干旱半干旱地区天然植被蒸散发模型与植被需水量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年以来,随着人口增加、资源开发和经济快速增长,引发了诸如环境污染、森林破坏、水土流失和荒漠化等一系列世界性问题,这些问题对人类的生存和经济的持续发展构成了严重的威胁。生态环境恶化是生态系统对环境胁迫,特别是人类干扰的异常反应。人类在发展经济和开发利用自然资源的同时,忽略了生态系统支持能力,也正以前所未有的规模和强度影响着环境,损害和改变着自然生态系统。“忽视水资源与生态环境系统之间的关系”是 20 世纪水资源管理的失误,直接导致生态环境的恶化。《我们共同的未来》、《关注地球》以及《21 世纪议程》等文献的发表,标志着人类对水和自然生态系统认识的转变。20 世纪 80 年代初期美国出现了生态和环境需水分配研究的雏形,直到 90 年代以来,水资源和生态环境的相关性研究,特别是生态系统需水量研究才正式成为全球关注的焦点。
    在我国,生态系统需水的研究尚处于起步阶段,对生态系统需水的概念、内涵与外延等没有统一的定义,对其计算方法的研究也并不深入和完善,多以定性分析和宏观定量相结合的方法为主。地球表面由于气候、土壤、地形和动植物区系差别,形成了多种多样的生态系统,按生态系统形成的原动力和影响力来划分,可分为自然生态系统、半自然生态系统和人工生态系统三类。不同的生态系统有各自己需水特性。按照人类对自然的干预程度,生态需水又可分为农田生态系统下的人工植被需水和自然生态系统下的天然植被需水。过去的几十年里,国内外对农田生态系统下的需水规律研究比较深入,适用于农作物(或人工林草)的计算方法已有大量成果。而自然生态系统下天然植被的需水研究进展缓慢,对天然植被区水分平衡的量化评估报道和蒸散发的研究较少。
    作者参加了导师主持的国家自然科学基金重点项目“京蒙沙源区植被建设中水资源优化配置研究”(50139040),并负责自然生态系统下天然植被蒸散发规律研究。本研究便是在上述背景下完成的,作者综合应用水资源学、大气物理学和自然生态学等多学科理论,进行了大量的现场试验与室内研究,基本了解了自然生态系统下天然植被的需水机理,构建起自然生态系统天然植被蒸散发研究的耦合模型框架,并用两种模型、以日为计算时段完成了对研究区 4 种植被生育期和非生育期的蒸散发量计算。
    本文的主要研究内容包括五个部分:
    第一部分:详细分析了自然生态系统的特征,分析了目前国内外研究农田生态系统下各种作物蒸散发研究的最新成果和方法,参考前人研究的理论与实践,构建了自
In the past few decades,the human have created unprecedented the wealth of society and promoted the development of the industrial civilization with the advanced technology and improved social productivity While developing economy and exploiting natural resources, the human have ignored the supporting capacity of the ecological system so that the environment has been affected in the unprecedented scale and intensity and the natural ecological system has been damaged and changed. Ignoring the relationship between the water resources and ecological environment system is the mismanagement of the water resources in the 20th century, which has directly caused the ecological environment to be worse and triggered many problems. The publication of such literature as Our Common Future, Care for the Earth, and 21st Century Agenda indicates that man’s awareness of water and natural ecological system has changed. In the early 1980s, the prototype of the study on the distribution of water need of ecology and environment has been established. Up to the 1990s, the study on the pertinence of water resources and ecological environment, especially the study on the water requirements, has attracted the attention of the whole world.
    In China, the study on the water requirements of the ecological system is still in the initial stage. There is still no unified definition on the concept, intension and extension of the water need in the ecological system. The study on calculation methods are far from being in-depth and perfect and mainly use the method which combines the qualitative analysis with the microscopic quantification. Owing to the different climate, soil terrain and animal and plant sections, various ecological systems have formed in the surface of the earth. According to the force leading to the formation of the ecological system, they are divided into three categories: natural ecological system, semi-natural ecological system and platted ecological system. Different ecological systems have their own water requirement features. According to the interference that the man has done to the nature, the ecological water requirement consists of the water requirements for platted vegetation system and for the natural vegetation system. In the past few decades, the regularity of water requirements in the planted ecological system has been studied deeply home and abroad. Most of the estimating methods are applicable to study the water requirements of various crops in the planted vegetation system and a lot of achievements have been made in
    studying the water requirements of crops or planted woods and grass. However, the study on the water requirements of the natural vegetation system has developed slowly and fewer research reports about estimation of the evapotranspiration of natural vegetation and the quantity analysis of the water balance of the natural vegetation in the natural ecological system have been made.
