,何立环,等.皇甫川流域主要人工灌木水分生态的研究[J].自然资源学报.2002,17(1):87-94.
    [13]高照阳,张红梅,常明勋,等.国内外土壤水分监测技术[J].节水灌溉.2004(2):28-29.
    [14]韩磊,贺康宁,芦新建,等.青海高寒半干旱区蒙古莸叶水势变化及其与环境因素的关系[J].水土保持通报.2008,28(6):1-5.
    [15]何其华,何永华,包维楷.干旱半干旱区山地土壤水分动态变化[J].山地学报.2003,21(2):149-156.
    [16]贺康宁.黄土半干旱区集水造林的水分生产潜力研究[D].北京林业大学,2000.
    [17]贺康宁,田阳,史常青,等.黄土半干旱区集水造林条件下林木生长适宜的土壤水分环境[J].林业科学.2003,39(1):10-16.
    [18]贺康宁,田阳,张光灿.刺槐日蒸腾过程的Penman-Monteith方程模拟[J].生态学报.2003,23(2):251-258.
    [19]贺康宁,张光灿,田阳,等.黄土半干旱区集水造林条件下林木生长适宜的土壤水分环境[J].林业科学.2003(01):10-16.
    [20]胡顺军,潘渝,康绍忠,等Penman-Monteith与Penman修正式计算塔里木盆地参考作物潜在腾发量比较[J].农业工程学报.2005,21(6):30-35.
    [21]胡兴波.山西方山主要造林树种的蒸腾特性模拟研究[D].北京林业大学,2010.
    [22]胡兴波,韩磊,张东,等.黄土半干旱区白榆和侧柏夜间液流动态分析[J].中国水土保持科学.2010,8(4):51-56.
    [23]胡月楠.黄土高寒区几种灌木树种基于SPAC系统的耐旱耐盐性研究[D].北京林业大学,2008.
    [24]黄春霞.黄土半干旱区主要造林树种水分生长函数研究[D].北京林业大学,2007.
    [25]康绍忠,刘晓明,熊运章.土壤-植物-大气连续体水分传输理论及其应用[M].北京:水利电力出版社,1994:228.
    [26]康晓梅,刘盛,陈建伟,等.人工林林木竞争数量指标的对比研究[J].吉林林业科技.2002,31(6):11-14.
    [27]雷志栋,杨诗秀,谢森传.田间土壤水量平衡与定位通量法的应用[J].水利学报.1988(05):1-3.
    [28]李广德,贾黎明,孔俊杰.运用热技术检测树干边材液流研究进展[J].西北林学院学报.2008,23(3):94-100.
    [29]李吉跃,周平,招礼军.干旱胁迫对苗木蒸腾耗水的影响[J].生态学报.2002,22(9):1380-1386.
    [30]李江风.沙漠生态系统与水分分布[J].新疆环境保护.1997,19(1):7-12.
    [31]李俊,于沪宁.冬小麦水分利用效率及其环境影响因素分析[J].地理学报.1997,52(6):551-560.
    [32]李笑吟.晋西黄土区土壤水分时空变化规律研究[D].北京林业大学,2006.
    [33]李运喜,康文星.杉木人工林水汽扩散规律的研究[J].中南林学院学报.1998,18(2):34-38.
    [34]刘晨峰,王正宁,贺康宁,等.黄土高原半干旱区几种人工林的土壤水分、光照变化及其对林分的影响[J].西部林业科学.2004,33(3):34-41.
    [35]刘奉沉.用快速称重法测定杨树蒸腾速率的技术研究[J].林业科学研究.1990,3(2):162-165.
    [36]刘奉觉,郑世锴,巨关升,等.用热脉冲速度记录仪(HPVR)测定树干液流[J].植物生理学通讯.1993(02):110-115.
    [37]刘奉觉,郑世锴,巨关升,等.树木蒸腾耗水测算技术的比较研究[J].林业科学.1997,33(02):22-31.
    [38]刘怀屺.蒸发力计算方法——彭曼(H.L.Penman)公式的应用[J].山东农业科学.1989(06):22-24.
