部分根区滴灌和环境因素对苹果幼树水分传输机制的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前面临着水资源危机和环境恶化的突出矛盾,通过减少灌溉用水和提高植物适应环境胁迫能力来维持干旱半干旱地区生态系统平衡是众多学者十分关注的重要问题。近年来,有关植物水分传导、水流阻力和其它生理要素对各种环境因素的响应特征及规律的研究一直是许多学者十分关注的热点研究领域,特别是近些年出现的“控制性根系分区交替灌溉”技术的广泛研究和应用,确实对改善植物生长的土壤水分状况,提高灌溉水分利用效率起到了重要的作用。在果树分布较多的干旱半干旱地区,农田水分和养分与盐分胁迫并存,对果树的生长产生很大的影响,研究控制性分根交替灌溉和环境因素对苹果幼树水分传输的影响对于丰富果树水分传输理论以及节水调控机制具有重要的理论和实际意义。论文以红富士苹果幼树为材料,通过盆栽和田间小区实验相结合的方法,系统地研究和分析了部分根区滴灌和环境因素对苹果幼树水分传输机制的影响,取得了以下重要结论:
     1.根区滴灌模式和水分处理对苹果幼树生长和根系水分传导的影响表明:根系水分传导与根干重和叶水势均呈正相关关系。交替灌溉反复刺激根系较快生长是根系水分传导提高的重要原因。同时采用交替滴灌模式有利于优化干物质向各个器官均衡分配,使其茎粗/株高和根冠比增大,使得壮苗指数大大提高。从而增强了植物根源水力信号的传输效率和调控植物水分平衡的能力。
     根系生长和根系水分传导随着土壤水分含量的增加而增大,当灌水定额由20 mm增大到30 mm时,交替滴灌处理的根系水分传导增幅最大,表现为:ADI(17.34%)>FDI(12.27%)>CDI(3.36%)。在平均节水达33%时,交替滴灌处理的平均侧根干重和根系水分传导分别较常规滴灌仅降低了19.1%和5.81%,而茎粗/株高、根冠比和壮苗指数分别提高了0.27%、19.46%和11.74%。交替滴灌处理的生长状况和根系水分传导均高于固定滴灌。
     2.根区滴灌方式和水分处理对苹果幼树水流阻力有显著影响。相关性分析表明,叶水流阻力与气孔导度呈负相关关系,而与叶面积呈正相关关系。交替滴灌提高了叶水流阻力是降低蒸腾失水的重要因素,加之降低了根系阻力和(侧枝+主杆)阻力,从而提高了苹果幼树贮水和渗透调节能力及抗干旱胁迫能力。因此,交替滴灌提高了对环境的适应能力。
     苹果幼树根系阻力、冠层阻力、(侧枝+主杆)阻力和单株阻力随着灌水量的增大而减少,而(叶+柄)阻力随着灌水量的增大而增大。在20 mm和30 mm灌水定额下,交替滴灌的(叶+柄)阻力分别比常规滴灌提高17.89%和24.58%。在平均节水达33%的前提下,交替滴灌和固定滴灌的平均(叶+柄)阻力分别比常规滴灌提高了19.65%和24.34%,但交替滴灌和固定滴灌的平均(侧枝+主杆)阻力分别降低了4.61%和13.02%。部分根区滴灌方式通过减小苹果气孔导度和叶面积,提高(叶+柄)阻力,从而减少了叶片的蒸腾失水,提高了苹果幼树的水分利用效率。
     通过研究不同器官水流阻力及占全株的比例发现,根系阻力占全株水流阻力的比例最大,达62.28%,其次为冠层阻力,占37.72%,(叶+柄)阻力及(侧枝+主杆)阻力分别占19.9%和17.82%。可见,根系是阻碍水分传输的主要器官,叶片是阻碍冠层水分散失的主要器官。
     3.部分根区滴灌方式和水分处理对苹果幼树生理特性和水分利用效率的影响表明:在节水达33.3%时,交替滴灌和固定滴灌处理的平均根系水分传导仅降低了5.81%和14.7%,但总水分利用效率、灌溉水利用效率分别高出了常规滴灌处理达16.31%和14.48%、40.52%和27.65%,说明部分根区滴灌方式处理后根系水分传导的提高是引起水分利用效率提高的一个重要方面。
     4.部分根区滴灌下苹果幼树茎液流和水分传导日季节变化及其与环境因素的关系表现为:
     (1)苹果幼树各器官水分传导均存在明显的季节变化,随着生长季节的推移,根系水分传导、冠层水分传导、(主杆+侧枝)水分传导和(叶+柄)水分传导的变化趋势均为先增加后减小;而主杆水分传导和侧枝水分传导随着生长季节的推移逐渐增大。
     (2)根系水分传导日变化过程曲线拟合结果为二次抛物线方程,各滴灌处理均在12:00左右时取得最大值,且常规滴灌处理的值最高;在18:00左右取得最小值,且固定滴灌处理的值最小;各处理在16:00左右时其值又恢复到8:00左右的水平。三种滴灌方式下,(叶+柄)水分传导的日变化过程均表现为双峰型,分别在12:00和16:00取得峰值,(叶+柄)水分传导最大值在12:00时取得,(叶+柄)水分传导最小值在14:00取得。三种滴灌方式在两次峰值的大小顺序均表现为,CDI> ADI> FDI。
     (3)冠层各器官水分传导与它对应的干物质呈线性正相关关系。主杆水分传导与其干重具有较高的相关系数,说明用主杆干重能较好的衡量它的导水能力,其方程式为:kmr= 0.5406Wmr + 0.9721,R2 = 0.6377。根系水分传导与根区土壤含水量和土壤温度均呈线性正相关关系,部分根区滴灌方式提高了根区土壤温度也是引起根系水分传导提高的一个重要因素。在不同测定时期,根系水分传导与根区土壤含水量的决定系数大小关系为:R2(8月)(0.6949)>R2(10月)(0.5391)>R2(6月)(0.1551)>R2(12月)(0.0428),分别在8月和12月取得最大值和最小值。说明根系水分传导与根区土壤含水量的关系与季节变化密切相关。
     (4)在不同的天气状况下,常规滴灌处理的茎液流量均显著的大于交替和固定滴灌处理;不同滴灌方式下,苹果幼树茎液流季节变化趋势与大气温度的变化相关。无论是晴天,还是雨天,各处理的茎液流昼夜变化均表现为单峰曲线,当天气为多云时,茎液流昼夜变化起落较大表现为多峰曲线;部分根区滴灌下苹果幼树茎杆水分传导与日茎液流量呈线性正相关关系,相关系数大小关系表现为,CDI(0.9806)>ADI(0.9275)>FDI(0.8173)。
     5.部分根区滴灌和施肥处理对苹果幼树导水特性的影响表明:在交替滴灌和固定滴灌处理较常规滴灌处理节水达50%的条件下,与无肥处理相比,交替滴灌处理促进根系生长的幅度较常规滴灌处理大,但叶干重的降幅较大。这样交替滴灌处理的植株保持较低的每单位吸收面积的蒸腾速率。交替滴灌根系水分传导的提高是引起水肥利用效率提高的重要原因,不仅提高了节水调控能力,而且也提高了水肥传输能力。虽然常规滴灌处理的平均根系水分传导均高于交替滴灌和固定滴灌处理,但与无肥处理相比,平均增幅大小顺序为,ADI(5.14倍)>CDI(4.74倍)>FDI(4.04倍),说明施肥后对交替滴灌处理的根系水分传导的影响最大。交替滴灌和固定滴灌的蒸腾量和蒸散量分别较常规滴灌处理降低了34.4%和71.27%。交替滴灌处理的生长状况和根系水分传导均高于固定滴灌。
     苹果幼树生长和壮苗指数及根系水分传导均随着施肥量的增大而提高。与无肥处理相比,在三种滴灌方式处理下,平均根系水分传导增长倍数的大小顺序依次为:N2P2(7.37倍)>N1P1(6.7倍)>P2(4.82倍)>P1(3.72倍)>N2(2.98倍)>N1(2.11倍);氮磷配施促进幼树较快生长,根系水分传导大大提高,使得干物质向各个器官均衡分配,提高了壮苗指数。从单施肥的效果来看,施氮促进冠层较快生长,施磷促进根系较快生长,使得根系水分传导较施氮显著提高,虽然施磷减小了总干物质量,但因施磷对根冠比和粗高比的提高幅度较大,因此,施磷也提高了壮苗指数。可见,将交替滴灌与施肥处理相结合,其有利作用可以得到更好地发挥。
     6.盐分处理对部分根区滴灌的苹果幼树生长和水分传导有显著影响。交替和固定滴灌处理干燥侧根系阻碍了对盐分离子的吸收,从而减小了盐分离子对根系的伤害。交替和固定滴灌处理在减少50%灌水量条件下,与常规滴灌相比,在高盐分S2和S3处理下交替滴灌处理的叶水分传导分别较常规滴灌降低了33.56%和44.26%,但交替滴灌处理的根系水分传导反而提高了1.13%和10.91%。交替滴灌处理的苹果幼树生长和水分传导均高于固定滴灌处理。可见,采用交替滴灌处理后不仅提高了苹果幼树根源水力信号的传输效率和调控水分平衡的能力,而且也提高了抗盐分胁迫能力。
     随着盐分浓度的增大,虽然幼树生长受阻,光合速率,气孔导度和蒸腾速率大大降低,水分传导明显减小,但对交替滴灌处理的影响较小。当盐分浓度由S1增大到S2再到S3时,与对照处理相比,三种滴灌方式处理下的根系水分传导和叶水分传导平均降幅顺序为,CDI(48.06%和38.18%)>ADI(40.57%和29.65%)>FDI(32.82%和21.22%)。可见,盐分胁迫对常规滴灌处理的导水能力影响最大。幼树各器官水分传导与其干物质的关系表明,根系水分传导与侧根干重间均呈对数关系,而其它各器官水分传导与其干重间均呈线性正相关关系,但叶片水分传导与叶干重和气孔导度间呈乘幂关系。
     从以上分析可以得知,植物的水分传导与植物的生长环境密切相关,在果树节水灌溉中,采用根系分区交替灌溉方式,不但有利于调节果树根系和冠层的生长,优化干物质向各个器官均衡分配,使其茎粗/株高和根冠比增大,使得壮苗指数明显提高,而且对果树水肥的吸收和传输产生较大的影响。交替灌溉引起根系水分传导提高的重要原因是反复刺激根系较快生长,同时交替滴灌处理的植株保持较低的每单位吸收面积的蒸腾速率,从而对水肥利用效率的提高和调控冠层部分的水分消耗起重要的作用。可见,采用根系分区交替灌溉方式有利于提高对环境的适应能力及节水调控能力,不仅在干旱半干旱地区,而且在盐碱地区也有广阔的应用前景。
In face of the prominent problems of the current water crisis and environmental degradation, how to reduce the amount of irrigation water and improve water use efficiency of plants in itself to maintain the arid and semi-arid ecosystem balance will be a crucial question in future. In recent years, there are some hot research projects about the response of the plant water hydraulic conduction, hydraulic resistance and other physiological elements to a variety of environmental factors. Especially, partial root-zone alternate drip irrigation which is widely studied and applied indeed plays an important role in improving the relationship between soil water condition and in enhancing the water use efficiency of irrigation. In our country the majority of orchards are located in arid and semi-arid regions. The contradiction of nutrient supply and salt stress of soil is outstanding and these two factors always have an important influence on fruit trees. Thus, the studies on the root water uptake and water transport in plants in this condition not only enrich the water transport theories, but also have significances in determining the regulation mechanism of partial rootzone irrigation and in providing services to the orchards production in water shortage regions.In this paper,young apple tree is used as experimental material. Partial root-zone alternate drip irrigation and the response of the environmental factors on the mechanism of water transport are studied and analysed systematicly by pot and field plot experiments. The main conclusions are showed as follow:
     1. By studying effects of different drip irrigation patterns of root zone and watering treatments on young apple tree growth and root hydraulic conductivity, it shows that there is a positive correlation between root hydraulic conductivity and root dry mass and water potential. partial root-zone alternate drip irrigation repeatedly stimulates root rapid growth are important reasons for the increase root hydraulic conductivity. Using partial root-zone alternate drip irrigation pattern may help to optimize dry matter even distributed to every organs, increase its ratio of stem diameter and plant height and root-shoot, so seedlings healthy index is greatly enhanced. Thus, strengthened the roots to absorb and transport watering capability which impelled the transmission efficiency of root hydraulic signal and the ability of regulating water balance of seedling could be enhanced.