    On account for the situation mentioned above, I have attend the key project, A Study of Scientific Allocation of Water Resources for Vegetation Construction in The Sandy Area Between Beijing and Inner Mongolia(50139040),supported by National Committee of Natural Science Foundation and have in charge of the study of evapotranspiration mechanisms of natural vegetation under guidance of professor Chaolunbagen. The evapotranspiration mechanisms and estimating approaches of water requirements for vegetation have been found by using interdisciplinary theories including hydrology and water resources, atmospheric physics and natural ecology and detail field experiments.,
     The main contents of the study include the following five parts:
     Part one. minutely analyzes the features of the natural ecological system and also analyzes the latest methods and achievements made home and abroad in studying the evapotranspiration of various crops in the cropland ecological system. With reference to the theories and practice of the previous studies, the frame of embedding model for the study on the evapotranspiration of natural vegetation in the
引文
1. 钱正英,张光斗.中国可持续发展水资源战略研究综合报告及各专题报告[M].北京:中国水利水电出版社,2001.
    2. 刘昌明,何希吾.21 世纪中国水问题方略[M]. 北京:科学出版社,2001.
    3. 夏军.华北地区水循环与水资源安全:问题与挑战[J]. 地理科学进展,2002,21(6).
    4. 杨志峰,崔保山,刘静玲,王西琴,刘昌明.生态环境需水量理论、方法与实践[M].北京:科学出版社,2003
    5. 康绍忠,熊运章.干旱缺水条件下麦田蒸散量的计算方法[J].地理学报.1990,45(4).
    6. 罗毅,雷志栋,杨诗秀.根系层储水量对随机腾发响应特性的研究[J].水利学报.1998(5).
    7. 许迪.刘钰.测定和估算田间作物腾发量方法研究综述[J].灌溉排水.1997,16(4):54-59.
    8. 孙景生,熊运章,康绍忠.农田蒸发蒸腾的研究方法与进展[J].灌溉排水,1993,13(4):36-38.
    9. 康绍忠,刘晓明,熊运章等.土壤—植物—大气连续体水分传输理论及其应用[M]北京:水利电力出版社.1994.
    10. 康绍忠等.土壤一植物一大气连续体水分传输的计算机模拟.北京:水利学报,1992(3).
    11. 刘钰.参照腾发量的新定义及计算方法对比[J].水利学报,1997(6):27-33.
    12. 谢贤群.测定农田蒸发的试验研究[J].地理研究,1990,9(4);94-102.
    13. 朝伦巴根等,科尔沁沙地腹部生态环境建设模式与展望[J],水资源与水工程学报,2004.2,P25-28.
    14. 刘昌明,王会肖等.土壤—作物—大气界面水分过程与节水调控[M].北京:科学出版社,1999
    15. 刘昌明主编.土壤-植被-大气系统水分运行实验研究[M].北京:气象出版社,1997
    16. 罗毅等.根吸层出水量对随机腾发响应特性的初步分析.1998(5),44-48
    17. 黄子琛,沈渭寿.干旱区植物的水分关系与耐旱性[M].北京,中国环境科学出版社,2000.
    18. 冯金朝,刘新民.干旱环境与植物的水分关系[M]. 北京,中国环境科学出版社,1998.
    19. 刘昌明,陈永勤,李丽娟,于静洁.21 世纪中国水文科学研究的新问题新技术和新方法[M]. 北京,科学出版社,2001.
    20. Vijay P.Singh.赵卫民,戴东,牛玉国等译.水文系统流域模拟[M].黄河水利出版社,2000.
    21. 蒋德明,刘志民,曹有成,寇振武,王汝墉.科尔沁沙地荒漠化过程与生态恢复[M].北京, 中国环境科学出版社,2003.
    22. 宋郁东,樊自立,雷志栋,张发旺等.中国塔里木河水资源与生态问题研究[M].新疆人民出版社,2000.
    23. 金菊良,丁晶.水资源系统工程[M].成都,四川科学技术出版社,2002.
    24. 黄昌勇.土壤学[M].北京,中国农业出版社,2000.
    25. 李爱贞,刘厚凤.气象学与气候学基础[M].北京,气象出版社,2001.