    [39]刘建立,程丽莉,余新晓.乔木蒸腾耗水的影响因素及研究进展[J].世界林业研究.2009(4):34-40.
    [40]刘静.黄土高寒区三种灌木树种基于SPAC系统的耐旱性研究[D].北京:北京林业大学,2010.
    [41]刘敏.青海黄土高寒区主要生态树种耗水特性研究[D].北京林业大学,2009.
    [42]刘启慎,李建新.中国黄连木生长规律的研究[J].河南林业科技.1999,19(2):3-6.
    [43]刘友良.植物水分逆境生理[M].北京:农业出版社,1992.
    [44]芦新建Penman-Monteith方程计算林木蒸腾量的方法研究[D].北京林业大学,2008.
    [45]吕勇,易红新.水土保持林的密度调控[J].林业资源管理.2001(6):50-53.
    [46]马玲,赵平,饶兴权,等.乔木蒸腾作用的主要测定方法[J].生态学杂志.2005,24(1):88-96.
    [47]马履一.国内外土壤水分研究现状与进展[J].世界林业研究.1997,10(5):26-32.
    [48]马履一,王华田.油松边材液流时空变化及其影响因子研究[J].北京林业大学学报.2002,24(3):23-27.
    [49]马书荣,李海英,祖元刚.裂叶沙参和泡沙参气孔行为与蒸腾特性的关系[J].植物研究.2004,24(1):45-48.
    [50]孟凡荣.北京城市绿化树种蒸腾耗水的研究[D].北京林业大学,2005.
    [51]闵骞.彭曼公式应用中的两个问题的探讨[J].气象.1992,18(11):17-21.
    [52]莫兴国,林忠辉,刘苏峡.基于Penman-Monteith公式的双源模型的改进[J].水利学报.2000(05):6-11.
    [53]牛海山,旭日,张志诚,等.羊草气孔导度的Jarvis-类模型[J].生态学杂志.2005,24(11):1287-1290.
    [54]庞卓,余新晓,朱建刚.树干自然温度梯度变化对热扩散法测算树干液流速率的影响[J].生态学报.2010,30(3):635.
    [55]阮成江,李代琼.半干旱黄土丘陵区沙棘的光合特性及其影响因子[J].沙棘.2007(4):6-9.
    [56]尚爱军,冯光惠.热扩散探针(TDP)茎流计在测算树干液流中的应用[J].湖北农业科学.2008,47(7):838-842.
    [57]沈振西.宁夏南部柠条、沙棘和华北落叶松的液流与蒸腾耗水特性[D].中国林业科学研究院,2005.
    [58]孙立达,朱金兆.水土保持林体系综合效益研究与评价[M].北京:中国科学技术出版社,1995:372.
    [59]孙鹏森.京北水源保护林格局及不同尺度树种耗水特性研究[D].北京林业大学,2000.
    [60]汤章城.植物干旱生态生理的研究[J].生态学报.1983,3(3):196-204.
    [61]唐道锋.库布齐沙地主要灌木树种耗水特性研究[D].北京林业大学,2007.
    [62]陶汉之,周良骝.茶树蒸腾特性的研究[J]_应用生态学报.1995,6(4):349-354.
    [63]田晶会.黄土半干旱区水土保持林主要树种耗水特性研究[D].北京林业大学,2005.
    [64]田晶会,贺康宁,王百田,等.不同土壤水分下黄土高原侧柏生理生态特点分析[J].水土保持学报.2005,19(2):175-178,183.
    [65]田晶会,贺康宁,王百田,等.黄土半干旱区侧柏蒸腾作用及其与环境因子的关系[J].北京林业大学学报.2005,27(3):53-56.
    [66]田阳.盐池沙地防护林林木耗水特性及其结构配置研究[D].北京林业大学,2010.
    [67]宛志沪,蒋跃林.三种林型蒸散量测定方法的研究[J].安徽农业大学学报.1999,26(4):481-487.
    [68]王安志,裴铁璠.森林蒸散测算方法研究进展与展望[J].应用生态学报.2001,12(6):933-937.
    [69]王斌瑞,王百田.黄土高原径流林业技术研究[J].林业科技通讯.1996(9):13-15.