     Root biomass and root hydraulic conductivity could be enhanced by increasing the amount of irrigation. When the irrigation quota increased from 20 mm to 30 mm each time, root hydraulic conductivity of partial root-zone alternate drip irrigation treatment has the largest increase, shows: ADI(17.34%)>FDI(12.27%)>CDI(3.36%). When the amount of irrigation water in partial root-zone alternate drip irrigation treatment is saved by 33% , dry mass of lateral roots is only reduced by 6.33%, but the ratio of stem diameter and plant height, and root-shoot ratio , seedlings healthy index are enhanced by 0.27%, 19.46% and 11.74% respectively. Alternate drip irrigation treatment of growth conditions and root hydraulic conductivity are higher than the fixed drip irrigation.
     2. By studying effects of drip irrigation patterns of partial root zone and watering treatments on young apple tree hydraulic resistance, it shows, Correlation analysis shows, there is a negative correlation between and leaf stomatal conductance, while there is a positive correlation between hydraulic resistance and leaf area. The increase of leaf hydraulic resistance under alternate drip irrigation treatment play an important role in reducing water loss of leaf transpiration, and By decreasing root resistance and resistance of lateral branch and master rod, thus the partial rootzone irrigation raises crop storage water adjustment function , enhances the capacity of osmotic adjustment and increases the resistant ability to drought. So the alternate drip irrigation enhances the capacity of the environment adaptability.
     The root resistance, shoot resistance, resistance of lateral branch and master rod of young apple tree are decreased by increasing watering quantity, while the resistance from leaf to petiole are raised by increasing watering quantity. In 20 mm and 30 mm irrigating quota, the hydraulic resistance from leaf to petiole of alternate drip irrigation were increased by 17.89% and 24.58% respectively compared with that of conventional drip irrigation treatment. In the premise of saving 33% of the water supply, compared with conventional drip irrigation treatment, the average hydraulic resistance from leaf to petiole in alternate drip irrigation and fixed drip irrigation are increased by 19.65% and 24.34% respectively, but the average resistance of lateral branch and master rod are reduced by 4.61% and 13.02%, respectively. For the reason that the partial rootzone irrigation increases the hydraulic resistance from leaf to petiole through the decrease of the stomata conductance, leaf area, and thus decreases the leaf blade luxurious transpiration dehydration, and raises plant's water use efficiency.
     Hydraulic resistances of different components and their contributions to whole-plant resistance by studying show: Root resistance to account for the largest proportion of whole-plant resistance, accounting for 62.28 %, followed by shoot resistance, accounting for 37.72%, in turn resistance from leaf to petiole and resistance of lateral branch and master rod, accounting for 19.9% and 17.82%, respectively. So it shows that within the hydraulic resistance of each organ in the whole plant, the root system is the main organ of hindering water transport and leaves is the main organs of hindering water consumption.
     3. By studying effects of different drip irrigation patterns of root zone and watering treatments on young apple tree physiological characteristics and water use efficiency, it shows that when ADI and FDI save 33.3% of irrigation water the average root hydraulic conductivity only reduce 5.81% and 14.7%, but the average total water use efficiency and irrigation water use efficiency are enhanced by 16.31% and 14.48%、40.52% and27.65% respectively, which indicates that root hydraulic conductivity plays an important role in improving water use efficiency under partial root-zone irrigation strategies.
     4. By analyzing daily and seasonal changes of young apple tree stem sap flow and hydraulic conductivity and its relationship with environmental factors under partial root zone irrigation, some conclusions are obtained:
     (1) Hydraulic conductivity in each organs of young apple tree have a obviously seasonal variation. With the growing season goes on, the variation trend of root hydraulic conductivity, shoot hydraulic conductivity, hydraulic conductivity of lateral branch and master rod, and hydraulic conductivity from leaf to petiole increase at first and then decrease; while the trend of master rod hydraulic conduction, lateral branch and master rod hydraulic conduction gradually increase with the growing season goes on.
     (2) The curve fitting result of daily changes of root hydraulic conductivity is a quadratic parabolic equation. All drip irrigation treatments have a Maximum value at around 12:00 and the Maximum value of daily root hydraulic conductivity in the conventional drip irrigation is obtained; at around 18:00 the minimum value is obtained and it is appeared in fixed drip irrigation treatment; when its value go back to the level of 8:00 at about 16: 00. Under three drip irrigation patterns, daily change of the hydraulic conductivity from leaf to petiole is shown as a bimodal curve and it obtains its peak at 12:00 and 16:00 respectively. Maximum value of the hydraulic conductivity from leaf to petiole is obtained at 12:00 and the minimum is obtained at 14:00. Under three drip irrigation patterns, the maximum and minimum values decrease in order of its performance: CDI> ADI> FDI.
     (3) There is a positive correlation between shoot hydraulic conductivity of its each organs and its corresponding dry matter. The master rod hydraulic conduction and its dry weight have a high correlation coefficient showing that the master rod dry weight can be a better factor to estimate its hydraulic conduction capacity and the formula is: kmr = 0.5406Wmr + 0.9721, R2 = 0.6377. There is a linear positive correlation between root hydraulic conductivity and root zone soil moisture and also soil temperature showed a positive correlation with root hydraulic conductivity. That the partial root zone drip irrigation pattern improves the root zone soil temperature also plays an important role in enhancing root hydraulic conductivity. At different measured time, the relationship of the decision coefficient of root hydraulic conductivity and root zone soil moisture is: R2(Aug)(0.6949)>R2(Oct)(0.5391)>R2(Jun)(0.1551)>R2(Dec)(0.0428). It obtains the maximum and minimum values in August and December respectively. Thus, there is a close relationship between root hydraulic conductivity and root zone soil moisture relations, seasonal changes.
     (4) In different weather conditions, the stem sap flux of conventional drip irrigation treatment is significantly greater than the other two treatments; Under different drip irrigation patterns, the seasonal variation trends of young apple tree stem sap flux are related to atmospheric temperature seasonal variation. No matter it is sunny days or rainy days, the stem sap flow diurnal variation of each treatment show a single peak curve, but the diurnal variation of stem sap flux show a multi-peak curve when the weather becomes cloudy. It shows that there is a positive correlation between stem hydraulic conductivity and diumal stem sap flux, the relationship of their correlation coefficient is: CDI (0.98) > ADI (0.93) > FDI (0.82).
     5.By analyzing effects of drip irrigation patterns of partial root zone and fertilization treatments on hydraulic conductivity characteristics of young apple tree, we achieve the following conclusions: in the premise of saving 50% of irrigation water by alternate drip irrigation and fixed drip irrigation compared with conventional irrigation treatment and compared with no fertilizer treatment , root growth rate of alternate drip irrigation treatment is higher than conventional drip irrigation treatment, but leaf dry weight of alternate drip irrigation treatment have a larger drop. Thus alternate drip irrigation treatment’s plants can maintain the lower transpiration rate of per unit absorbing area. Root hydraulic conductivity plays an important role in improving water and fertilization use efficiency under alternate drip irrigation treatment, not only enhances the capacity of water-saving regulation and control, but also improves the water and fertilization transmission capacity.
     Although the average root hydraulic conductivity of the conventional drip irrigation treatment is higher than alternate drip irrigation and fixed drip irrigation, the average root hydraulic conductivity shows decreases in this order compared with no fertilizer treatment: ADI(5.14 times)>CDI(4.74 times)>FDI(4.04 times).This indicates that effects of fertilization on alternate drip irrigation treatment is the largest. Transpiration and evapotranspiration of alternate drip irrigation and fixed drip irrigation treatment reduce 34.4% and 71.27% respectively compared with the conventional drip irrigation treatment. Growth condition of alternate drip irrigation treatment and root hydraulic conductivity are higher than the fixed drip irrigation.
     With the increase of the amount of fertilizer, seedling growth, healthy index of seedling and root hydraulic conductivity improves. the average root hydraulic conductivity of three drip irrigation patterns shows decreases in this order compared with no application fertilizer treatment: N2P2 (7.37 times) >N1P1 (6.7 times) >P2 (4.82 times) >P1 (3.72 times) >N2 (2.98 times) >N1 (2.11 times). Application of mixture of nitrogen and phosphorus promotes rapid growth of young apple tree and increases the root hydraulic conductivity greatly, makes the dry matter to distribute more balanced to each organs, improves the healthy index of seedling. Judging from the effect of single fertilization,application nitrogen promotes fast shoot growth and application phosphorus promotes root rapid growth, making the root hydraulic conductivity improves more significant than only application nitrogen. Although application phosphorus reduces the amount of total dry matter, the phosphorus has a positive effect on the root-to-shoot and diameter-high ratio larger, so application phosphorus also increases the healthy index of seedlings. It can clearly be seen that the beneficial effect of alternate drip irrigation should be better materialized under appropriate fertilization.
     6. By analyzing effects of drip irrigation patterns of partial root zone and salt treatments on growth and root hydraulic conductivity of young apple tree. Results shows that the dry root zone of alternate drip irrigation and fixed drip irrigation treatment hinder the absorption of salt ions, which reduces the damage of salt ions to the root system. Compared to CDI treatment, ADI and FDI treatment reduced irrigation water by 50%. Under higher NaCl concentrations (S2 and S3) levels, ADI treatment decrease from leaf to petiole hydraulic conductivity by 33.56% and 44.26%, while the root hydraulic conductivity of alternate drip irrigation treatment increased by 1.13% and 10.91%, respectively. At the same time,the growth and hydraulic conductance of alternate drip irrigation treatment are all higher than fixed drip irrigation treatment.This indicates that the root hydraulic signal transmission efficiency of alternate drip irrigation treatment, the ability of seedlings regulating water balance and resistance stability to salt-stress could be enhanced.