    26. 樊引琴,蔡焕杰.单作物系数法和双作物系数法计算作物需水量的比较研究[J].水利学报,2003,(3):50-54.
    27. 张娜,于振良,赵士洞.长白山植被蒸腾量空间变化特征的模拟[J].资源科学,2001,23(6):91-96.
    28. 刘钰,蔡林根,R.M.Fernando,L.S.Pereira.作物根区底部土壤水分向上运移通量的计算方法[J].水利学报,2001,(12):19-25.
    29. 于贵瑞.不同冠层类型的陆地植被蒸发散模型研究进展[J].资源科学,2001,23(6):72-84.
    30. 王书功, 康尔泗, 金博文 , 王新平.黑河山区草地蒸散发量估算方法研究[J]. 冰川冻土,2003,25(5):558-565.
    31.程根伟,陈桂蓉.贡嘎山暗针叶林区森林蒸散发特征与模拟[J].水科学进展,2003,14(5):617-621.
    32. 刘钰,L.S.Pereira.气象数据缺测条件下参照腾发量的计算方法[J].水利学报,2001,(3):11-17.
    33. 蔡晓明.生态系统生态学[M].北京:科学出版社,2002
    34. 孙宏勇, 刘昌明, 张永强 , 张喜英.微型蒸发器测定土面蒸发的试验研究[J]. 水利学报,2004,(8):114-118.
    35. 吴擎龙, 雷志栋, 杨诗秀. 求解 SPAC 系统水热输移的耦合迭代计算方法[J]. 水利学报,1996,(2):1-10.
    36. 张超,王会肖.土壤水分研究进展及简要评述[J].干旱地区农业研究.2003,21(4):117-125.
    37. 黄妙芬.地表热通量研究进展[J].干旱区地理.2003,26(2):159-165.
    38. 胡凤彬,康瑛.加拿大 CARE 蒸散发模型开发应用[J].河海大学学报,1994,22(3):58-65.
    39. 王笑影.农田蒸散实测方法研究进展[J].农业系统科学与综合研究.2004,20(1):27-30.
    40. 朱永华,仵彦卿.干旱荒漠区植物骆驼刺的耗水规律[J].水土保持通报.2003,23(4):43-46
    41. Richard G Allen, Luis Pereira, Dirk Rases Martin Smith. Guidelines for computing crop water requirements[M].FAO Irrigation and Drainage, 1998,56
    42. Asit K,Biswas et al Water for Sustainable Development in the 21st[M] Century.Oxford University Press,1993.
    43. Gleick,P.H . The World’s Water 2000-2001;The Biennial Report on Freshwater Resources.Washington DC,USA,Island Press.
    44. Daamen C C. Application of a two source energy balance model to a spare millet field the use of soil surface resistance[J]. Agricultural and Forest Meteorology1993(6):1-7
    45. Kondo J, Saigusa N and Sato T. A parameterization of evaporation from bare soil surfaces[J] Journal of Applied Meteorology,1990,29:385~389.
    46. Mahfouf J F and Noihan J. Comparative study of Various formulations of evaporation from bare soil using in situ data[J] Journal of Applied Meteorology,1991,30:1354-1365.
    47. Camillo P J and Gurney R J. A resistance parameter for bare soil evaporation model[J] Soil Science, 1986,141(2):95-105
    48. W.James Shuttleworth and J.S.Wallace,Evaporation from sparse crops-an energy combination theory,Quart.J.R.M.Soc.(1985).111.pp.839-855
    49. B.J.Choudhury and J.L.Monteith,A four-layer model for the heat budget of homogeneous land surfaces,J.R.meteorol.Soc.(1988).114.pp.373-398
    50. Peter M.Lafleur,Application of an energy combination model for evaporation from sparse canopies,Agricultural and forest meteorology,49(1990)135-153
    51. William D.Nichols,Energy budgets and resistances to energy transport in sparsely vegetated rangeland,gricultural and forest meteorology, 1992 (60),221-247
    52. J.S..Wallace,J.M.Roberts and M.V.K.Sivakumar, The estimation of transpiration from sparse dryland millet using stomatal conductance and vegetation area indices,Agricultural and forest meteorology,51(1990)39-49
    53. Takeshi Sato,A parameterization of evaporation from bare soil surfaces, Kondo, Saigusa and Sato, (1990)385-389
    54. Carl C.Daamen,Two source model of surface fluxes for millet fields in Niger agricultural and forest meteorology 83(1997)205-230
    55. William P.Kustas.Estimates of evapotranpiration with a one-and two-layer model of heat transfer over partial canopy cover. Journal of applied meteorology, (1990) 704-715
    56. Ferenc Acs,A Coupled Soil-vegetation Scheme: Description, Parameters, Validation,and Sensitivity Studies, Journal of applied meteorology. (1994),268-284
    57. Albert Olioso,Toby N.Carlson,Nadine Brisson, Simulation of diurnal transpiration and photosynthesis of a water stressed soybean crop, Agricultural and forest meteorology 81(1996)41-59
    58. W.J.Massman,A surface energy balance method for partitioning evapotranspiration data into plant and soil components for a surface with partial canopy cover water resources research,vol.28,(6),1723-1732,,1992,2
    59. A.J.Brenner,L.D.Incoll,The effect of clumping and stomatal respons on evaporation from sparsely vegetated shrublands, Agricultural and forest meteorology 84(1997) 187-205
    60. Thom A S, Oliver H R. On Penman's equation for estimating regional evaporation[J], Q.J.R.Meteorol.Soc.,1977,103:345-357.