    [70]王斌瑞,王百田主编.黄土高原径流林业[M].北京:中国林业出版社,1996:181.
    [71]王飞,李锐,等.历史时期黄土高原生态环境建设分析[J].水土保持研究.2001,8(2):138-142.
    [72]王克勤,王斌瑞.集水造林防止人工林植被土壤干化的初步研究[J].林业科学.1998,34(4):14-21.
    [73]王沙生,高荣孚,吴贯明.植物生理学(第二版)[M].北京:中国林业出版社,1991.
    [74]王晓江.库布齐沙漠几种沙生灌木光合、耗水及耐旱生理生态特性研究[D].北京林业大学,2008.
    [75]王艳荣,赵利清,邵元虎.温带半干旱地区草坪草与主要杂草抗旱性的比较研究[J].生态学 杂志.2005,24(1):1-5.
    [76]王佑民.中国林地枯落物持水保土作用研究概况[J].水土保持学报.2000,14(4):108-113.
    [77]王正宁.黄土半干旱区林地微生境与下层植被特征研究[D].北京:北京林业大学,2006.
    [78]王治国.山西省生态用水态势及其可持续性评价研究[D].北京林业大学,2007.
    [79]魏天兴,朱金兆,张学培.林分蒸散耗水量测定方法述评[J].北京林业大学学报.1999,21(3):85-91.
    [80]魏晓霞,呼和牧仁,周梅,等.不同年龄华北落叶松叶水势及其影响因素的研究[J].干旱区资源与环境.2010(7):144-148.
    [81]吴力立,董家文.林内蒸发量的研究[J].南京林业大学学报:自然科学版.1999,23(3):55-59.
    [82]武维华.植物生理学[M].北京:科学出版社,2008:52.
    [83]奚如春,马履,王瑞辉,等.元宝枫等3个树种枝干水容特征[J].中南林学院学报.2006,26(4):22-26.
    [84]邢先双,武春霞,张光灿,等.淄川水土保持生态修复区枯落物持水特征研究[J].中国水土保持.2006(4):13-15.
    [85]熊伟.六盘山北侧主要造林树种耗水特性研究[D].中国林业科学研究院,2003.
    [86]徐军亮.京西山区油松、侧柏单木耗水环境影响因子评价与模拟[D].北京林业大学,2006.
    [87]许文滔,赵平,王权,等.基于树干液流测定值的马占相思(Acacia mangium)冠层气孔导度计算及数值模拟[J].生态学报.2007,27(10):4122-4131.
    [88]闫俊华.森林水文学研究进展(综述)[J].热带亚热带植物学报.1999,7(4):347-356.
    [89]阎海平,谭笑,孙向阳,等.北京西山人工林群落物种多样性的研究[J].北京林业大学学报.2001,23(2):16-19.
    [90]杨洪强,张连忠,李林光,等.植物对土壤干旱的识别与逆境信使的产生和传输[J].水土保持研究.2001,8(3):72-76.
    [91]杨新民.黄土高原灌木林地水分环境特性研究[J].干旱区研究.2001,18(1):8-13.
    [92]姚德良,谢正桐,李家春.禹城地区陆气相互作用耦合模式和观测研究[J].生态学报.2000,20(6):1076-1082.
    [93]姚茂和,盛炜彤,熊有强.杉木林林下植被及其生物量的研究[J].林业科学.1991,27(6):644-648.
    [94]叶兵.北京延庆小叶杨与刺槐林的蒸腾耗水特性与水量平衡研究[D].北京:中国林业科学研究院,2007.
    [95]于强,王天铎.光合作用-蒸腾作用-气孔导度的耦合模型及C3植物叶片对环境因子的生理响应[J].植物学报.1998,40(8):740-754.
    [96]余树全,姜春前,等.人为经营干扰对人工雷竹林下植被多样性的影响[J].林业科学研究.2003,16(2):196-202.
    [97]岳广阳,赵哈林,张铜会,等.小叶锦鸡儿灌丛群落蒸腾耗水量估算方法[J].植物生态学报.2009,33(3):508-515.
    [98]张光灿.黄土半干旱区集水造林水分环境容量研究[D].北京:北京林业大学,2000.