     With the increase of the salt concentration, the young apple tree growth blocked, photosynthetic rate, stomatal conductance and transpiration rate are greatly decreased, hydraulic conductivity significantly reduced. However, alternate drip irrigation treatment is less affected. As the salt concentration increased from S1 to S2 to S3 and compared with no salt treatment,the average decreasing range of root hydraulic conductivity and from leaf to petiole hydraulic conductivity under three drip irrigation patterns shows: CDI (48.06% and 38.18%) > ADI (40.57% and 29.65%) > FDI (32.82% and 21.22%). The relationship between hydraulic conductivity of young apple tree and their dry matter shows that there is a logarithmic relationship between them, but the relationship between other organ’s hydraulic conductivity and its dry weight shows a linear positive correlation, however, it shows that there is a power relations between from leaf to petiole hydraulic conductivity and leaf blade dry weight and stomatal conductance.
     From the above analysis, we know that hydraulic conductivity of plants is closely related to the environment in which plants grows. water-saving irrigation in fruit trees, using alternate partial rootzone irrigation patterns not only helps to regulate roots and shoots growth of fruit trees and optimize dry matter even distributed to every organs, increase its ratio of stem diameter and plant height and root-shoot, so seedlings healthy index is greatly enhanced, but also has a greater impact on fruit water and fertilization absorption and transmission, especially, partial root-zone alternate drip irrigation repeatedly stimulates root rapid growth are important reasons for the increase root hydraulic conductivity. And alternate drip irrigation treatment’s plants can maintain the lower transpiration rate of per unit absorbing area. Thereby alternate partial rootzone irrigation plays an important role in improving water and fertilization use efficiency and regulating and controlling water consumption of the shoots. So we can conclude that alternate partial rootzone irrigation is conducive to improve the environment adaptability and the capacity of water-saving regulation and control and it shows wide application prospect not only in arid and semi-arid areas, but also in the saline area.
引文
[1]张富仓.土壤-根系统养分迁移机制及其数值模拟[D].杨凌:西北农林科技大学, 2001.
    [2]高光林,姜卫兵,俞开锦,等.盐胁迫对果树光合生理的影响[J].果树学报, 2003, 20(6): 493-497.
    [3] Kang S.Z., Hu X.T., Goodwin I., et al. Soil water distribution, water use and yield response to partial rootzone drying under a shallow groundwater table condition in a pear orchard [J]. Scientia Horticulturae, 2002, 92 (34): 277-291.
    [4] Brian G., Leib A.E., Horst W., et al. Partial root zone drying and deficit irrigation of‘Fuji’apples in a semi-arid climate [J]. Irrigation Science, 2006, 24: 85-99.
    [5] Hsiao T.C., Xu L.K. Sensitivity of growth of rots versus leaves to wa ter stress [J]. Journal of Experimental Botany, 2000, 51: 1595-1616.
    [6] Jarvis P.G., Naughton K.G. Stomatal control of transpiration: scaling up from leaf to region [J]. Adv Ecol Res, 1986, 15: 1-49.
    [7] James A.B. Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions [J]. Oecologia, 2004, 140: 1-10.
    [8] Tyree, M.T. Dynamic measurements of root hydraulic conductance using a high-pressure flow meter in the laboratory and field [J]. Journal of Experimental Botany, 1995, 46: 83-94.
    [9] Tyree, M.T., Yang, S., Cruiziat, P., et al. Novel methods of measuring hydraulic conductivity of tree root systems and interpretation using AMAIZED: a maize-root dynamic model for water and solute transport [J]. Plant Physiol, 1994, 104: 189-199.
    [10] Tyree, M.T. The cohesion—tension theory of sap ascent.Current controversies [D]. Journal of Experimental Botany, 1997, 48: 1753-1765.
    [11] Tyree, M.T., Sperry J.S. The vulnerability of xylem to cavitations and embolism [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40: 19-38.
    [12] Dixon H.H., Joly J. On the ascent of sap [J]. Philosophical Transactions of the Royal Society London, Series B , 1894, 186: 563 -576.
    [13] Mencuccini M. The ecological significance of long-distance water transport: short-term regulation , long-term acclimation and the hydraulic costs of stature across plant life forms [J]. Plant, Cell and Environment, 2003, 26: 163-182.
    [14] Zhao CX, Deng XP, Zhang SQ, et al. Advances in the studies on water uptake by plant roots [J]. Ada Botanica Sinica, 2004, 46: 505-514.
    [15]江志荣,张兴昌,李军.农田生态系统中的物质迁移研究进展[J].干旱地区农业研究, 2004, 22(1): 156-164.
    [16]潘瑞炽.植物生理学[M].北京:高等教育出版社, 2004.
    [17] Steudle E., Peterson C.A. How does water get through roots [D]. Journal of Experimental Botany, 1998, 49: 775-788.
    [18] Frensch J., Hsiao T.C. Hydraulic propagation of pressure along immature and mature xylem vessels of roots of Zea mays measures by pressure probe techniques [J]. Planta, 1993, 190: 263-270.
    [19] Steudle E. The biophysics of plant water:compartmentation,coupling with metabolic processes,and wa ter flow in plant rots[A]. Eds. Somero G.N., Osmond C.B., Bolis a. Water and life:comparative analysis of water relationship at the organism, cellular, and molec-ular levels [c]. sprier-verlag, Berlin, 1992: 173-204.
    [20] Barrowclough D.E., Peterson C.A., Steudle E. Radial hydraulic conductivity along developing onion roots [J]. Journal of Experimental Botany, 2000, 51: 547-557.
    [21] Steudle E. Water transport across rots [J]. Plant and Soil, 1994, 167: 79-90.
    [22]康绍忠,刘晓明,熊运章.土壤-植物-大气连续体水分传输理论及其应用[M].北京:水利电力出版社, 1994.
    [23]黄明斌,张富仓,康绍忠.瞬变条件下土壤-植物系统中的水容效应及其应用研究[J].干旱地区农业研究, 1999, 17(1): 45-49.
    [24] Powell D.B., Thorpe M.R. Dynamic aspects of plant-water relations in environmental effects on crop physiology [M]. London: Academic Press, 1977.
    [25] Bariac T., Rambal S., Jusserand C. Evaluating water fluxes of field-grow alfalfa from diurnal observations of natural isotope concentrations, energy budget and ecophysiological parameters [J]. Agricultural and Forest Meteorology, 1989, 48: 263-28.
    [26]奚如春,马履一,樊敏,等.油松枝干水容特征及其对蒸腾耗水的影响[J].北京林业大学学报, 2007, 29(1): 160-165.
    [27]张建锋,李吉跃,宋玉民,等.植物耐盐机理与耐盐植物选育研究进展[J].世界林业研究, 2003, 16 (2) : 16-22.
    [28]李玉全,张海艳,渗法富.作物耐盐性的分子生物学研究进展[J].山东科学, 2002, 15(2): 8-14.
    [29] Nolte K.D., Hanson A.D., Gage D.A. Proline accumulation and methylation to proline betaine in Citrus: implication for geneticengineering of stress resistance [J]. Journal American Society Horticultural Science, 1997, 122(1): 8-13.
    [30] Voetberg G.S., Sharp R.E. Growth of the maize primary root at low water potentials [J]. Plant Physiol, 1991, 96(4): 1125-1130.
    [31]梁峥,骆爱玲.甜菜碱和甜菜碱合成酶[J].植物生理学通讯, 1995, 31(1): 1-8.
    [32]谢振宇,杨光穗.牧草耐盐性研究进展[J].草业科学, 2003, 20 (8): 11-17.
    [33] Hill, A.E., Shachar-Aill, B., Shachar-Hill, Y. What are a quaporins For [J]. Journal of Membrane Biology, 2004, 197: 1-32.
    [34]李学军,于和鸣.水通道的分子生物学研究[J].生理学进展, 1996, 27 (1): 19-24.
    [35] Maurel C., Reizer J., Sch roeder J.I., et al. The vacuolar membrance p ro tein C-T IP creates water specific channels in Xenopus Ocytes [J]. EMBOJ, 1993, 12 (6): 2241-2247.
    [36]徐继忠,陈海江,章文才.外源多胺对富士苹果花和幼果内源多胺与激素的影响[J].园艺学报, 2001, 28 (3): 206-210
    [37]曹志方,赵南明,刘强.植物膜水通道蛋白[J].生命的化学, 2000, 20 (l): 13-16.
    [38]于秋菊,林忠平,李景富.植物水孔蛋白研究进展[J].北京大学学报(自然科学版), 2002, 38 (6): 854-854.
    [39]雷琴,夏敦岭,任小林.水孔蛋白与植物的水分运输[J].水土保持研究, 2005, 12 (3): 81-84.
    [40]朱珠,郑海雷.植物水孔蛋白[J].细胞生物学杂志, 2005, 27 (5): 539-54.
    [41] North G.B., Nobel P.S. Heterogeneity in water avaiability alters cellular Development and Hydraulic Conductivity along Roots of a desert Succulent [J]. Annals of Botany, 2000, 85: 247-255.
    [42]郑国琦,许兴,徐兆桢.耐盐分胁迫的生物学机理及其基因工程研究进展[J].宁夏大学学报,2002, 23(1): 79-85.
    [43]王宝山,邹琦.质膜转运蛋白及其与植物耐盐性关系研究进展[J].植物学通报, 2000, 17(1): 17-26.
    [44] Santoni V., Vinh J., Pflieger D. Proteomic study reveals novel insights into the diversity of aquaporin forms expressed in the plasma membrane of plant roots [J]. Biochemistry Journal, 2003, 373: 289- 296.
    [45]张岁岐,山仑.根系吸水机理研究进展[J].应用与环境生物学报, 2001, 7(4): 396-402.
    [46] Loustou D., Berbigier P., Roumagnac P., et al. Transpiration of 64 year old maritime pine stand in Pordugal. L. Seasonal course of water flux through maritime pine [J]. Oecologia, 1996, 107: 33-43.
    [47]高照全,王小伟,魏钦平,等.桃树不同部位贮水调节[J].植物生理学通讯, 2003, 39(5): 429-432.
    [48] Waring R.H., White H.D., Jarvis P.G. The contribution of stored water to transpiration in Scotspine [J]. Plant Cell Environment, 1979, (2): 309-317.
    [49] Schulze E.D., Cermák J., Matyssek R., et al. Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Piceatrees a comparison of xylem flow porometer and cuvette measurements [J]. Oecologia, 1985, 66: 475-483.
    [50]郭陈刚,魏志敏,张吉科,等.沙棘次生根贮水与根皮层细胞的超微结构研究[J].华北农学报, 2007, 22(增刊): 139-142.
    [51]高照全,张显川,王小伟.干旱胁迫下桃树各部位贮存水调节能力的研究[J].果树学报, 2006, 23(1): 5-8.
    [52] Clarkson D.T., Carvajal M., Henzler T. Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress [J]. Journal of Experimental Botany, 2000, 51: 61-70.
    [53] Coleman M.D., Bledsoe C.S., Smit B.A. Root hydraulic conductivity and xylem sap levels of zeatin riboside and abscisic acid in ectomycorrhizal Douglas 2 fir seedlings [J]. New Phytologist, 1990, 115: 275-284.
