马尼拉草坪冠气温差时间变化特征及其环境影响因子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是人类和一切生物赖以生存的重要物质基础,我国北方水资源不足,建立高效节水灌溉制度是这些地区的必然选择。本研究于2011年7月至2012年2月在河南省济源市,基于马尼拉草坪的净辐射、气温、空气相对湿度、风速和土壤含水量等环境因子的实时观测,测算了草坪环境连续时段的冠气温差,研究了不同月份、不同天气条件下的草坪冠气温差的日变化规律及其环境影响特征。着重分析了草坪冠气温差与环境因子和土壤含水量的定量关系,旨在为精确测算其冠气温差提供理论依据。所得结论如下:
     (1)在马尼拉草坪生长时期(2011年7月至11月)内,各月晴天天气日的马尼拉草坪冠气温差都有明显的昼夜变化,表现为单峰曲线趋势,不同月份在夜间和白天都出现了不同程度的差异,冠气温差的值都低于0℃。
     (2)在马尼拉草坪非生长时期(2011年12月至2012年2月)内,各月晴天天气日的马尼拉草坪冠气温差的昼夜变化都没有生长时期节明显,变化趋势较小,单峰曲线不明显,变化范围变小,最大值和最小值都小于生长时期节,冠气温差都的值低于0℃。
     (3)晴天日马尼拉草坪的日变化表现出较为明显的昼夜变化,夜间马尼拉草坪的冠气温差值较大,变化趋势不大;白天从清晨日出开始,马尼拉草坪冠气温差值明显减小,到15:00左右达到最小值,然后冠气温差值开始增大,到19:00左右趋于平缓,马尼拉草坪冠气温差的变化为单峰曲线,这种变化趋势与各月平均的冠气温差日变化规律基本一致。
     (4)阴天日各月的冠气温差的昼夜变化为多峰曲线,夜间各月份的冠气温差值曲线都比较平缓,差异不明显,而在白天冠气温差曲线的变化较明显,马尼拉草坪冠气温差值开始减小的时间有所延缓,减小幅度与达到最小值的时间也出现了较大差异。
     (5)马尼拉草坪生长时期冠气温差与气温Ta、土壤温度Ts、空气相对湿度RH、太阳总辐射R a、太阳净辐射Rn、冠层温度Tc、风速W、VPD的相关性从大到小的因子基本上依次是:RH >VPD> Ta > Tc >W > Rn > R a> Ts。马尼拉草坪冠气温差与环境因子之间的偏相关系数在非生长时期节相对来说有所减小。其中与空气相对湿度的相关系数最高,全年都保持显著正相关。此为草坪土壤水分状况诊断提供重要的参考依据。
     (6)采用逐步回归的方法进行分析不同时间段不同土层土壤相对含水量与马尼拉草坪冠气温差之间的关系,表明与马尼拉草坪冠气温差相关性最大的为20 cm土层深处土壤相对含水量。与10 cm和40 cm深处的土壤含水量也有一定的相关性。
Water is the most important material base for human beings and all of the living things to live. In the north of our country, water resource is not enough, so establishing an efficient water-saving irrigation system is an inevitable choice in these places. This research is based on the real time observation of net radiation, air temperature, air relative humidity, wind speed and soil water content, etc; measure and calculate amplitude of air temperature of the lawn canopy in continuous time; studies the change rules of the lawn canopy’s amplitude of air temperature in a day and the characteristics of environmental influence, in different months, and under different weather conditions. Especially analyses the quantitative relationship between the amplitude of air temperature of the lawn canopy and environmental influence, in order to provide the accurate measure and calculation the amplitude of air temperature of the lawn canopy with theoretical basis and to support the water saving cultivation maintaining of the lawn. The conclusions are followed:
     (1) During the main growth period of the Zoysia Matrella lawn (from July to November in 2011), on sunny days, the temperature of the lawn canopy has a distinct change round the clock, which shows the variation of curve is unimodal. The average of the amplitude of air temperature of the lawn canopy is also different at the same time in different months. All of the digitals are below 0℃.
     (2) During the extra essential growth period of the Zoysia Matrella lawn (from December in 2011 to February in 2012), the amplitude of air temperature of the lawn canopy round the clock on sunny days is not as obvious as it in the main growth period. The variation tendency is not sharp, and the unimodal curve is not so obvious. The range of variation becomes small. Both of the maximum and minimum are less than they are in the growth period. All of the digitals are below 0℃.