    [99]张光灿,刘霞,贺康宁,等.金矮生苹果叶片气体交换参数对土壤水分的响应[J].植物生态学报.2004,28(1):66-72.
    [100]张光灿,刘霞,赵玫.树冠截留降雨模型研究进展及其述评[J].南京林业大学学报:自然科 学版.2000,24(1):64-68.
    [101]张洪江,程金花,史玉虎,等.三峡库区3种林下枯落物储量及其持水特性[J].水土保持学报.2003,17(3):55-58.
    [102]张华.黄土半干旱区主要造林树种耗水量研究[D].北京林业大学,2006.
    [103]张进虎.宁夏盐池沙地沙柳柠条抗旱生理及其土壤水分特征研究[D].北京林业大学,2008.
    1104]张劲松,孟平,等.植物蒸散耗水量计算方法综述[J].世界林业研究.2001,14(2):23-28.
    [105]张利平,滕元文.沙生植物花棒气孔导度的周期波动[J].兰州大学学报:自然科学版.1996,32(4):128-131.
    [106]张岁岐,山仑.植物水分利用效率及其研究进展[J].干旱地区农业研究.2002,20(4):1-5.
    [107]张卫强.黄土半干旱区主要树种光合生理与耗水特性研究[D].北京林业大学,2006.
    [108]张永涛,杨吉华.黄土高原降水资源环境容量下侧柏合理密度的研究[J].水土保持学报.2003,17(2):156-158.
    [109]郑培龙.黄土高原半干旱地区林木蒸腾过程及与环境因素关系的研究[D].北京林业大学,2006.
    [110]周泽福,刘致远,张光灿.黄土丘陵区金矮生苹果园土壤水分有效性及生产力分级[J].林业科学研究.2005,18(1):10-15.
    [111]朱首军,丁艳芳,薛泰谦.土壤-植物-大气(SPAC)系统和农林复合系统水分运动研究综述[J].水土保持研究.2000,7(001):49-53.
    [112]朱艳艳.库布齐沙地常见灌木不同水分条件下水分利用效率及光响应研究[D].北京林业大学,2007.
    [113]张超,王会肖.土壤水分研究进展及简要评述[J].干旱地区农业研究.2003(04):117-120.
    [114]Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[J]. FAO, Rome.1998,300.
    [115]Alves I, Perrier A, Pereira L S. Aerodynamic and surface resistances of complete cover crops: How good is the "big leaf"?[J]. Transactions of the ASAE.1998,41(2):345-351.
    [116]Amarakoon D, Chen A, Mclean P. Estimating daytime latent heat flux and evapotranspiration in Jamaica[J]. Agricultural and Forest Meteorology.2000,102(2-3):113-124.
    [117]Arneth A, Kelliher F M, Bauer G, et al. Environmental regulation of xylem sap flow and total conductance of Larix gmelinii trees in eastern Siberia [J]. Tree Physiology.1996,16(1-2): 247-255.
    [118]Bernier P Y, Bartlett P, Black T A, et al. Drought constraints on transpiration and canopy conductance in mature aspen and jack pine stands[J]. Agricultural and Forest Meteorology.2006, 140(1-4):64-78.
    [119]Boast C W, Robertson T M. A" micro-lysimeter" method for determining evaporation from bare soil:description and laboratory evaluation[J]. Soil Science Society of America Journal.1982, 46(4):689-696.
    [120]Bosveld F C, Bouten W. Evaluation of transpiration models with observations over a Douglas-fir forest[J]. Agricultural and Forest Meteorology.2001,108(4):247-264.
    [121]Condon A G, Richards R A, Rebetzke G J, et al. Improving Intrinsic Water-Use Efficiency and Crop Yield[J]. Crop Science.2002,42(1):122-131.
    [122]Cornish P M, Vertessy R A. Forest age-induced changes in evapotranspiration and water yield in a eucalypt forest[J]. Journal of Hydrology.2001,242(1-2):43-63.
    [123]Daley M, Phillips N. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest[J]. Tree Physiology.2006,26(4):411-419.
    [124]Denmead O T. Plant physiological methods for studying evapotranspiration:Problems of telling the forest from the trees[J]. Agricultural Water Management.1984,8(1-3):167-189.