    [54] Lo Gullo M.A., Nardini A., Salleo S. Changes in root hydraulic conductance of Olea oleaster seedlings following drought stress and irrigation [J]. New Phytologist, 1998, 140: 25-31.
    [55]邵明安,杨文治,李玉山.土壤-植物-大气连续体中的水流阻力及其相对重要性[J].水利学报, 1986, 9: 8-14.
    [56]康绍忠.土壤-植物-大气连续体水流阻力分布规律的研究[J].生态学报, 1993, 13(2): 157-163.
    [57] Philip J.R. Plant Water Relations: Some Physical Aspects [J]. Annual Review of Plant Physiology, 1966, 17: 245-268.
    [58]亓立云,马履一,张迎辉,等.六个木本植物木质部栓塞脆弱性及其水容调节作用的研究[J].山东农业大学学报, 2005, 36(4): 495-500.
    [59] Running S.W. Field estimates of root and xylem resistance in Pinus contorta using root excision [J]. Journal of Experimental Botany, 1980, 31: 555-569.
    [60] Kramer P.J., Boy J.S. Water relation of plant and soil [M]. Orlando: Academic Press, 1995.
    [61]刘晚,山仑,邓西平.压力室法测定根系导水率方法探讨[J].西北植物学报, 2001, 21(4): 761-765.
    [62] D.Ellerby and A. Ennos. Resistances to fluid flow of model xylem vessels with simple and scalariform perforation plates [J]. Journal of Experimental Botany, 1998, 49: 979-985.
    [63]陈树思.细枝木麻黄导管分子及穿孔板解剖学研究闭[J].热带亚热带植物学报, 2006, 14(5): 433-438.
    [64]张光先,张风秀,陈德万.桑科植物水分运输阻力生物物理模型研究闭[J].西南农业大学学报, 1995, 17(3): 264-267.
    [65] Passiours J.B., Tanner C.B. Oscillations in apparent hydraulic conductance in cotton roots [J]. Australian Journal of Plant Physiology, 1985, 12: 455-461.
    [66] Fiscus E.L. The interaction between osmotic and pressure induced water flow in plant roots [J]. Plant Physiology, 1975, 80: 752-759.
    [67] Steudle E., Oren R., Schulze E.D. Water transport in maize roots [J]. Plant Physiology, 1987, 84: 1220-1232.
    [68] Steudle E. Water flow in plants and its coupling to other processes: a review [J]. Methods Enzymo logy, 1989, 174: 183-225.
    [69] Daniels M.J., Mirkov T.E., Chrispeels M. The plasma membrane of Arabidopsis thaliana contains a mercury insensitive aquaporin that is a homologue of the tonoplast water channel protein TIP [J]. Plant Physiology, 1994, 106: 1325-1333.
    [70] Tyerman S.D., Bohnert H.J., Maurel C., et al. Plant aquaporins: their molecular biololgy, biophysics and significance for plant water relations [J]. Journal of Experimental Botany, 1999, 50 Special Issue: 1055-1071.
    [71] Chapin F.S., Walter CHS., Clarkson D.T. Growth response of barley and tomato to nitrogen stress and its control by abscisic acid, water relations and photosynthesis [J]. Planta, 1988.173: 352-366.
    [72] Passiours J.B. Root signals control leaf expansion in wheat seedlings growing in drying soil [J]. Australian Journal of Plant Physiolgy, 1988, 15: 687-693.
    [73] Munns R, king R.W. Abscisic acid is not the only stomatal inhibitor in the transpiration stream of wheat plants [J]. Plant Physiology, 1988, 88: 703-708.
    [74] Munns R., Passiours J.B., Milborrow B.V., et al. Stored xylem sap from wheat and barley in drying soil contains a transpiration inhibitor with a large molecular size [J]. Plant, Cell and Environment 1993, 16: 867-872.
    [75] Krauss A. Tuberization and abscisic acid content of Solanum tuberosum as affected by nitrogen nutrition [J]. Potato Research, 1978, 21: 183-193.
    [76] Clarkson DT, Touraine B. Morphological response of plants to nitrate deprivation: a role for abscisic acid? In: Roy J, Garnier E, eds. A whole plant perspective on carbon nitrogen interactions. The Hague: SPB Academic Publishing, 1994, 187-196.
    [77] Peuke A.D., Jeschke W.D., Hartung W. The uptake and flow of C, N and ions between roots and shoots in Ricinus communis.Ⅱ.The flows of cations, chloride and abscisic acid[J]. New Phytologistogist, 1994, 140: 625-636.
    [78] Beck E., Wagner B.M. Quantification of the daily cytokinin transport from root to the shoot of Urtica dioica L [J]. Botanica Acata, 1994, 107: 342-348.
    [79] Hose E., Hartung W. The effect of abscisic acid on water transport through maize roots [J]. Journal of Experimental Botany, 1999, 50(supplement): 40-51.
    [80]刘晚苟,山仑.土壤机械阻力对玉米根系导水率的影响[J].水利学报, 2004, 4: 114-117.
    [81]刘晚苟,山仑,邓西平.干湿条件下土壤容重对玉米根系导水率的影响[J].土壤学报, 2003,40(5): 779-782.
    [82] Rieger M., Litvin P. Root hydraulic conductivity in species with contrasting root anatomy [J]. Journal of Experimental Botany, 1999, 50: 201-209.
    [83] North G.B., Nobel P.S. Changes in hydraulic conductivity and anatomy caused by drying and rewetting roots of A gave deserti (A gavaceae) [J]. American Journal of Botany, 1991, (78): 906-915.
    [84] Leung J., Giraudat J. Abscisic acid signal transduction [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 199-222.
    [85] Zhang J., Zhang X., Liang J. Exudation rate and hydraulic conductivity of maize roots are enhanced by soil drying and abscisic acid treatment [J]. New Phytologist, 2003, 131(3): 329-336.
    [86] North G.B., Nobel P.S. Drought-induced hydraulic conductivity and structure in roots of Ferocactus acanthodes and Opuntia ficus-indica [J]. New Phytologist, 1992, 120: 9-19.
    [87] Carvajal M., Cooke D.T., Clarkson D.T. Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function [J]. Planta, 1996, 199: 372-381.
    [88]沈玉芳,曲东,王保莉,等.干旱胁迫下磷营养对不同作物苗期根系导水率的影响[J].作物学报, 2005, 31(2): 214-218.
    [89]慕自新,张岁岐,杨晓青,等.氮磷亏缺对玉米根系水流导度的影响[J].植物生理与分子生物学学报, 2003, 29(1): 45-51.
    [90] Quintero J.M., Fournier J.M., Benlloch M. Water transport in sunflower root system: Effects of ABA, Ca2+ status and HgCl2 [J]. Journal of Experimental Botany, 1999, 50: 1607-1612.
    [91] Lovelock C.E., Ball.M.C., Feller.I.C., et al. Variation in hydraulic conductivity of mangroves: influence of species, salinity, and nitrogen and phosphorus availability [J]. Physiologia Plantarum, 2006, 127: 457-464.
    [92] Lovelock C.E., Feller I.C., Mckee K.L., et al. The effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panama [J]. Functional Ecology, 2004, 1: 25-33.
    [93] Desai M.C. Effect of certain nutrient deficiencies on stomatal behaviour [J]. Plant Physiology, 1937, 12: 253-283.
    [94] Radin J.W., Eidenbock M.P. Hydraulic conductance as a factor limiting leaf expansion in phosphorus-deficient cotton plant [J]. Plant Physiology, 1984, 75: 372-377.
    [95] Karmoker J.L., Clarkson D.T., Saker L.R., et al. Sulphate deprivation depresses the transport of nitrogen to the xylem and hydraulic conductivity of barley (Hordeum vulgare L.) roots [J]. Planta, 1991, 185: 269-278.
    [96] Wallace A., Frolich A. Phosphorus deficiency symptoms in tobacco versus transpirational water loss [J]. Nature, 1965, 208: 123-124.
    [97] Radin J.W., Ackerson R.C. Water relations of cotton plants under nitrogen deficiency.Ⅲ.Stomatal conductance, photosynthesis and abscisic acid accumulation during drought [J]. Plant Physiology, 1981, 67: 115-119.
    [98] Radin J.W. Responses of transpiration and hydraulic conductance to root temperature in nitrogen and phosphrus deficient cotton seedlings [J]. Plant Physiology, 1990, 92: 855-857.
    [99] Radin J.W., Matthews M.A. Water transport properties of cortical cells in roots of nitrogen andphosphrus deficient cotton seedlings [J]. Plant Physiology, 1989, 89: 264-268.
    [100] Barthes L., Deleens E., Bousser A., et al. Xylem exudation is related to nitrate assimilation pathway in detopped maize seedlings: use of nitrate reductase and glutamine synthetase inhibitors as tools [J]. Journal of Experimental Botany, 1996, 47: 485-495.
    [101] Guo S., Brück H., Sattelmacher B. Effects of supplied nitrogen form on growth and water uptake of French bean (Phaseolus vulgaris L.) plants [J]. Nitrogen form and water uptake. Plant and Soil, 2002, 239: 267-275.
    [102] Robinson D. The response of plants to non-uniform supplies of nutrients [J]. New Phytologist, 1994, 127: 635-674.
    [103] Lambers H., Posthumus F., Stulen I., et al. Energy metabolism of Plantago lanceolata as dependent on the supply of mineral nutrients [J]. Physiologia Plantarum, 1981, 51: 85-92.
    [104] Jackson R.B., Caldwell M.M. The timing and degree of root proliferation in fertile-soil microsites for three cold desert perennials [J]. Oecologia, 1989, 81: 149-153.
    [105] Robinson D. Variation, co-ordination and compensation in root systems in relation to soil variability. In: Anderson H.M., Barlow P.W., Clarkson D.T., Jackson M.B., Shewry P.R., eds. Plant roots-from cell to systems. Dordrecht: Kluwer, 1996, 57-66.
    [106] Donald AJS., Lohammar T., Ericsson A. Growth response to step decrease in nutrient availability in small birch (Betula pendula Roth) [J]. Plant, Cell and Environment, 1986, 9: 427-432.
    [107] Jupp A.P., Newman E.I. Morphological and anatornical effects of severe drought on the roots of Lolium perenne L [J]. New Phytologist, 1987, 105: 393-402.
    [108] Huck M.G., Ishimara K., Peterson C.M., Ushijima T. Soybean adaptation to water stress at selected stages of growth [J]. Plant Physiology, 1983, 73: 422-427.
    [109] Kent G.A., Janusz J.Z., Michael D.M. Naphthenic acids affect plant water conductance but do not alter shoot Na+ and Cl? concentrations in jack pine (Pinus banksiana) seedlings [J]. Plant and Soil, 2004, 263: 183-190.
    [110] Suárez, N., Sobrado, M.A., Medina, E. Salinity effects on the leaf water relations components and ion accumulation patterns in Avicennia germinans L. seedlings [J]. Oecologia, 1998, 114: 299-304.
    [111] Suárez, N., Sobrado, M.A. Adjustments in leaf water relations of the mangrove, Avicennia germinans (L.) L, grown in a salinity gradient [J]. Tree Physiol, 2000, 20: 227-282.