    61. 刘昌明等.土壤—植被—大气连续体模型中的蒸散发计算.南京:水科学进展,1992,3(4),255-263
    62. 康绍忠等.作物叶面蒸腾与棵间蒸发分摊系数的计算方法.南京:本科学进展,1995,6(4),285—289
    63. 冯广龙等.以土壤水分为参变量的根冠系统模拟调控模型.南京:水科学进展,1998,9(3),224-230
    64. 程国栋等.论干旱区景观生态特征与景观生态建设.北京:地球科学进展,1999,14(1),11-14
    65. 盛永伟等,利用气象卫星植被指数进行我国植被的宏观分类.北京:科学通报,1995,40(1),68-71
    66. 黄明斌等.冬小麦叶水势与蒸腾速率之关系的滞后效应.北京:科学通报,1995,40(12),1137-1139
    67. 卢振民.估算田间水分蒸腾的新模式.北京:水利学报,1988(5),43-44
    68. 邵爱军等.野外条件下作物根系吸水模型的建立.北京:水利学报,1997(2),68-72
    69. 蔡焕杰等.用冠层温度计算作物缺水指标的一种简化模式.北京:水利学报, 1996(5),44—48
    70. 许迪等.冬小麦—夏玉米种植模式的农田水量平衡模拟以及入渗补给规律分析.北京:水利学报,1997(12),64-71
    71. 王会肖,刘昌明.农田蒸散、土壤蒸发与水分有效利用[J].地理学报,1997,32(5):447-454
    72. 隋洪智等.农田蒸散双层模型及其在干旱遥感监测中的应用[J].遥感学报,1997,1(3),220—224
    73. 左强等.应用 Microlysimeter 研究作物根系吸水特性.北京,水利学报,1998(6),69-76
    74. 毛晓敏等.叶尔羌灌区冬小麦生育期 SPAC 系统的水热传输的模拟研究.北京:水利学报,1998(7),35-40
    75. 杨金忠,蔡树英.土壤中水、汽、热运动的耦合模型和蒸发模拟.武汉:武汉水利电力学院学报 1989,32(4)
    76. 杨邦杰.土壤表面蒸发阻力模型与田间测定方法,北京:地理学报,1992(2),352-362
    77. 钱正英.西北地区水资源配置、生态环境建设和可持续发展战略研究.2003.6.2.
    78. 王新平,康尔泗,张景光,李新荣.草原化荒漠带人工固沙植丛区土壤水分动态.水科学进展[J].2004,15(2),216-222.
    79. 罗毅等.SPAC 系统中的水热 C02 通量与光合作用的综合模型(I)模型的建立.水利学报[J],2001(2):90—97
    80. 张青祺.光合作用认识史[J].安徽大学学报(自然科学版).1996,20(4):106—110.
    81. 唐登银,程维新,洪嘉琏.我国蒸发研究的概况与展望.农田蒸发—测定与计算[M].北京:气象出版社,1991.1-13
    82. 布德柯著(李怀瑾等译).地表面热量平衡[M].北京:科学出版社,1960.
    83. Brutsaert W.Evaporation into the atmosphere [M].D.Reidel Publ.Co.,Dordrecht, Holland, 1982.
    84. Penman H L.Natural evaporation from open water, bare soil, and grass [J]. Proc Roy sec A, 1948, 193:120-145.
    85. Monteith J L. Environment Control of Plant Growth (L. T. Evans, ed.)[M] Academic Press, New York, 1963, 95-112.
    86. Priestley C H B, R J Taylor.On the assessment of surface heat flux and evaporation using large—scale parameters[J].Monthly Wealth.Rev,1972,100: 81— 92.