    [125]Devitt D A, Salal A, Mace K A, et al. The effect of applied water on the water use of saltcedar in a desert riparian environment[J]. Journal of Hydrology.1997,192(1-4):233-246.
    [126]Dewar R C. Interpretation of an empirical model for stomatal conductance in terms of guard cell function[J]. Plant, Cell & Environment.1995,18(4):365-372.
    [127]Dolman A J. A multiple-source land surface energy balance model for use in general circulation models[J]. Agricultural and Forest Meteorology.1993,65(1-2):21-45.
    [128]Dye P J, Olbrich B W, Calder I R. A Comparison of the Heat Pulse Method and Deuterium Tracing Method for Measuring Transpiration from Eucalyptus grandis Trees [J]. Journal of Experimental Botany.1992,43(3):337-343.
    [129]Eagleson P S. Ecohydrology:Darwinian expression of vegetation form and function[M]. New York:Cambridge University Press,2002.
    [130]Ehleringer J R, Monson R K. Evolutionary and Ecological Aspects of Photosynthetic Pathway Variation[J]. Annual Review of Ecology and Systematics.1993,24(1):411-439.
    [131]Farquhar G D, Caemmerer S, Berry J A. A Biochemical Model of Photosynthetic CO2 Assimilation in Leaves of C3 Species[J]. Planta.1980,149(1):78-90.
    [132]Farquhar G D, Lloyd J, Taylor J A, et al. Vegetation effects on the isotope composition of oxygen in atmospheric CO2[J]. Nature.1993,363(6428):439-443.
    [133]Fisher J B, Baldocchi D D, Misson L, et al. What the towers don't see at night:nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California [J]. Tree Physiology.2007,27(4): 597-610.
    [134]Franco C M, Magalhaes A C. Techniques for the measurement of transpiration of individual plants[C]. Montpellier (Francia):UNESCO,1965.
    [135]Gebauer T, Horna V, Leuschner C. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species [J]. Tree Physiology.2008, 28(12):1821-1830.
    [136]Goldstein G, Andrade J L, Meinzer F C, et al. Stem water storage and diurnal patterns of water use in tropical forest canopy trees[J]. Plant Cell and Environment.1998,21(4):397-406.
    [137]Gowing D J G, Jones H G, Davies W J. Xylem-transported abscisic acid:the relative importance of its mass and its concentration in the control of stomatal aperture[J]. Plant, Cell & Environment. 1993,16(4):453-459.
    [138]Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J]. Tree Physiology.1987,3(4):309-320.
    [139]Granier A, Biron P, Kostner B, et al. Comparisons of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine[J]. Theoretical and Applied Climatology.1996,53(1):115-122.
    [140]Green S R, Mcnaughton K G, Clothier B E. Observations of night-time water use in kiwifruit vines and apple trees[J]. Agricultural and Forest Meteorology.1989,48(3-4):251-261.
    [141]Guehl J M, Fort C, Ferhi A. Differential response of leaf conductance, carbon isotope discrimination and water-use efficiency to nitrogen deficiency in maritime pine and pedunculate oak plants[J].New Phytologist.1995,131(2):149-157.
    [142]Harris P P, Huntingford C, Cox P M, et al. Effect of soil moisture on canopy conductance of Amazonian rainforest[J]. Agricultural and Forest Meteorology.2004,122(3-4):215-227.
    [143]Hatton T J, Moore S J, Reece P H. Estimating stand transpiration in a Eucalyptus populnea woodland with the heat pulse method:measurement errors and sampling strategies[J]. Tree Physiology.1995,15(4):219-227.
    [144]Hogg E H, Hurdle P A. Sap flow in trembling aspen:implications for stomatal responses to vapor pressure deficit [J]. Tree Physiology.1997,17(8-9):501-509.
    [145]Hogg E H, Saugier B, Pontailler J Y, et al. Responses of trembling aspen and hazelnut to vapor pressure deficit in a boreal deciduous forest[J]. Tree physiology.2000,20(11):725-734.
    [146]Jan C, Jifi K, L. B W, et al. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees [J]. Tree Physiology.2007,27(2): 181-198.