    [112] Sobrado, M.A. Leaf photosynthesis of the mangrove Avicennia germinans as affected by NaCl [J]. Photosynthetica, 1999, 36: 547-555.
    [113] Saliendra, N.Z., Sperry, J.S., Comstock, J. Influence of leaf water status on stomatal response to humidity, hydraulic conductance and soil drought in Betula occidentalis [J]. Planta, 1995, 196: 357-366.
    [114] Cochard H., Peiffer, M. Le Gall, K., et al. Developmental control of xylem hydraulic resistance and vulnerability to emboslisms in Fraxinus excelsior L. inpacts on water relatios [J]. Journal of Experimental Botany, 1997, 48: 655-663.
    [115] Lu, P., Biron, P., Granier, A., et al. Water relations of adult Norway spruce (picea abies (L) Karst) under soil drought in the Vosges mountains: whole-tree hydraulic conductance, xylem embolism and water loss regulation [J]. Annual Science Forest, 1996, 53: 113-121.
    [116] Munns Rand., Passioura J.B. Hydraulic resistance of plants. III. Effects of NaCl in barley and Lupin.Aust [J]. Plant.Physiol, 1984, 11: 351-359.
    [117] Carmen M., Martínez-Ballesta., Federico Aparicio., et al. Influence of saline stress on root hydraulic conductance and PIP expression in Arabidopsis [J]. Plant Physiol, 2003, 160: 689-697.
    [118] Zimmermann U. Physics of turgor and osmoregulation [J]. Annual Review of Plant Physiology, 1978, 29: 122-148.
    [119] Gibbs J., Dracup M., Greenway H., et al. Effects of high NaCl on growth, turgor and internal solutes of tobacco callus [J]. Journal Plant Physiol, 1988, 134: 61-69.
    [120] Munns R. Physiological responses limiting plant growth in saline soils: some dogmas and hypotheses [J]. Plant Cell Environment, 1993, 16: 15-24.
    [121] Czerniawska-Kusza I., Kusza G., Du?yński M. Effect of deicing salts on urban soils and health status of roadside trees in the Opole region [J]. Environmental Toxicol, 2004, 19: 296-301.
    [122] Franklin J.A., Zwiazek J.J. Ion uptake in Pinus banksiana treated with sodium chloride and sodium sulfate [J]. Physiol Plant, 2004, 120: 482-490.
    [123] Drew M.C., L?uchli A. Oxygen-dependent exclusion of sodium ions from shoots by roots of Zea mays (cv. Pioneer 3906) in relation to salinity damage [J]. Plant Physiol, 1985, 79: 171-176.
    [124] Barrett-Lennard E. The interaction between water logging and salinity in higher plants: causes, consequences and implications [J]. Plant and Soil, 2003, 253: 35-54.
    [125] Redfield E., Croser C., Zwiazek J.J., et al. Responses of red-osier dogwood (Cornus stolonifera) to oil sands tailings treated with gypsum and aluminum [J]. Journal of Environment Quality, 2003, 32: 1008-1014.
    [126] Zhang W.H., Tyerman S.D. Effect of low O2 concentration and azide on hydraulic conductivity and osmotic volume of the cortical cells of wheat roots [J]. Australian Journal of Plant Physiolgy, 1991, 18: 603-613.
    [127] Mariani L., Chang S.X., Kabzems R. Effects of tree harvesting, forest floor removal, and compaction on soil microbial biomass, microbial respiration, and N availability in a boreal aspen forest in British Columbia [J]. Soil Biology Biochemistry, 2006, 38: 1734-1774.
    [128] Haeussler S., Kabzems R. Aspen plant community response to organic matter removal and soil compaction [J]. Candian Journal of Forest Research, 2006, 35: 2030-2044.
    [129] Bolanos J.A and Longstretch D.J. Salinity effects on water potential components and bulk elastic modulus of Alternanthera philoxeroides (Mart.) Griseb [J]. Plant Physiol, 1984, 75: 281-284.
    [130] Aizazeh H., Gunse B and Steudle E. Effects of NaCl and CaCl2 on water transport across root cells of maize (Zea mays L.) seedlings [J]. Plant Physiol, 1992, 99: 866-894.
    [131] Evlagon D., Ravina I and Neumann P.M. Effects of salinity stress and calcium on hydraulic conductivity and growth in maize seedlings roots [J]. Journal of Plant Nutrients, 1992, 15: 795-803.
    [132] Lauter D.J and Munns R. Salt sensitivity of chickpea during vegetative growth and at different humidities [J]. Australian Journal of Plant Physiolgy, 1987, 14: 171-180.
    [133] Salim M. Effects of salinity and relative humidity on growth and ionic relations of plants [J]. New Phytologist, 1989, 113: 13-20.
    [134] Yeo A.R., Kramer D., Lauchli A. Ion distribution in salt stressed matured Zea mays roots in relation to ultrastructure and retention of sodium [J]. Journal of Experimental Botany, 1977, 28: 17-29.
    [135] Grieve A.M and Walker R.R. Uptake and distribution of chloride, sodium and potassium ions insalt-treated Citrus plants [J]. Australian Journal of Agriculture Research, 1983, 34: 133-143.
    [136] Apostol K.G and Zwiazek J.J. Hypoxia affects root sodium and chloride concentrations and alterswater conductance in salttreated jack pine (Pinus banksiana) seedlings [J]. Trees, 2003, 17:251-257.
    [137] Kuiper PJC. Lipids in grape roots in relation to chloride transport [J]. Plant Physiol, 1968, 43:1367-1371.
    [138] Mansour MMF. Cell permeability under salt stress. In Strategies for Improving Salt Tolerance inHigher Plants [A]. Eds. P K Jaiwal, R P Singh, A Gulati, 1997, pp. 87-110. Science Publishers, Inc.
    [139] Van Overbeek J and Blondeau R. Mode of action of phytotoxic oils [J]. Weeds, 1954, 3: 55-65.
    [140] Zhang R., Verkman A.S. Water and urea permeability properties of Xenopus oocytes: expression ofmRNA from toad urinary bladder [J]. Amer J Physiol, 1991, 260: C26-C34.
    [141] Chrispeels M.J., Agre P. Water channels: water channel proteins of plant and animal cells [J].Trends Biochemistry Science, 1994, 19: 421-425.
    [142] Verkman A.S., van Hoek A.N., Ma T.H, et al. Water transport across mammalian cell membranes [J]American Journal of Physiol, 1996, 270: C12-C30.
    [143] Maurel C. Water channels and water permeability of plant membranes [J]. Annual Review of PlantPhysiology and Plant Molecular Biology, 1997, 148: 399-429.
    [144] Kammerloher W., Fischer U., Piechottka G.P., et al. Water channels in the plant plasma membranecloned by immunoselection from a mammalian expression system [J]. Plant Journal, 1994, 6:187-199.
    [145] Henzler T., Steudle E. Reversible closing of water channels in Chara internodes provides evidencefor a composite transport model of the plasme membrane [J]. Journal of Experimental Botany, 199546: 199-209.
    [146] Maggio A., Joly R.J. Effects of mercuric chloride on the hydraulic conductivity of tomato rootsystems [J]. Plant Physiol, 1995, 109: 331-335.
    [147] Barwssiri R.H., Radin J.W. Temperature-dependent water and ion transport properties of barley andsorghum roots II. Effects of abscisic acid [J]. Plant Physiol, 1992, 99: 34-37.
    [148]康绍忠,张建华.不同土壤水分与温度条件下土-根系统中导水率的变化及其相对重要性[J].农业工程学报, 1999, 2(13): 76-81.
    [149] Cochard H., Martin R., Gross P., et al. Temperature effects on hydraulic conductance and waterrelation of Quercus robur L [J]. Journal of Experimental Botany, 2000, 51: 1255-1259.
    [150]康绍忠,张建华,梁宗锁,等.控制性交替灌溉一种新的农田节水调控新思路[J].干旱地区农业研究, 1997, 15(1): 16.
    [151] Kang S., Zhang J. Controlled alternate partial rootzone irrigation: its physiological consequencesand impact on water use efficiency [J]. Journal of Experimental Botany, 2004, 55(407): 2437-2446.
    [152] Davies W.J., Zhang J. Root signals and the regulation of growth and development of plants indrying soil [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42: 55-76.
    [153] Jones H.G. Plants and microclimate (a quantitative approach to environmental plant physiology)[M]. London: Cambridge University Press, 1983. 186-193.
    [154]康绍忠,潘英华,石培泽.控制性作物根系分区交替灌溉的理论与试验[J].水利学报, 2001, 1180-86.
    [155]康绍忠,蔡焕杰.作物根系分区交替灌溉与调亏灌溉的理论与实践[M].北京:中国农业出版社, 2000, 1-114.
    [156] Bloom F.J., Vogt K., Wargo P.M. Tree root turn over and senescence. In: Waisel Y, E shel A, Kafkaf U, eds. Plant Roots: the Hidden Half. (2nd ed.).eds. New York: Naarcel Dekker, 1996, 363-381.
    [157] Comas L.H., EissenstatD.M, Lakso A.N. Assessing root death and root system dynamics in a study of grape canopy pruning [J]. New Phytologist, 2000, 147: 171-178.
    [158] Eissenstat D.M., Yanai R.D. The ecology of root lifespan [J]. Adv Eco Res, 1997, 27: 1-60.
    [159] Haynes B.E., Gower S.T. Below ground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin [J]. Tree Physiol, 1995, 15: 317-325.
    [160] Hendrick R.L., Pregitzer K.S. Parterns of fine root mortality in two sugar maple forests [J]. Nature, 1993, 361: 59-61.
    [161]曲桂敏,李兴国,赵飞,等.水分胁迫对苹果叶片和新根显微结构的影响[J].园艺学报, 1999, 26(3): 147-151.
    [162] Majdi H. Changes in fine root production and longevity in relation to water and nutrient availability in a Norway spruce stand in northern Sweden [J]. Tree Physiol, 2001, 21: 1057-1061.
    [163]廖利平,陈楚莹,张家武,等.杉木、火力楠纯林及混交林细根周转的研究[J].应用生态学报, 1995, 6(1): 7-10.
    [164]李培芝,范世华,王力华,等.杨树细根及草根的生产力与周转的研究[J].应用生态学报, 2001, 12(6): 829-832.
    [165] Aerts R., Bakker C., de Caluwe H. Root turn over as teder-minant of the cycling of C, N and P in a dry heathland ecosystem [J]. Biochemistry, 1992, 15: 175-190.
    [166]杨洪强,黄天栋.水分胁迫对苹果新根多胺和脯氨酸含量的影响[J].园艺学报, 1994, 21(3): 295-296.
    [167] Pregitzer K.S., Hendrick R.L., Fogel R. The demography of fine roots in response to patches of water and nitrogen [J]. New Phytologist, 1993, 125: 575-580.
    [168] Schreiber L., Hartmann K., Skrabs M., et al. Apoplastic barriers in roots chemical composition of endodermal and hypodermal cellwalls [J]. Joural of Experimental Botany, 1999, 50: 1267-1280.