     (3) On sunny days, the lawn shows obvious amplitude of air temperature from day to night. At night, the amplitude of air temperature of the lawn canopy is larger than it in the day, but the variation tendency is not so obvious; in the day, since sunrise, the amplitude become smaller; at about 3 o’clock pm, the digital reaches its minimum, and then the amplitude of air temperature of the lawn canopy begins to grow till 7 o’clock pm the variation tendency becomes mild. The variation tendency of the amplitude of air temperature of the lawn canopy is a unimodal curve. It is basically the same with the average of months of the rule of the amplitude of air temperature of the lawn canopy round the clock.
     (4) The amplitude of air temperature of the lawn canopy round the clock on cloudy days in months is a polymodal curve. the amplitude of air temperature of the lawn canopy is mild at night in months, the difference is no sharp; in the day, it becomes sharp; the time of the amplitude decreasing becomes less. It shows a big difference for the amplitude to decrease and reach to its minimum.
     (5) During the lawn’s growth period , the relativity between the amplitude of air temperature of the lawn canopy and air temperature, soil temperature, air relative humidity, total solar radiation, pure solar radiation, canopy temperature, wind speed, VPD from big to small is RH >VPD> Ta > Tc >W > Rn > R a> Ts . Zoysia Matrella lawn grass canopy-air temperature difference and partial correlation coefficients between the environmental factors in the non-growing season is relatively reduced. With the highest correlation coefficient of air relative humidity, remain significant for the whole year is relevant. This lawn provides an important reference for diagnosis of soil water status.
     (6) Using stepwise regression method to analysis the relationship of different periods of relative water content in different layers of soil and turf canopy-air temperature difference of Zoysia Matrella. It indicates the max correlation with Zoysia Matrella lawn grass canopy-air temperature difference is 20 cm Relative water content of soil in the deep soil layers. It also has some relevance with 10 cm and 40 cm depth of soil moisture content.
引文
[1]太华杰,我国农业气象业务体系的形成、完善和发展[J],应用气象学报,1995, 6(4): 505-508.
    [2]孟平,张劲松,高峻等.苹果树冠层-空气温差变化及其与环境因子的关系[J].应用生态学报,2007,18(9): 2030-2034.
    [3]段爱旺.用冠气温差监测冬小麦水分胁迫状况时最佳测定时间的选择[J].中国学术期刊文摘,1996.
    [4]蔡焕杰.用冠层温度-气温差方法诊断作物缺水状况的研究[J].干旱地区农业研究,1993, 11(3): 49-53.
    [5]王宏.作物水分亏缺诊断的研究.II冠层温度和农田蒸散[A].作物与水分关系的研究[M].北京:中国科学技术出版社,1992. 4.
    [6]梁银丽,张成娥.冠层温度一气温差与作物水分亏缺关系的研究[J ].生态农业研究,2000, 8(1): 24-26
    [7]王密侠,马成军,蔡焕杰.干旱农业指标研究与进展[J].干旱地区农业研究,1998,16 (3):119-12
    [8]陈立松.果树对水分胁迫的反应与适应性[J].干早地区农业研究,1999, 17 (1) : 88-94.
    [9]王中英.果树抗旱生理[M].北京:中国农业出版社,2000.
    [10]潘东明,潘良镇.水分胁迫对龙眼幼苗多胺等生理生化指标的影响[J].福建农业大学学报,1997, 26(1) : 277-282.
    [11]田庆久,宫鹏,赵春江等.用光谱反射率诊断小麦水分状况的可行性分析[J].科学通报,2000,45(24):2045-2050.
    [12]张佳华,王长耀.以气孔导度为显参的遥感一光合水分胁迫作物产量模型研究[J].水利学报,1999, (8):35-39.
    [13] Kramer P J. Water relation of plants[M]. New York Acedemic Press, 1983.
    [14]刘艳,丽雪,干一有年.水分胁迫对苹果叶片叶绿体1. 6一二磷酸果糖磷酸醋酶活性的影响[J].内蒙占农业大学学报,2002, 23(4): 42-45
    [15]曲桂敏,王鸿霞,束怀瑞.苹果树不同植株类型水分利用效率的日变化[J].干旱地区农业研究,1999, 17 (2 ): 111-115.