    87. Morton F I, Estimating evaporation and transpiration form climatological observations[J]. Appl. Meteor,1975,14:488-497.
    88. Hillel D. Applications of soil physics [M].Academic press, New York, 1980.
    89. Philip J R., Plant water relations: some physical aspects [J]. Ann. Rev. Plant PhysioL, 1966,17: 245-168.
    90. Chen.Uncoupled multiplayer model for the transfer of sensible and latent heat flux densities from vegetation[J].Boundary-layer Meteorology,1984,28: 213-225.
    91. W J Shuttleworth and J S Wallace.Evaporation from sparse crops—an energy combination theory [J].Quart.J.R.Met.Soc,1985,111:839-855.
    92. Reginato R J,et al. Evapotranspiration calculated from remote multi-spectral and ground station meteorological data [J]. Rem. Sens. Environ.1985,18:75-89.
    93. Brown K W, Rosenberg H T.A resistance model to predict evapotranspiration and its application to a sugar beeffield [J].Agron.J,1985,65:341—347
    94. F Domingo et al.Evapotranspiration model for semi-arid shrub lands tested against data from SE Spain [J]. Agricultural and Forest Meteorology, 1999,95:67-84.
    95. Goudriaan J and Waggoner PE. Simulating both Aerial Microclimate and Soil Temperature from observations above the foliar canopy[J]. Neth.J.Agric. Sci, 1972,20:104-124.
    96. Choudhury B J, Monteith,J L. A four—layer model for heat budget of homogeneous land surfaces[J].Q.J.R.Meteorol.Soc.,1988,114:373-398.
    97. 刘昌明,窦清晨.土壤—植物—大气连续体模型中的蒸散发计算[J].水科学进展,1992,3(4):255—263
    98. 陈建耀,刘昌明,吴凯.利用大型蒸渗仪模拟土壤—植物—大气连续体水分蒸散[J].应用生态学报,1999,10(1):45-48
    99. 刘树华,黄子琛,刘力超,土壤一植被一大气连续体中蒸散过程的数值模拟[J].地理学报,1996,5l(2):118-126,
    100. Monteith 著(卢其尧译).植被和大气[U].北京:科学出版社,1975,l—150
    101. 江苏农学院主编[H).植物生理学,北京:农业出版社,1986,
    102. 姚建文.作物生长条件下土壤含水量预测的数学模型[J].水利学报,1989(9):32-38
    103. 邵明安等,植物根系吸收土壤水分的数学模型[J].土壤学报.1987(4):295—305
    104. Novak V. Estimation of soil-water extraction patterns by roots [J]. Agricultural Water Management, 1987,12(4):271—278.
    105. Gardner W R. Relation of root distribution to water uptake and availability [J].Agron. J.,1964,56:35—41.
    106. Molz F J and Remson I. Extraction term models of soil moisture use by transpiring plants[J].Water Resour. Res.,1970,6:1346—1356.
    107. Nimah M H,Hanks R J. Model for estimation soil water plant and atmospheric interrelations.2.Field test of model [J]. Soil Sci. Am. Proc., 1973, 37: 528-552.
    108. Herkelrath W N, Miller E, et al. Water uptake by plants.The root contact model.[J].Soil Sci. Am. J.,1977,41:1039-1043.
    109. Molz F J. Models of water transport in the soil — plant system: A review[J].Water Resour.Res.,1981,17:1254-1260.
    110. D Hanelt et al. Photoinhibition and recovery after high stress in different developmental and life history stages of Laminaria secharina[J].Ournal of phycology, 1997,33:387-395.
    111. Long S P, Humphries S, Falkowski PG. Photoinhibition of photosynthesis in nature[J]. Annu Rev Plant Physiol Mol Biol, 1994,45:633—662.