    [147]Jarvis P G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field[J]. Philosophical Transactions of the Royal Society of London. B, Biological Sciences.1976,273(927):593-610.
    [148]Jarvis P G. Stomatal response to water stress in conifers[M]. Adaptation of plants to water and high temperature stress, C. TN, J. K P, New York:Willey & Sons,1980,105-122.
    [149]Jarvis P G, James G B, Landsberg J J. Coniferous Forest. In, Vegetation and the Atmosphere, Volume 9 Case Studies, ed. JL Monteith[M]. Academic Press, London,1976.
    [150]Jarvis P G, Mcnaughton K G. Stornata! control of transpiration:Scaling up from leaf to region[J]. Adv. Ecol. Res.1986,15:1-49.
    [151]Jones H G. Stomatal control of photosynthesis and transpiration [J]. Journal of Experimental Botany.1998,49(Special Issue):387-398.
    [152]Jun L, Bing C, Xiaofang L, et al. Effects of deep soil desiccation on artificial forestlands in different vegetation zones on the Loess Plateau of China[J]. Acta Ecologica Sinica.2008,28(4): 1429-1445.
    [153]Katul G, Leuning R, Oren R. Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model[J]. Plant, Cell & Environment.2003,26(3):339-350.
    [154]Kellner E. Surface energy fluxes and control of evapotranspiration from a Swedish Sphagnum mire[J]. Agricultural and Forest Meteorology.2001,110(2):101-123.
    [155]Knight D H, Fahey T J, Running S W, et al. Transpiration From 100-yr-old Lodgepole Pine Forests Estimated with Whole-Tree Potometers[J]. Ecology.1981,62(3):717-726.
    [156]Kramer P J, Boyer J S. Water relations of plants and soils[M]. Academic Press, Inc.,1995.
    [157]Kumagai T, Saitoh T M, Sato Y, et al. Transpiration, canopy conductance and the decoupling coefficient of a lowland mixed dipterocarp forest in Sarawak, Borneo:dry spell effects[J]. Journal of Hydrology.2004,287(1-4):237-251.
    [158]Ladefoged K. A Method for Measuring the Water Consumption of Larger Intact Trees[J]. Physiologia Plantarum.1960,13(4):648-658.
    [159]Lambers H, Chapin F S, Pons T L. Plant physiological ecology.2nd ed.[M]. Springer Verlag, 2008:610p.
    [160]Langford K J. Change in yield of water following a bushfire in a forest of eucalyptus regnans[J]. Journal of Hydrology.1976,29(1-2):87-114.
    [161]Leuning R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants[J]. Plant, Cell and Environment.1995,18(4):339-355.
    [162]Lhomme J P, Elguero E, Chehbouni A, et al. Stomatal control of transpiration:Examination of Monteith's formulation of canopy resistance[J]. Water resources research.1998,34(9): 2301-2308.
    [163]Li F, Lyons T J. Estimation of Regional Evapotranspiration through Remote Sensing[J]. Journal of Applied Meteorology.1999,38(11):1644-1654.
    [164]Lindroth A, Iritz Z. Surface energy budget dynamics of short-rotation willow forest[J]. Theoretical and Applied Climatology.1993,47(3):175-185.
    [165]Lu P, Urban L, Zhao P. Granier's Thermal Dissipation Probre (TDP) method for measuring sap flow in trees:theory and practice[J]. Acta Botanica Sinica.2004,46(6):631-646.
    [166]Lu P, Yunusa I A M, Walker R R, et al. Regulation of canopy conductance and transpiration and their modelling in irrigated grapevines[J]. Functional plant biology.2003,30(6):689-698.
    [167]Macfarlane C, Bond C, White D A, et al. Transpiration and hydraulic traits of old and regrowth eucalypt forest in southwestern Australia[J]. Forest Ecology and Management.2010,260(1): 96-105.
    [168]Mackay D S, Ahl D E, Ewers B E, et al. Physiological tradeoffs in the parameterization of a model of canopy transpiration[J]. Advances in Water Resources.2003,26(2):179-194.