    [16] Misra R D. Criteria for scheduling the irrigation of wheat[J]. Eypl. Agric. 1981,17: 157-162.
    [17] Stegman E C. Irrigation scheduling:applied timing criteria[J]. Adv. Irrig. 1983. 2: 1-30.
    [18]徐祝龄,王汉,衣纯真.作物水分胁迫监测的国内外研究进展[J].中国农业气象,1995 16 (4): 41-47.
    [19]刘学著,张连根,周守华.基于冠层的冬小麦水分胁迫指数的实验研究[J].应用气象学报,1995 6 (4 ): 449-453.
    [20]卢从明,张其德,匡廷云.水分胁迫对小麦光合系统的影响[J].植物学报,1994, 36(1): 93-98.
    [21]李嘉瑞,任小林,王民柱,,等.干旱对果树光合的影响及水分胁迫信息传递[J].干早地区农业研究,1996, 14 (3) : 67-72.
    [22]刘艳洁,杨世凤,钱东平,霍晓静.作物水胁迫检测的研究进展和发展方向[J].天津科技大学学报,2004,19(4):26-30.
    [23] Yang S-F. Development of an automatic and real-time watering system based on estimation of water stress in tomato crops with acoustics emission technology [J]. Transaction of the CSAE,2001, 20: 40-50.
    [24]杨世风,钱东平,霍晓静等.作物水胁迫声发射检测及视情灌溉系统的研究[J].农业工程学报,2001, 17(5): 150-152.)
    [25]彭致功,杨培岭,段爱旺等.日光温室条件下番茄植株蒸腾规律研究[J].干旱地区农业研究,2004, 22(1): 62-65.
    [26] Idso S B, Jackson R D,Pinter P J,et al. Normalizing the stress degree day for environmental variability[J]. Agricul-tural Meteorology, 1981, 24:45-55.
    [27] Jackson R. D. Canopy temperature as a crop water stress :indicator[J].Water Resour. Res.,1981, 17: 1133-1138.
    [28]俞龙,王卫星,崔晓等于冠层温度的夏玉米旱情指数理论模型和经验模型的比较[J].华南农业大学学, 2007, 28(3): 110-112.
    [29]李雪,左志宇,张晓东等基于CWSI诊断温室草皮水分胁迫的实验研究[J].节水灌溉2008, 8: 29-31.
    [30] VidalA, Devaux-RosC. Evaluating forest fire hazard with a landsat TM derived water stress index[J]. Agricultural and Forest Meteorology,1995,77: 207~224.
    [31] Clarke T R. Anempirical approach for detecting crop water stress using multispectral airborne sensor[J].Hort Technology, 1997, 7: 1,9~16.
    [32] Jackson R D, Idso S B,Reginato R J.Canopyt emperature as a crop water stress indicator [J]. Water Resource Research, 1981,17: 1133~1138.
    [33]史宝成,作物缺水诊断指标及灌溉控制指标的研究(C).中国水利水电科学(2006).
    [34] Tanner C B. Plant temperatures[J]. Agron. 1963, 55: 10-211.
    [35] Hatfied J L. Estimation of evapotranspiration of the one-time-of the-day using remotely second surfaces temperature[J].Agric. Water Manag.,1983, 7: 341-350
    [36] IdsoSB, JacksonRD, ReginatoRJ. Remote sensing oP crop,fields[J]. Science1977. 196:19-25.
    [37] Jackson R. D..Wheat canopy temperature:A practical tool Eor evluating water requirements[J]. Water Resour. Res.,1977 13:651-656.
    [38] Jackson R. D. Canopy temperature as a crop water stress :indicator[J]. Water Resour. Res.,1981, 17: 1133-1138. [39]段爱旺.冠层温度在农田水管理中的应用及其相应的测定仪器[J].灌溉排水,1995,14 (4):53-55.
    [40]刘学著.冬小麦冠气温差及其与叶水势的相关性实验研究[J].作物学报,1995, 21(5):528-532.
    [40] Olufayo A, Baldy C, Ruelle P,Sorghum yield, water use and canopy temperatures under different levels of irrigation[J]. Agricultural Water Management, 1996, 30 (1):77-90.
    [41]石培华,梅旭荣,冷石林,等.冠层温度与冬小麦农田生态系统水分状况的关系[J]应用生态学报,1997, 8 (3) :232-234.2000, 8(1):24-262.