    112. 胡浩云等.喷灌条件下冬小麦田间水分运移数学模拟及灌溉模式的研究.南京:水科学进展,1995,6(4),278-284
    113. 汤立群.坡面降雨溅蚀及其模拟.南京:水科学进展,1995,6(4),304-310
    114. 唐海行等.考虑气压势影响的降雨入渗数值模拟研究.南京:水科学进展,1996,7(1),8-13
    115. 莫兴国.区域蒸发研究综述.南京;水科学进展,1996,7(2),180—186
    116. 罗毅等.潜在腾发量的季节性变化趋势及概率分布特性研究.南京:水科学进展,1997,8(4),308-312
    117. 毛晓敏等.尔羌河流域裸地潜水蒸发的数值模拟研究.南京:水科学进展,1997,8(4),313—320
    118. 李久生等.喷灌条件下土壤水分空间分布特性研究.南京:水科学进展,1998,9(1),7—14
    119. 何新林等.气候变化对新疆马纳斯河流与水文水资源的影响.南京:水科学进展,1998,9(1),77-83
    120. 秦耀东等.大空隙对农田耕作层和导水率的影响.南京:水科学进展,1998,9(2),107—111
    121. 赵永龙等.相空间小波网络模型及其在水文中长期预测中的应用.南京:水科学进展,1998,9(3),252—257
    122. 邱林等.模糊模式识别神经网络预测模型及其应用.南京:水科学进展,1998,9(3),258—254
    123. 罗毅等.潜在蒸发量的随机过程特性描述(实例研究).南京:水科学进展,1998,9(4),338-344
    124. 张建云等.应用地理信息进行无资料地区流域水文模型模拟研究.南京,水科学进展,1998,9(4),345-350
    125. 田庆久等.植被指数研究进展.北京:地球科学进展,1998,13(4)327—333
    126. 付培健等.大气环流模式中地面参数化的发展.北京:地球科学进展,1999,14(1),44-50
    127. 康绍忠等.旱区水一土一作物关系及其最优调控原理.1998,北京:中国农业出版社,
    128. 石广玉等主编.中国的气候变化与气候影响研究论文集.北京:气象出版社,1997
    129. 叶笃正等主编.我国未来(20~50 年)生态环境变化趋势的预测研究论文集.北京:气象出版社,1996
    130. 陈维英等.NDVI 距平植被指数监测短期气候异常.北京:环境遥感,1994,9(4),195-199
    131. 赵鸣等.一个引入近底层的土壤一植被一大气相互作用模式.北京:大气科学,1995,19(4),405—414
    132. 邹进上主编.气候学研究—天、地、生相互影响问题.1989,北京:气象出版社
    133. 季劲钧等主编.现代大气科学前沿与展望(论文集).1996,北京:气象出版社
    134. 沈卫明等.阿克苏地区陆面蒸发的数值研究.北京:地理学报,1993,48(5),457—467
    135. 张一平等.温度对土壤水势影响的研究.北京:土壤学报,1990,27(4),454—458
    136. 李开元等.黄土高原土壤在不同给水条件下的蒸发性能.西安:干旱区农业研究,1991(3), 77-83
    137. 黄明斌.滞后效应对 SPAC 中水流运动的影响研究综述.北京:水土保持通报,1995,15(4),106
    138. 谭孝源.土壤—植物—大气连续体中的水分传输.北京;水利学报,1983(9),1—11
    139. 王积强.土壤内水分流动、温度分布及其表面蒸发效应的研究(讨论).北京:水利学报,1984(2),69-70
    140. 雷志栋等.潜水稳定蒸发的分析与经验公式.北京:水利学报,1984(8),60-63
    141. 孙淑芬.土壤内水分流动,温度分布及其表面蒸发效应的研究(终结讨论),北京:水利学报,1985(1),68-69
    142. 沈立昌.关于潜水蒸发经验公式的探讨.北京:水利学报,1985(7),3440
    143. 邵明安等.土壤一植物一大气连续体中的水流阻力及相对重要性.北京:水利学报,1986(9),8-14
    144. 李宝庆等.用实测土壤水势值推求土壤蒸发量.北京:水利学报,19870),33-38
    145. 惠土博等,田间入渗率的随机模型分析.北京:水利学报,1987(10),11-23
    146. 康绍忠等.稻田腾发量预报预报方法的初步分析.北京:水利学报,1988(7),33—41
    147. 罗远培.作物根系吸水和水分消耗的计算机模拟.北京:水利学报,1989(3),1-9
    148. 王广德.综合离散水文系统模型,北京:水利学报.1989(8),36-41
    149. 唐海行等.潜水蒸发的试验研究及其经验公式的改进.北京:水利学报,1989(10),37-44
    150. 王金平.蒸发条件下层状土壤水分运动的数值模拟.北京:水利学报,1989(5),49-54
    151. 朱景武.水稻蒸发蒸腾量系数分摊模式探讨.北京:水利学报,1989(7),40-43
    152. 陈惠泉等.超温水体水面蒸发与散热.北京:水利学报,1989(10),27-36
    153. 袁新等.参照作物蓄水量的空间变异性.北京:水利学报,1990(2),33-36
    154. 周维博.降雨入渗和蒸发条件下野外层状土壤水分运动的数值模拟,北京;水利学报,1991(9),32-35
    155. 蔡树英等.温度影响下土壤水分蒸发的数值分析.北京:水利学报,1991(11),1-8
    156. 穆宏强.SCS 模型在石桥铺流域的应用研究.北京:水利学报,1992(10),79-83
    157. 康绍忠等.作物覆盖条件下田间水热运移的模拟研究.北京:水利学报,1993(3),11-17