    [169]Marquardt D. An Algorithm for Least-Squares Estimation of Nonlinear Parameters[J]. SIAM Journal on Applied Mathematics.1963,11(2):431-441.
    [170]Martin T A, Brown K J, Cermak J, et al. Crown conductance and tree and stand transpiration in a second-growth Abies amabilis forest[J]. Canadian Journal of Forest Research.1997,27(6): 797-808.
    [171]Meijninger W, De Bruin H. The sensible heat fluxes over irrigated areas in western Turkey determined with a large aperture scintillometer[J]. Journal of Hydrology(Amsterdam).2000, 229(1):42-49.
    [172]Meinzer F C, Goldstein G, Jackson P, et al. Environmental and physiological regulation of transpiration in tropical forest gap species:the influence of boundary layer and hydraulic properties[J]. Oecologia.1995,101(4):514-522.
    [173]Meinzer F C, Grantz D A. Coordination of stomatal, hydraulic, and canopy boundary layer properties:Do stomata balance conductances by measuring transpiration?[J]. Physiologia Plantarum.1991,83(2):324-329.
    [174]Mohammad F S. Calibration and use of evapotranspiration equations under arid climatic conditions[J]. Agricultural Engineering Journal.1998,7(3&4):185-200.
    [175]Monteith J L, Unsworth M H. Principles of environmental Physics. Edward Arnold[J]. New York. 1990.
    [176]Morikawa Y, Hattori S, Kiyono Y. Transpiration of a 31-year-old Chamaecyparis obtusa Endl. stand before and after thinning[J]. Tree Physiology.1986,2(1-2-3):105-114.
    [177]Morris J, Collopy J, Mahmood K. Canopy conductance and water use in Eucalyptus plantations[J]. Pak. J. Bot.2006,38(5):1485-1490.
    [178]Nicolas E, Barradas V L, Ortuno M F, et al. Environmental and stomatal control of transpiration, canopy conductance and decoupling coefficient in young lemon trees under shading net[J]. Environmental and Experimental Botany.2008,63(1-3):200-206.
    (?)guntunde P G, van de Giesen N. Water flux measurement and prediction in young cashew trees using sap flow data[J]. Hydrological Processes.2005,19(16):3235-3248.
    (?)guntunde P G, van de Giesen N, Savenije H H G. Measurement and modelling of transpiration of a rain-fed citrus orchard under subhumid tropical conditions[J]. Agricultural Water Management.2007,87(2):200-208.
    [181]Pataki D E, Oren R, Smith W K. Sap flux of co-occurring species in a western subalpine forest during seasonal soil drought[J]. Ecology.2000,81(9):2557-2566.
    [182]Perez P J, Castellvi F, Iba Ez M, et al. Assessment of reliability of Bowen ratio method for partitioning fluxes[J]. Agricultural and Forest Meteorology.1999,97(3):141-150.
    [183]Roberts J. The Use of Tree-cutting Techniques in the Study of the Water Relations of Mature Pinus sylvestris L. [J]. Journal of Experimental Botany.1977,28(3):751-767.
    [184]Roberts S, Vertessy R, Grayson R. Transpiration from Eucalyptus sieberi (L. Johnson) forests of different age[J]. Forest Ecology and Management.2001,143(1-3):153-161.
    [185]Schulze E D, Ermak J, Matyssek M, et al. Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees—a comparison of xylem flow, porometer and cuvette measurements[J]. Oecologia.1985,66(4):475-483.
    [186]Senock R S, Leuschner C. Axial Water Flux Dynamics in Small Diameter Roots of a Fast Growing Tropical Tree[J]. Plant and Soil.1999,208(1):57-71.
    [187]Smith D M, Allen S J. Measurement of sap flow in plant stems[J]. Journal of Experimental Botany.1996,47(12):1833-1844.
    [188]Sperry J S, Alder N N, Eastlack S E. The effect of reduced hydraulic conductance on stomatal conductance and xylem cavitation[J]. Journal of Experimental Botany.1993,44(6):1075.
    [189]Stewart J B. Modelling surface conductance of pine forest[J]. Agricultural and Forest Meteorology.1988,43(1):19-35.