    [42]杨晓光,于沪宁.冬小麦、夏玉米水分胁迫监测系统[J].中国生态农业学报,2000, 8(1):
    [43] Ruiz-S6nchez M C, Domingo R A. Water stress preconditioning to improve drought resistance in young apricot plants[J]. Plant Science, 2000, 156(2): 245-251.
    [44]刘海隆,杨晓光.玉米水分胁迫判别指标的研究[J].中国农业气象,2002, 23 (3 ): 22-26.
    [45]王卫星,罗锡文,区颖刚,等.基于冠层温度的菜心缺水指数模型初步试验研究[J] .农业工程学报,2003, 19(5): 47-50.
    [44] Xuezhi Wanga, Weiping Yangb, Ashley Wheatonc, et al. Automated canopy temperature estimation via infrared thermography: A first step towards automated plant water stress monitoring [J]. Computers and Electronics in Agriculture 73 (2011) 74–83.
    [45] Feldhake, Pasture canopy temperature under cloudy humid Condition [J]. Agricultural and Forest Meteorology, 1992 (60); 133-144
    [46]蔡焕杰,张振华,柴红敏.冠层温度定量诊断覆膜作物水分状况试验研究[J].灌溉排水, 2001, 20(1): 1-4.
    [47] Guofu Yuan, Yi Luo, Xiao min etc.. Evaluation of a crop water stress index for detecting water stress in winter wheat in the North China Plain[J]. Agricultural Water Management,2004, 64 (1): 29-40.
    [48] Clawson K. L. Infratared thermometry for scheduling irrgation of corn[J]. Agron J, 1982 74: 311-316.
    [49]康绍忠,梁银丽,蔡焕杰,等.干旱区水—土—作物关系及其最优调控原理[M].北京:中国农业出版社,1998.
    [50]刘海隆,杨晓光.玉米水分胁迫判别指标的研究[J].中国农业气象,2002, 23 (3 ): 22-26.
    [51] Tanner C B. Plant temperatures[J]. Agron J, 1963, 55: 210~211.
    [52]程旺大,姚海根,赵国平,等.冠层温度在作物水分状况探测中的应用[J],中国农学通报, 2000, 16(5): 42~44.
    [53]程旺大.冠层温度在水稻抗旱性基因型筛选中的应用及其测定技术[J].植物学通报, 2001,18(1): 70~75.
    [54]刘湘南,周占鳌,倪淑洁. CWSI理论及其在玉米遥感监测与估产中的应用[J].东北师大学报自然抖学版, 1995, 3: 98-102.
    [55]张振华,蔡焕杰,杨润亚.基于CWSI和土壤水分修正系数的冬小麦田土壤含水量估算[J].土壤学报, 2005, 42(5): 373-378 .
    [56]韩亚东,张文忠,杨梅,等.孕穗期水稻叶温与水分状况关系的研[J].农艺科学, 2006, 22(2): 214-216.
    [57]秦晓威.谷子冠层温度分异现象及其生理特性研究[D].西北农林科技大学, 2008.
    [58]任学敏.花生冠层温度及其生理特性研究[D].西北农林科技大学, 2008.
    [59]杜瑞恒,籍贵苏,侯升林,等.高粱植株表面温度口变化规律研究[J].河北农业科学, 2007,11(1): 5-8.
    [60]张振华,蔡焕杰,杨润亚,等.膜下滴灌棉花产量和品质与作物缺水指标的关系研究[J].农业工程学报, 2005, 21(6): 26-29.
    [61]张仁华.以红外辐射信息为基础的估算作物缺水状况的新模式[J].中国科学(B辑), 1986,7:776~784.
    [62]康绍忠,熊运章.作物缺水状况的判别方法与灌水指标的研究[J].水利学报, 1991, 1, 34~39.
    [63]王进欣,张一平,刘玉洪,等.西双版纳雨季次生林林窗定居种冠面温度特征[J].南京林业大学学报(自然科学版), 2002, 26(1)78-82.
    [64]郭家选,梅旭荣,卢志光.冬小麦冠层温度及其影响因素探析[J].中国生态农业学报, 2003, 11(4)23-26.
    [65]余涛,顾行发,田国良,等.利用夜间热红外遥感影像研究玉米冠层孔隙率分布[J].遥感学报, 2005, 9(6): 640-645.