    [169] Kang S., Liang Z., Hu W., et al. Water use efficiency of controlled root-division alternate irrigation on maize plant [J]. Agricultural Water Management, 1998, 38: 69-76.
    [170]梁宗锁,康绍忠,高俊风.分根渗透胁迫与ABA对玉米根系生长和WUE的影响[J].作物学报, 2000, 2: 250-255.
    [171]史文娟.分根区垂直交替供水与调亏灌溉的节水机理及效应[D].杨凌:西北农林科技大学, 1999.
    [172]李志军,张富仓,康绍忠.控制性根系分区交替灌溉对冬小麦水分与养分利用的影响[J].农业工程学报, 2005, 21(8): 17-21.
    [173]胡田田,康绍忠,原丽娜,等.根区湿润方式对玉米根系生长发育的影响[J].生态学报, 2008, 28(12): 6180-6188.
    [174]丁三姐.苹果根系分区交替灌溉的节水效应研究[D].合肥:安徽农业大学, 2006.
    [175]邹养军.苹果根系分区灌水的生理机制及应用研究[D].杨凌:西北农林科技大学, 2006.
    [176] Gowing D.J., Davies W.J., Jones H.G. A positive root-sourced signal as an indicator of soil drying in apple, Malus×domestica Borkh [J]. Journal of Experimental Botany, 1990, 41(233): 1535-1540.
    [177] Lovisolo C., Hartung W., Schubert A. Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines [J]. Functional Plant Biology, 2002, 29: 1349-1356.
    [178] Kang S.Z., Hu X.T., Jerie P., et al. The effects of partial root zone drying on root, trunk sap flow and water balance in an irrigated pear (Pyrus communis L) orchard [J]. Journal of Hydrology, 2003, 280: 192-200.
    [179]龚道枝,康绍忠,佟玲,等.分根交替灌溉对土壤水分分布和桃树根茎液流动态的影响[J].水利学报, 2004, 10: 112-118.
    [180]田给林.部分根区水分胁迫对水培苹果幼树光合特性的影响[D].太谷:山西农业大学, 2005.
    [181]赵军营.半根和全跟干旱胁迫对嘎啦苹果幼树叶片光合作用及NO3-参与的调节作用[D].北京:中国农业大学, 2005.
    [182]张建文.苹果根系分区灌溉的水分运输及分配机理[D].保定:河北农业大学, 2008.
    [183]梁继华.分根区交替灌溉对甜玉米水分及氮素利用的影响[J].农业工程学报, 2006, 22(10): 68-72.
    [184] Li F S., Liang J.H., Kang S.Z., et al. Benefits of alternate partial root-zone irrigation on growth, water and nitrogen use efficiencies modified by fertilization and soil water status in maize [J]. Plant and Soil, 2007, 295: 279-291.
    [185] Tan C.S., Buttery B.R. The effect of soil moisture stress to various fractions of the root system in transpiration, photosynthesis, and internal water relations of peach seedlings [J]. Journal American Society Horticultural Science. 1982, 107: 845-849.
    [186] Davies W.J., Bacon M.A., Thompson D.S. Regulation of leaf and fruit growth in plants growing in drying soil: exploitation of the plants’chemical signaling system and hydraulic architecture to increase the efficiency of water use in agriculture [J]. Journal of Experimental Botany, 2000, 51(350): 1617-1626.
    [187] Loveys B.R., Dry P.R., Stroll M., et al. Using plant physiology to improve the water use efficiency of horticultural crops [J]. Acta Horticultrurae, 2000, 537: 187-197.
    [188]康绍忠,胡笑涛, Goodwin I,等.地下水位较高条件下不同根区湿润方式对梨树根茎液流及其水分平衡的影响[J].农业工程学报, 2001, 17(3): 15-23.
    [189] Gu S.L., David Z., Simon G, et al. Effect of partial rootzone drying on vine water relations, vegetative growth,mineral nutrition, yield and fruit quality in field-grown mature sauvignon blanc grapevines [R]. California Agricultural Technology Institute, California State University, Fresno, 2000.
    [190]周军.不同灌溉方式对葡萄叶片行为和果实品质的影响[D].北京:中国农业大学, 2001.
    [191] Loveys B., Grant J., Dry P., et al. Progress in the development of partial rootzone drying [J]. http: //www. geoflow. Com / agriculture / prdihtm. 2003, 10-26.
    [192] Santos T.P., Lopes C.M., Rodrigues M.L., et al. Partial rootzone drying effects on growth and fruit quality of field-grown grapevines(Vitis vinifera) [J]. Functional Plant Biology, 2003, 30(6): 663-671.
    [193] Pierre Martre., North, G.B., Nobel, P.S. Hydraulic Conductance and Mercury-Sensitive Water Transport for Roots of Opuntia acanthocarpa in Relation to Soil Drying and Rewetting [J]. Plant Physiology, 2001, 126: 352-362.
    [194] Tyree M.T.,áVirginia Velezá., Dalling J.W. Growth dynamics of root and shoot hydraulic conductance in seedlings of five neotropical tree species: scaling to show possible adaptation to differing light regimes [J]. Oecologia, 1998, 114: 293-298.
    [195] Tyree M.T., Sinclair B., Lu P., et al. Whole shoot hydraulic resistance in quercus species measured with a new high-pressure flow meter [J]. Annals of Science Forest, 1993, 50: 417-423.
    [196] Yang S., Tyree M.T. Hydraulic resistance in Acer saccharum shoot and its influence on leaf water potential and transpiration [J]. Tree Physiology, 1993, 12: 231-242.
    [197]冯冬霞,施生锦.叶面积测定方法的研究效果初报[J].中国农学通报, 2005, 21(6): 150-152.
    [198] Boast C.W., and Robertson T.M. A‘micro-lysimeter’method for determining evaporation from bare soil: description and laboratory evaluation [J]. Soil Science Society of American Journal, 1982, 46: 689-696.
    [199]陆帼一,张和义,周存田.番茄壮苗指标的初步研究[J].中国蔬菜, 1984, (1): 13-17
    [200] Tyree M.T.,áVirginia VelezáJ.W. Dalling. Growth dynamics of root and shoot hydraulic conductance in seedlings of five Neotropical tree species: scaling to show possible adaptation to differing light regimes [J]. Oecologia, 1998, 114: 293-298.
    [201] Martre P., North G.B., Nobel P.S. Hydraulic Conductance and Mercury-Sensitive Water Transport for Roots of Opuntia acanthocarpa in Relation to Soil Drying and Rewetting [J]. Plant Physiology, 2001, 126: 352-362.
    [202] Svetlana V.V., Rashit G.F., Stanislav Y.U., et al. The effect of root cooling on hormone content, leaf conductance and root hydraulic conductivity of durum wheat seedlings (Triticum durum L) [J]. Journal of Plant Physiology, 2005, 162: 21-26.
    [203]李凤民,王俊,郭安红.供水方式对春小麦根源信号和水分利用效率的影响[J].水利学报, 2000, 1: 23-27.
    [204]牛铁泉,田给林,薛仿正,等.半根及半根交替水分胁迫对苹果幼树光合作用的影响[J].中国农业科学, 2007, 40(7): 1463-1468.
    [205] Martre P., North G.B., Nobel P.S. Hydraulic Conductance and Mercury-Sensitive Water Transport for Roots of Opuntia acanthocarpa in Relation to Soil Drying and Rewetting [J]. Plant Physiology, 2001, 126: 352-362.
    [206] Bauerle T.L., Richards J.H., Smart D.R., et al. Importance of internal hydraulic redistribution for prolonging the lifespan of roots in dry soil [J]. Plant Cell & Environment, 2008, 31(2): 177-186.
    [207] Wang L., Kroon H., Bogemann G.M., et al. Partial root drying effects on biomass production in Brassica napus and the significance of root responses [J]. Plant and Soil, 2005, 276: 313-326.
    [208] Hutchings M.J., John E.A., Wijesinghe D.K. Toward understanding the consequences of soil heterogeneity for plant populations and communities [J]. Ecology, 2003, 84: 2322-2334.
    [209] Nardini A., Salleo S., Lo Gullo M.A., et al. Different responses to drought and freeze stress of Quercus ilex L. growing along a latitudinal gradient [J]. Plant Ecology, 2000, 148: 139-147.
    [210] Aranda I., Gil L., Pardos J.A. Seasonal changes in apparent hydraulic conductance and their implications forwater use of European beech (Fagus sylvatica L.) and sessile oak [Quercuspetraea (Matt.) Liebl] in South Europe [J]. Plant Ecology, 2005, 179: 155-167.
    [211] Morgan J.M. Osmoregulation and water stress in higher plants [J]. Annual Review of Plant Physiology, 1984, 35: 299-319.
    [212] Wan C.G., Sosebee R.E., McMichael B.L. Lateral root developmmt and hydraulic conductance in four populations of Gutierrezia sarothrae [J]. Environmental and Experimental Botany, 1996, 36: 157-l 65.
    [213] Ekanayake I.J., Toole J.C., Garrity D.P. Inheritance of root characters and their relations to drought resistance in rice [J]. Crop Science, 1985, 25: 927-933.
    [214] Baker J.M., Van Bavel C.H.M. Water transfer through cotton plants connecting soil regions of differing water potential [M]. The American Society of Agronomy publishes, 1988.
    [215] McCully M.E., Canny M.J. Pathways and processes of water and nutrient movement in roots [J]. Plant and Soil, 1988, 111: 159-170.
    [216] Andrew J. Thompson., John Andrews., Barry J., et al. Overproduction of Abscisic Acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion [J]. Plant Physiology, 2007, 143: 1905-1917.
    [217]胡田田,康绍忠.局部湿润模式对玉米不同根区土-根系统水分传导的影响[J].农业工程学报, 2007, 23(2): 11-16.
    [218]康绍忠,潘英华,石培泽,等.控制性作物分区交替灌溉的理论与试验[J].水利学报, 2001, 11: 80-86.
    [219]刘晓燕,李吉跃.从树木水力结构特征探讨植物耐旱性[J].北京林业大学学报, 2003, 25(3): 48-54.
    [220]安锋,张硕新. 7种木本植物根和小枝木质部栓塞的脆弱性[J].生态学报, 2005, 25(8): 1928-1933.
    [221]张硕新,申卫军,张远迎.六种木本植物木质部栓塞化生理生态效应的研究[J].生态学报, 2000, 20(5): 788-794.
    [222]张硕新,申卫军,张远迎.六种木本植物木质部栓塞化生理生态效应的研究[J].生态学报, 2000, 20(5): 788-794.
    [223] Younis M.E., El Shahaby O.A., Hasaneen M.N., et al. Plant growth metabolism and adaptation in relation to stress conditions: Influence of different water treatments on stomatal apparatus, pigments and photosynthetic capacity in Vicia faba [J]. Journal of Arid Environments, 1993, 25: 221-232.
    [224]郭庆荣,李玉山.土壤-植物系统中水流阻力变化和分布规律的研究[J].应用生态学报, 1998, 9(1): 32-36.
    [225]袁国富,罗毅,唐登银,等.冬小麦不同生育期最小冠层阻力的估算[J].生态学报, 2002, 22(6): 930-934.