    [190]Swanson R H. Significant historical developments in thermal methods for measuring sap flow in trees[J]. Agricultural and Forest Meteorology.1994,72(1-2):113-132.
    [191]Swanson R H, Whitfield D. A numerical analysis of heat pulse velocity theory and practice[J]. Journal of Experimental Botany.1981,32(1):221.
    [192]Teskey R O, Sheriff D W. Water use by Pinus radiata trees in a plantation [J]. Tree Physiology. 1996,16(1-2):273-279.
    [193]Thom A S, Oliver H R. On Penman's equation for estimating regional evaporation[J]. Quarterly Journal of the Royal Meteorological Society.1977,103(436):345-357.
    [194]Thorburn P J, Hatton T J, Walker G R. Combining measurements of transpiration and stable isotopes of water to determine groundwater discharge from forests[J]. Journal of Hydrology. 1993,150(2-4):563-587.
    [195]Todorovic M. Single-layer evapotranspiration model with variable canopy resistance[J]. Journal of Irrigation and Drainage Engineering.1999,125(5):235-245.
    [196]Tyree M T, Sperry J S. Do Woody Plants Operate Near the Point of Catastrophic Xylem Dysfunction Caused by Dynamic Water Stress?:Answers from a Model [J]. Plant Physiology. 1988,88(3):574-580.
    [197]Vertessy R A, Benyon R G, O'Sullivan S K, et al. Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest[J]. Tree Physiology.1995,15(9): 559-567.
    [198]Vertessy R A, Hatton T J, Reece P, et al. Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique[J]. Tree Physiology.1997,17(12): 747-756.
    [199]Vertessy R A, Watson F G R, O'Sullivan S K. Factors determining relations between stand age and catchment water balance in mountain ash forests[J]. Forest Ecology and Management.2001, 143(1-3):13-26.
    [200]Wallace J, Mcjannet D. Processes controlling transpiration in the rainforests of north Queensland, Australia[J]. Journal of Hydrology.2010,384(1-2):107-117.
    [201]Waring R H, Whitehead D, Jarvis P G. The contribution of stored water to transpiration in Scots pine[J]. Plant, Cell and Environment.1979,2(4):309-317.
    [202]Whitehead D. Regulation of stomatal conductance and transpiration in forest canopies [J]. Tree Physiology.1998,18(8-9):633-644.
    [203]Whitley R, Medlyn B, Zeppel M, et al. Comparing the Penman-Monteith equation and a modified Jarvis-Stewart model with an artificial neural network to estimate stand-scale transpiration and canopy conductance[J]. Journal of Hydrology.2009,373(1-2):256-266.
    [204]Whitley R, Zeppel M, Armstrong N, et al. A modified Jarvis-Stewart model for predicting stand-scale transpiration of an Australian native forest[J]. Plant and Soil.2008,305(1):35-47.
    [205]Wilson K B, Hanson P J, Mulholland P J, et al. A comparison of methods for determining forest evapotranspiration and its components:sap-flow, soil water budget, eddy covariance and catchment water balance[J]. Agricultural and Forest Meteorology.2001,106(2):153-168.
    [206]Wright I R, Manzi A O, Da Rocha H R. Surface conductance of Amazonian pasture:model application and calibration for canopy climate[J]. Agricultural and Forest Meteorology.1995, 75(1-3):51-70.
    [207]Wullschleger S D, Hanson P J, Todd D E. Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques[J]. Forest Ecology and Management.2001,143(1-3): 205-213.
    [208]Wullschleger S D, Hanson P J, Tschaplinski T J. Whole-plant water flux in understory red maple exposed to altered precipitation regimes [J]. Tree Physiology.1998,18(2):71-79.
    [209]Wullschleger S D, Meinzer F C, Vertessy R A. A review of whole-plant water use studies in tree [J]. Tree Physiology.1998,18(8-9):499-512.
    [210]Zahid D M, Shah F, Majeed A. Planting Eucalyptus Camaldulensis in arid environment-is it useful species under water deficit system?[J]. Pak. J. Bot.2010,42(3):1733-1744.
    [211]Zweifel R, Steppe K, Sterck F J. Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model [J]. Journal of Experimental Botany.2007,58(8):2113-2131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700