    158. 夏军.水文尺度问题.北京:水利学报,1993(5),32-37
    159. 杨诗秀等.田间土壤水分通量确定方法的研究.北京:水利学报,1993(7),1—9
    160. 姚德良等.塔里木盆地陆气水热交换数值模拟.北京:水利学报,1994(5),31-37
    161. 叶泽纲等.降水特性空间变异性初步研究.北京:水利学报,1994(11),7-13
    162. 钟登华等.水文预报时间序列神经网络模型,北京:水利学报,1995(2),69-75
    163. 左强等.Hanks 蒸发试验的模拟与分析.北京:水利学报,1995(7),16-22
    164. 秦耀东等.冬小麦冠气温差及根层土壤含水量的频谱分析.北京:水利学报,1995(8),67-76
    165. 黄明斌等.不同有效土壤水势下植物叶水势与蒸腾速率的关系.北京:水利学报,1996(3),1-6
    166. 康绍忠等. C02 浓度增加对蒸发蒸腾作用和作物水分利用的影响.北京,水利学报,1996(4),18-26
    167. 张富仓等.土壤导水参数的温度效应及其数学模式.北京,水利学报,1996(12),8-15
    168. 沈荣开等.夏玉米麦秸全覆盖下土壤水热动态的田间试验和数值模拟,北京:水利学报,1997(2),14-21
    169. 刘同科等.SPAC 系统中水热耦合运移方程的有限元迭代算法.北京:水利学报,1997(3),65-69
    170. 黄明斌等.土—根界面行为对单根吸水的影响.北京:水利学报,1997(7),31-36
    171. 郭生练等.大尺度水文模型及其在与气候模型的连接耦合研究.北京:水利学报,1997(7),37-41
    172. 刘群昌等.华北地区夏玉米田间水分转化规律研究.北京:水利学报,1998(1),1-11
    173. 任理等.条带覆盖下土壤水热动态的田间试验与模型建立.北京:水利学报,1998(1),76-80
    174. 缪韧等.具有水文物理概念的日径流随机模型.北京:水利学报,1998(4),27-32
    175. 陈亚新等.考虑缺水滞后效应的作物—水模型研究.北京:水利学报,1998(4),70-74
    176. 刘昌明等.大型蒸渗仪与小型棵间蒸发器结合测定小麦蒸散的研究.北京:水利学报,1998(10),36-39
    177. 杨荣富等.神经网络模拟降雨径流过程.北京:水利学报,1998(10),69-73
    178. 张展羽等.作物水盐动态响应模型.北京:水利学报,1998(12),66-70
    179. 蔡焕杰等.作物冠层温度与环境因素的关系.陕西:西北农业大学学报,1995(3),133—137
    180. 罗远培.土壤—植物—大气连续体的系统动态模拟.北京:灌溉排水,1983(1),1-8
    181. 康绍忠等.土壤—植物—大气连续体水分传输力能关系的田间试验研究.水利学报,1990 (7),1-9
    182. 康绍忠.土壤—植物—大气连续体水热动态模拟研究.生态学报,1991(3),256-261
    183. 杨邦杰.土壤蒸发过程的数值模拟及其应用.1989,北京:学术期刊出版社
    184. 刘晓明等.玉米根系吸水模式的研究.陕西:西北水资源与水工程,1992(1),28-36
    185. 姚德良等.在植物耗水条件下土壤水分动态的数值模拟.1993,30(1)
    186. 夏军.水文灰色系统 DHGM 模型识别与实时灰色预测.北京:水文,1988(1),1-6
    187. 雒文生.森林对降水和蒸发的影响.北京:水文,1989(6),32-36
    188. 郭生练等.流域蒸散发的气候学计算.北京:水文,1994(5),16-22
    189. 郭生练.气候变化与水面蒸发计算.武汉:武汉水利电力大学学报,27(1),99-106
    190. 周国逸著.生态系统水热原理及其应用.1995,北京:气象出版社
    191. 陈科信.蒸发量与土壤湿度和地下通量关系的模式.北京:地理学报,1988(2),169-175
    192. 杨邦杰等.裸地蒸发过程的数值模拟.北京:地理学报,1988(4),352-362
    193. 王浩.林冠对空气的湍流交换系数影响.北京:地理学报,1991(1),107-114
    194. 陈祖明等.闽江上游森林水文效应研究.北京:地理学报,1992(1),49-57
    195. 杨志峰,崔保山,刘静玲,王西琴,刘昌明.生态环境需水量理论、方法与实践[M].北京:科学出版社,2003
    196. 唐常源等.亚热带马尾松人工林的降雨截留作用.北京:地理学报,1992(6),
    197. 陈乾等.用 NOAA 卫星气象资料计算复杂地形下的流域蒸散.北京:地理学报,1993(]),61-69
    198. 刘树华等.土壤—植被—大气连续体中蒸散过程的数值模拟.北京:地理学报,1996(2),118-126
    199. Farquhar G D,von Caemmerer S, & Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J].Plantae,1980,149:78—90.
    200. Leuning R.A critical appraisal of a combined stomatal—photosynthesis model for C3 plants [J]. Plant Cell Environ, 1995a, 18: 339—355.
    201. Ball J T, Woodrow I E, Berry J A.A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions [J]. Biggins I. Progress in Photosynthesis Research, Netherlands: Martinus Nijhoff Publishers, 1987:221-224.