    [226] Tyree M.T., Sinclair B., Lu P., et al. Whole shoot hydraulic resistance in quercus species measured with a new high-pressure flow meter [J]. Annals of Science Forest, 1993, 50: 417-423.
    [227]牛铁泉,田给林,薛仿正,等.半根及半根交替水分胁迫对苹果幼树光合作用的影响[J].中国农业科学, 2007, 40(7): 1463-1468.
    [228]杜太生,康绍忠,张宝忠,等.石羊河流域干旱荒漠绿洲区不同滴灌模式下葡萄茎液流变化及其与环境因子的关系[J].应用生态学报, 2008, 19(2): 299-305.
    [229] Kang SZ., Liang Z.S., Hu W., et al. Water use efficiency of controlled root-divided alternate irrigation [J]. Agricultural Water Management, 1998, 38: 69-77.
    [230]郭庆荣,李玉山.植物根系吸水过程中根系水流阻力的变化特征[J].生态科学, 1999, 18(1): 30-34.
    [231] Lo Gullo M.A., Salleo S., Rosso R., et al. Drought resistance of 2-year-old saplings of Mediterranean forest trees in the field: Relations between water relations, hydraulics and productivity [J]. Plant and Soil, 2003, 250: 259-272.
    [232]杨启良,张富仓,李志军.用高压流速仪测定植物的水分传导[J].灌溉排水学报, 2007, 26(4): 53-56.
    [233]王克勤.金矮生苹果土壤水分合理供给范围研究[J].应用生态学报, 2003, 14(9): 1533-1537.
    [234] Wibbe M.L., Blanke M.M. Effect of fruiting and drought or flooding on carbon balance of apple trees [J]. Photosynthetica, 1997, 33: 269-275.
    [235] Yang S., Tyree M.T. Hydraulic resistance in Acer saccharum shoot and its influence on leaf water potential and transpiration [J]. Tree Physiology, 1993, 12: 231-242.
    [236]崔晓阳,宋金凤,屈明华.土壤水势对水曲柳幼树水分生态的影响[J].应用生态学报, 2004, 15(12): 2237-2244.
    [237]王周锋,张岁岐,刘小芳.玉米根系水流导度差异及其与解剖结构的关系[J].应用生态学报, 2005, 16(12): 2349-2352.
    [238] Poni S., Tagliavini M., Neri D., et al. Influence of root pruning and water stress on growth and physiological factors of potted apple, grape, peach and pear trees [J]. Scientia Horticulturae, 1992, 52: 223-226.
    [239] North G.B., Nobel P.S. Drought-induced changes in hydraulic conductivity and structure in roots of Ferocactus acanthodes and Opuntia ficus-indica [J]. New Phytologist, 1992, 120: 9-19.
    [240] Francesco R., Maria R.G., Angelo N., et al. Stomatal conductance and leaf water potential responses to hydraulic conductance variation in Pinus pinaster seedlings [J]. Trees, 2007, 21: 371-378.
    [241]程瑞平,束怀瑞,顾曼如.水分胁迫对苹果树生长和叶中矿质元素含量的影响[J].植物生理学通讯, 1992, 28(1): 32-34.
    [242] Tyree M.T., Cochard H., Cruiziat P., et al. Drought-induced leaf shedding in walnut: Evidence for vulnerability segmentation [J]. Plant, Cell & Environment, 1993, 16: 879-882.
    [243] Zimmermann HM. Xylem Structure and the Ascent of Sap [M]. New York: Springer-Verlag, 1983: 143
    [244]廖建雄,王根轩.光照和水流阻力对小麦蒸腾波动的影响[J].作物学报, 2000, 26(5): 605-608.
    [245] Klepper B. Managing root systems for efficient water use: Axial resistances to flow in root system s-anatomical considerations, Limitations to efficient water use in crop production. American Society of Agronomy, Crop Society of America, and Soil Science Society of America, Madison WI, 1983: 87-111.
    [246] .山仑,徐萌.节水农业及其生理生态基础[J].应用生态学报, 1991, 2(1): 70-76.
    [247] Kang S.Z., Liang Z.S., Hu W. Water use efficiency of controlled root-divided alternate irrigation [J]. Agricultural Water Management, 1998, 38: 69-77.
    [248]梁宗锁,康绍忠,高俊凤.植物对土壤干旱信号的感知、传递及其水分利用的控制[J].干旱地区农业研究, 1999, 17(2): 72-78.
    [249]牛铁泉,田给林,薛仿正,等.半根及半根交替水分胁迫对苹果幼树光合作用的影响[J].中国农业科学, 2007, 40(7): 1463-1468.
    [250]邹养军,李嘉瑞,魏钦平,等.根系分区灌水对苹果水分状况及生长的影响[J].干旱地区农业研究, 2005, 23(2): 16-20.
    [251]赵军营,王利军,牛铁泉,等.苹果幼树部分根系水分胁迫对光合作用主要参数的影响[J].果树学报, 2005, 22(5): 446-449.
    [252] Poni S., Tagliavini M., Neri D. Influence of root pruning and water stress on growth and physiological factors of potted apple, grape, peach and pear trees [J]. Scientia Horticulturae, 1992, 52: 223-226.
    [253]李凤民,王俊,郭安红.供水方式对春小麦根源信号和水分利用效率的影响[J].水利学报, 2000, 1: 23-27.
    [254]蒋高明,常杰,高玉葆,等.植物生理生态学[M].北京:高等教育出版社, 2004.
    [255]张岁岐,山仑.植物水分利用效率及其研究进展[J].干旱地区农业研究, 2002, 20(4): 1-5.
    [256] Tear I.D. Crop-Water Relations [M]. A Wiley-Interscience Publication, 1982.
    [257] Atkinson C.J., Else M.A., Taylor L., et al. Root and stem hydraulic conductivity as determinants of growth potential in grafted trees of apple (Malus pumila Mill.) [J]. Journal of Experimental Botany, 2003, 54: 1221-1229.
    [258]王海珍,梁宗锁,韩蕊莲,等.土壤干旱对黄土高原乡土树种水分代谢与渗透调节物质的影响[J] .西北植物学报, 2004, 24 (10) : 1822-1827.
    [259] Thompson AJ ., Andrews J., Mulholland BJ., et al. Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion [J]. Plant physiology, 2007, 143 (4): 1905-1917.
    [260]胡田田,康绍忠.局部灌水方式对玉米不同根区土-根系统水分传导的影响[J].农业工程学报, 2007, 23(2): 11-16.
    [261]武永军,刘红侠,梁宗锁,等.分根区干湿交替对玉米光合速率及蒸腾效率的影响[J].西北植物学报, 1999, 19(4): 605-611.
    [262] Tyree M.T. & Hammel H.T. The measurement of the turgor pressure and the water relations of plants by the pressure bomb technique [J]. Journal of Experimental Botany, 1972, 23: 267-282.
    [263] Zimmermann M.H. Hydraulic architecture of some diffuse porous trees [J]. Candian Journal of Botany, 1978, 56: 2286-2295.
    [264] Ikeda T., Suzaki T. Distribution of xylem resistance to water flow in stems and branches of hardwood species[J]. Journal of Japanese Forest Societ, 1984, 66: 229-236.
    [265] Scholander P.F., Hammel H.T. Sap pressure in vascular plants [J]. Science, 1965, 148: 339-345.
    [266] Cohen Y., Fuchs M., Cohen S. Resistance to water uptake in mature citrus tree. Journal of Experimental Botany, 1983, 34: 451-460.
    [267] Steudle E. Water transport across roots [J]. Plant and Soil, 1994, 167: 79-90.
    [268]沈明珠,翟宝杰,东惠如,等.中国菠菜硝酸盐累积和含量水平的研究[J].园艺学报, 1986 (4): 257-262.
    [269] Walker R. Nitrate, Nitrite and N-nitroso compounds: A review of t he occurrence in food and diet and the toxicological implications [J]. Food Add Cont, 1990, 7: 717-768.
    [270] I. Aranda1 L.G., Pardos J.A. Seasonal changes in apparent hydraulic conductance and their implications for water use of European beech (Fagus sylvatica L.) and sessile oak [Quercus petraea (Matt.) Liebl] in South Europe[J]. Plant Ecology, 2005, 179: 155-167.
    [271] Salleo S., Nardini A., Pitt F., et al. Xylem cavitation and hydraulic control of stomatal conductancein Laurel (Laurus nobilis L.) [J]. Plant, Cell and Environment, 2000, 23: 71-79.
    [272] Meinzer F.C., Clearwater M.J, Goldstein G. Water transport in trees: current perspectives, new insights and some controversies [J]. Environment and Experimental Botany, 2001, 45: 239-262.
    [273] Tobias H., Rosemary N.W., Audra J.S., et al. Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicus [J]. Planta, 1999, 210: 50-60.
    [274]杜太生,康绍忠,张宝忠,等.石羊河流域干旱荒漠绿洲区不同滴灌模式下葡萄茎液流变化及其与环境因子的关系[J].应用生态学报, 2008, 19(2): 299-305.
    [275]胡田田,康绍忠.局部灌水方式对玉米不同根区土-根系统水分传导的影响[J].农业工程学报, 2007, 23(2) : 11-16.
    [276] Radin J.W., Matthews M.A. Water transport properties of cortical cells in roots of nitrogen- and phosphorus-deficient cotton seedlings [J]. Plant Physiol, 1989, 89: 264-268.
    [277] Birner T.P., Steudle E. Effects of anaerobic conditions on water and solute relations, and on active transport in roots of maize (Zea mays L.) [J]. Planta, 1993, 190: 474-483.
    [278] Barthes L., Bousser A., Hoarau J., et al. Reassessement of relationship between nitrogen suppy and xylem exudation in detopped maize seedlings [J]. Plant Physiol Biochemistry, 1995, 33: 173-183.
    [279] Else M.A., Davies W.J., Malone M., et al. A negative hydraulic message from oxygen deficient roots of tomato plants? Influence of soil flooding on leaf water potential, leaf expansion, and synchrony between stomatal conductance and root hydraulic conductivity [J]. Plant Physiol, 1995, 109: 1017-1024.
    [280] Tsuda M., Tyree M.T. Plant hydraulic conductance measured by the high pressure flow meter in crop plants [J]. Journal of Experimental Botany, 2000, 51(345): 823-828.
    [281] Shabtai Cohen., Amos Naor., John Bennink., et al. Hydraulic resistance components of mature apple trees on rootstocks of different vigours [J]. Journal of Experimental Botany, 2007, 58(15): 4213-4224.
    [282] Lemoine D., Cochard H., Granier A. Within crown variation in hydraulic architecture in beech (Fagus sylvatica L): evidence for a stomatal control of xylem embolism [J]. Annals Forest Science, 2002, 59: 19-27.
    [283] Reich P.B., Hinckley T.M. Influence of pre-dawn water potential and soil-to-leaf hydraulic conductance on maximum daily leaf diffusive conductance in two oak species[J]. Function. Ecology, 1989, 3: 719-726.
    [284] Comstock J.P. Variation in hydraulic architecture and gas-exchange in two desert sub-shrubs, Hymenoclea salsola (T. & G.) and Ambrosia dumosa (Payne) [J]. Oecologia, 2000, 125: 1-10.