    [66]余珊珊,余涛,顾行发,等.利用夜间热红外数据求取玉米冠层孔隙率[J]遥感学报,2006, 10(5)683-689.
    [67] Wang Weixing, Luo Xiwen, Qu Yinggang. et al. Preliminary research on model for determining crop water stress index of flowering Chinese cabbage based on canopy temperature.[J].Transactions of the CSAE. 2003, 19(5): 47-49.
    [68] Obta H, Erdem Y, Erdem T. Crop water stress index for watermelon [J] Scientia Horticulturae, 2003, 98(2): 121-130.
    [69] Bulanona D.M., Burksa T.F, Alchanatisb V. Study on temporal variation in citrus canopy using thermal imaging for citrus fruit detection[J]. Bio systems En g i n e e r i n g 1 0 1, ( 2 0 0 8 ) 1 6 1– 1 7 1.
    [70] Silva B B, Ramann RAO TV.The SCWI variations of a cotton crop in a semi-arid region of Northeast Brazil[J]. Journal of Arid Environment, 2005, 62(4): 649-659.
    [71] Falkenberg N R. Piccnng, Cothren JT, et al. Remote sensing of biotie and abiotie stress for irrigation management of cotton [J], Agricultural Water Management, 2007, 87 (1): 23-31.
    [72] Xuezhi Wanga, , Weiping Yangb, Ashley Wheatonc et al. Automated canopy temperature estimation via infrared thermography: A firststep towards automated plant water stress monitoring [J]. Computers and Electronics in Agriculture, 73 (2011): 74–83.
    [73]刘寿东,李仁忠,胡凝.南京开花期稻田贴地层微气象研究[J].安徽农业科学, 2008, 36(16): 6701-6703, 6707.
    [74]刘学著,张连根,周守华.基于冠层的冬小麦水分胁迫指数的实验研究[J].应用气象学报,1995 6 (4 ): 449-453.
    [75]程旺大,姚海根,赵国平,等.冠层温度在作物水分状况探测中的应用[J].中国农学通报, 2000, 16(5): 42-44.
    [76]黄晓林,李妍,李国强.冠层温度与水分状况关系研究进展[J].安徽农业科学, 2009, 37(4): 1511-1512, 1515.作物.)
    [77] Idso S B, Jackson R D,Pinter P J,et al. Normalizing the stress degree day for environmental variability[J]. Agricul-tural Meteorology, 1981, 24:45-55.
    [78]张仁华.以红外辐射信息未基础的估算作物缺水状况的新模式[T].中国科学((B缉),1987, (7): 776-784.
    [79] Hatfied J L. Estimation of evapotranspiration of the one-time-of the-day using remotely secondsurfaces temperature[J]. Agric. Water Manag.,1983, 7:341-350
    [80] Cecilia Stanghellini , Francesca De Lorenzi. A comparison of soil-and canopy temperature-based methods for the early detection of water stress in a simulated patch of pasture[J]. Irrig Sci (1994) 14: 141-146.
    [81]孟平.苹果蒸腾耗水特征及水分胁迫诊断预报模型研究[C].博士学位论文(2005)
    [82]陈四龙,张喜英,陈素英等.不同供水条件下冬小麦冠气温差、叶片水势和水分亏缺指数的变化及其相互关系[J].麦类作物学报,2005, 25(5): 38~4.
    [83]李孝广,毕华兴,刘胜等. Penman-Monteith蒸散模型及其在森林下垫面中参数的确定[J].水土保持研究,2005, 12(6): 257-261.
    [84]雷水玲,孙忠富,雷廷武.温室内作物茎秆直径变化对基质含水率的响应[J].农业工程学报,2005, 21(7): 116-119.
    [85]张小嫚,蔡焕杰,周新国等.参考条件下苜蓿冠层阻力变化规律试验研究[J].干旱地区农业研究,2009, 27(5): 107-111. [10]丛振涛,雷志栋,杨诗秀.基于SPAC理论的田间腾发量计算模式[J].农业工程学报,2004, 20(3): 6-9.
    [86]袁国富,唐登银,罗毅等.基于冠层温度的作物缺水研究进展[J].地球科学进展,2000, 16 (1) :49-54.
    [87]赵晨,罗毅,袁国富等.作物水分胁迫指数与土壤含水量关系探讨[J].中国生态农业学报2001, 9 (1):34-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700