    202. Norman J M, Arkcbauer T J. Predicting canopy photosynthesis and light use efficiency from leaf characteristics [J]. CSSA, Special Publication, 1991, 19: 75-94.
    203. Yu Q,Goudriaan J, Wang, T D. Modeling diurnal courses of photosynthesis and transpiration of leaves on the bases of stomatal and non—stomatal responses, including photo inhibition [J].
    Photosynthetic, 2001,39:43-51.
    204. Collatz G J, Ball, J T, Grivet C, Berry J A. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer [J]. Agric. For. Meteorol. 1991, 54:107—136.
    205. Leuning R, Kelliher F M, De Pury D G G, Schulze. Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies [J]. Plant Cell Environ, 1995b, 18:1183—1200.
    206. Amthor J S. Scaling CO2-photosynthesis relationships from the leaf to the canopy[J]. Photosynthesis Research, 1994,39:321-350.
    207. Leuning R., Kelliher F M, De Pury, et al. Leaf nitrogen, Photosynthesis, conductance and transpiration: scaling from leaves to canopies [J]. Plant, Cell and Environ, 1995,18:1183-1200.
    208. Baldocchi D. A lagrangian random walk model for simulating water vapor, CO2 and sensible heat flux densities and scalar profiles over and within a soybean canopy [J].Bound-layer Meteor, 1992, 61:113—144.
    209. J Goudriaan. Crop micrometoorology: a simulation study [M]. Center for Agri cultural Publishing and Documentation, Wageningen, the Netherlands, 1977.
    210. Van Bavel,C H M and D I Hillel. Calculating potential and actual evaporation from a bare soil surface by simulation of concurrent flow for water and heat [J].Agric. Meteorol, 1976,17: 453-476.
    211. Shaw R H, Pereira A R. Aerodynamic roughness of a plant canopy: a numerical experiment [J]. Agric For Netero, 1982,26:51-65,
    212. Ben Mehrez M, Taconet O, Vidal—Madjar D, Valencogne C. Estimation of stomatal resistance and canopy evaporation during the Hapex—Mobilhy experiment [J]. Agric. For. Meteorol. 1992,58:285-313.
    213. Anadranistakis M, Kerkides P, Liakatas A, Alexandris S, Poulovassilis A. How significant is the usual assumption of neutral stability in evapotranspiration estimating models [J]. Meteorol.1999,Appl,6:155-158.
    214. Garratt J R.Transfer characteristics for a heterogeneous surface of large aerodynamic roughness [J].Q.J.R.Meteorol.Soc.,1978,104:491-502
    215. Von Caemmerer S, Farquhar G D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves [J].Planta,1981,153:376-387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700