    [285] Yang S., Tyree M.T. Hydraulic architecture of Acer saccharum and A. rubrum: comparison of branches to whole trees and the contribution of leaves to hydraulic resistance [J]. Journal of Experimental Botany, 1994, 45: 179-186.
    [286] Kolb K.J. and Sperry J.S. Transport constraints on water use by the Great Basin shrub, Artemisia tridentate [J]. Plant Cell Environment, 1999, 22: 925-935.
    [287] Tyree M.T. and Sperry J.S. Vulnerability of xylem to cavitation and embolism [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40: 19-38.
    [288] David T.C,, Micaela C.,Tobias H.,et al. Root hydraulic conductance:diurnal aquaporin expressionand the effects of nutrient stress[J]. Journal of Experimental Botany, 2000, 51(342): 61-70.
    [289] Nadine brisson, Albert olioso and Philippe clastre. Daily transpiration of field soybeans as related to hydraulic conductance, root distribution, soil potential and midday leaf potential [J]. Plant and Soil, 1993, 154: 227-237.
    [290] Morgan J.M. Osmoregulation and water stress in higher plants [J]. Annual Review of Plant Physiology, 1984, 35: 299-319.
    [291] Morgan J.M. Adaptation to water deficits in three grain legume species mechanisms of turgot maintenance [J]. Field Crops Research, 1992, 29: 91-106.
    [292] Sperry J.S. and Pockman W.T. Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentalis [J]. Plant Cell Environment, 1993, 16: 279-287.
    [293] Tyree M.T. Hydraulic limits on tree performance: transpiration, carbon gain and growth of trees. Trees Struct [J]. Function, 2003, 17: 95-100.
    [294] Tardieu F., Davies W.J. Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants [J]. Plant Cell Environment, 1993, 16: 341-349.
    [295] Caspari H.W., Neal S., Alspach P. Partial rootzone drying—a new deficit irrigation strategy for apple [J]? Acta Horticulturae, 2004, 646: 93-100.
    [296]胡田田,康绍忠,李志军,等.局部供应水氮条件下玉米不同根区的耗水特点[J].农业工程学报, 2005, 21(5): 34-37.
    [297]杨启良,张富仓.根区不同灌溉方式对苹果幼树水流阻力的影响[J].应用生态学报. 2009, 20(1) : 128-134.
    [298]康绍忠,潘英华,石培泽,等.控制性作物分区交替灌溉的理论与试验[J].水利学报, 2001, (11) : 80- 86.
    [299]胡田田,康绍忠.局部灌水方式对玉米不同根区土-根系统水分传导的影响[J].农业工程学报, 2007, 23(2): 11-16.
    [300]李志军,张富仓,康绍忠.控制性根系分区交替灌溉对冬小麦水分与养分利用的影响[J].农业工程学报, 2005, 21(8): 17-21.
    [301] Ali S., Seyed H.A., Poul E.L., et al. Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigation strategies in potatoes[J]. European Journal of Agronomy, 2008, 28: 65-73.
    [302] Ingestad T., ? gren G. The influence of plant nutrition on biomass allocation [J]. Ecology Applied, 1991, 1: 168-174.
    [303] Rubio G., Zhu J., Lynch J.P. A critical test of the two prevailing theories of plant response to nutrient availability [J]. American Journal of Botany, 2003, 90(1): 143-152.
    [304] Radin J.W., Boyer J.S. Control of leaf expansion by nitrogen nutrition in sunflower plants. Role of hydraulic conductivity and turgor [J]. Plant Physiol, 1982, 69: 771-775.
    [305] Ewers B., Oren R., Sperry J. Influence of nutrient versus water supply on hydraulic architecture and water balance in Pinus taeda [J]. Plant Cell Environment, 2000, 23: 1055-1066.
    [306] Yates E.J., Ashwath N., Midmore D. Responses to nitrogen, phosphorus and sodium chloride by three mangrove species in pot culture [J]. Trees, 2002, 16: 120-125.
    [307] Fort C., Fauveau M.L., Muller F., et al. Stomatal conductance, growth and root signaling in young oak seedlings subjected to partial soil drying[J]. Tree Physiol, 1997, 17: 281-289.
    [308] Sepaskhah A.R., Kamgar-Haghighi A.A. Water use and yields of sugarbeet grown under every other furrow irrigation with different irrigation intervals [J]. Agricultural Water Management, 1997, 34, 71-79.
    [309] Liang J., Zhang J., Wong M.H., Effects of air-filled soil porosity and aeration on the initiation and growth of secondary roots of maize (Zea mays) [J]. Plant and Soil, 1996, 186: 245-254.
    [310] Monteith J.L., Unsworth M.H. Principles of Environmental Physics [M]. London: Edward Arnold, 2007.
    [311] Baghour M., Moreno D.A., Hernandez J., et al. Influence of root temperature on uptake and accumulation of Ni and Co in potato [J]. Journal of Plant Physiol, 2002, 159: 1113-1122.
    [312] Lovelock C.E., Ball M.C., Feller I.C., et al. Variation in hydraulic conductivity of mangroves: influence of species, salinity, and nitrogen and phosphorus availability [J]. Physiologia Plantarum, 2006, 127: 457-464.
    [313] Lovelock C.E., Feller I.C., Mckee K.L., et al. The effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panama [J]. Functional Ecology, 2004, 18: 25-33.
    [314] Vale M., Mary B., Justes E. Irrigation practices may affect denitrification more than nitrogen mineralization in warm climatic conditions [J]. Biology Fertilizer Soils, 2007, 43: 641-651.
    [315]梁宗锁,康绍忠,石培泽,等.隔沟交替灌溉对玉米根系分布和产量的影响及其节水效益[J].中国农业科学, 2000, 33 (6): 26-32.
    [316] Bielenberg D.G., Lynch J.P., Pell E.J. A decline in nitrogen availability affects plant responses to O3 [J]. New Phytologist, 2001, 151: 413-425.
    [317] Comas L.H., Eissenstat D.M. Linking fine root traits to maximal potential growth rate among 11 mature temperate tree species [J]. Function Ecology, 2002, 18: 388-397.
    [318] Eissenstat D.M. On the relationship between specific root length and rate of root proliferation: a field study using citrus rootstocks [J]. New Phytologist, 1991, 118: 63-68.
    [319] McCully M.E. and Canny M.J. Pathways and processes of water and nutrient movement in roots [J]. Plant and Soil, 1988, 111: 159-170.
    [320] Tyree M.T., Sinclair B., Lu P., et al. Whole shoot hydraulic resistance in quercus species measured with a new high-pressure flow meter [J]. Annals of Science Forest, 1993, 50: 417-423.
    [321] Franklin J.A., Zwiazek J.J. Ion uptake in Pinus bankshiana treated with sodium chloride and sodium sulfate [J]. Physiol Plant, 2004, 120: 482-490.
    [322] Suárez N., Sobrado M.A. Adjustments in leaf water relations of the mangrove, Avicennia germinans (L)L, grown in a salinity gradient[J]. Tree Physiol, 2000, 20: 227-282.
    [323]薛延丰,刘兆普.不同浓度NaCl和Na2CO3处理对菊芋幼树光合及叶绿素荧光的影响[J].植物生态学报, 2008, 32 (1): 161-167.
    [324] Carmen Lo′pez-Berenguer, Cristina Garc?′a-Viguera, Micaela Carvajal. Are root hydraulic conductivity responses to salinity controlled by aquaporins in broccoli plants [J]. Plant and Soil, 2006, 279: 13-23.
    [325]袁琳,克热木·伊力,张利权. NaCl胁迫对阿月浑子实生苗活性氧代谢与细胞膜稳定性的影响[J].植物生态学报, 2005, 29(6): 985-991.
    [326]康绍忠,张建华,梁建生.土壤水分与温度共同作用对植物根系水分传导的效应[J].植物生态学报, 1999, 23 (3): 211-219.
    [327] Josefa M.N., Consuelo G., Vicente M., et al. Water relations and xylem transport of nutrients in pepper plants grown under two different salts stress regimes[J]. Plant Growth Regulation, 2003, 41: 237-245.
    [328]张建锋,张旭东,周金星,等.盐分胁迫对杨树苗期生长和土壤酶活性的影响[J].应用生态学报, 2005, 16 (3): 426-430.
    [329]汪良驹,马凯,姜卫兵,等. NaCl胁迫下石榴和桃植株Na+ , K+含量与耐盐性的研究[J].园艺学报, 1995, 22 (4) : 336-340.
    [330]杜中军,翟衡,罗新书,等.苹果砧木耐盐性鉴定及其指标判定[J].果树学报, 2002, 19(1): 4-7.
    [331] Kent G.A., Janusz J.Z., Michael D.M. Naphthenic acids affect plant water conductance but do not alter shoot Na+ and Cl? concentrations in jack pine (Pinus banKshiana) seedlings[J]. Plant and Soil, 2004, 263: 183-190.
    [332] Wang J.F., Kang S.Z., Li F.S., et al. Effects of alternate partial root-zone irrigation on soil microorganism and maize growth [J]. Plant and Soil, 2008, 302: 45-52.
    [333] Jordi M., Merce M., Jesusdel C., et al. Evaluation of partial root-zone drying for potential field use as a deficit irrigation technique in commercial vineyards according to two different pipeline layouts[J]. Irrigation Science, 2008, 26: 347-356.
    [334] Islam AK., Edwards D.G., Asher C.J. PH optima for crop growth. Results of a flowing solution culture experiment with six species [J]. Plant and Soil, 1980, 54: 339-357.
    [335] Nastou A., Chartaoulakis K., Atherios I., et al. Leaf anatomical responses, ion content and CO2 assimilation in three lemon cultivars under NaCl salinity[J]. Advance in Horticultural Science, 1999, 13(2): 61-67.
    [336] Navarro A., Ba?on S., Olmos E., et al. Effects of sodium chloride on water potential components, hydraulic conductivity, gas exchange and leaf ultrastructure of Arbutus unedo plants [J]. Plant Science, 2007, 172: 473-480.
    [337] Martínez-Ballesta M.C., Martínez V., Carvajal M. Regulation of water channel activity in whole roots and in protoplasts from roots of melon plants grown under saline conditions [J]. Australian Journal of Plant Physiolgy, 2000, 27: 685-691.
    [338] Zhang J., Zhang X., Liang J. Exudation rate and hydraulic conductance of maize roots are enhanced by soil drying and abscisic acid treatment [J]. New Phytologist, 2003, 131(3): 329-336.
    [339] Zhang W.H., Tyerman S.D. Effect of low O2 concentration and azide on hydraulic conductance and osmotic volume of the cortical cells of wheat roots [J]. Australian Journal of Plant Physiolgy, 1991, 18: 603-613.
    [340] Francesco R., Maria R.G., Angelo N., et al. Stomatal conductance and leaf water potential responses to hydraulic conductance variation in Pinus pinaster seedlings [J]. Trees, 2007, 21: 371-378.
    [341]胡田田,康绍忠.局部灌水方式对玉米不同根区土-根系统水分传导的影响[J].农业工程学报, 2007, 23 (2) : 11-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700