心外膜旁路产生的机制与射频消融方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     冠状静脉窦憩室被认为与后间隔和左后部位的旁路有关。这些憩室包含联结心室与冠状静脉窦心肌被膜的心肌纤维。冠状静脉窦心肌被膜在结构上及电生理上与两侧心房都有联结,这样,由冠状静脉窦和憩室可形成旁路联结。
     我们假设:冠状静脉窦表面的心肌被膜在无憩室存在的条件下可通过其分支上的肌组织与心室联结形成旁路传导。在对240例人体心脏的解剖研究,Von Ludinghausen及其同事发现:冠状窦心肌被膜在3%心脏中呈袖样扩展覆盖于心中静脉末端,在2%心脏中覆盖心后静脉末端。他们还发现:在6%心脏中,有从冠状静脉窦表面发出的条索状心肌缠绕沿房室沟走行的左冠状动脉回旋支。这些袖样心肌被膜或条索状心肌可连接冠状静脉窦与心室肌,从而形成冠状静脉窦旁路,既心外膜旁路。这种旁路与普通的旁路不同,这种心外膜旁路可解释在后间隔及左后旁路病人中发现的一些异常现象。本研究的目的是利用冠状静脉窦造影结果及心电生理标测结果来确定心外膜旁路的存在及其与冠状静脉窦解剖关系。探索此类旁路射频消融术的最佳方法及其安全性。
     材料与方法
     对怀疑有冠状静脉窦旁路的病人均行逆行性冠状静脉窦造影。冠状静脉窦造影使用8F导引导管,经此导管将20ml造影剂快速推注到冠状静脉窦中。或将顶端带有球囊的造影导管送入冠状静脉窦和心大静脉,球
    
    囊用 0.5到 1.sill的空气充盈并阻塞心人静脉,缓慢注射 5到 15毫升的造
    影剂,充盈导管远端的静脉系统。用以_卜方法来确定冠状静脉窦的结构。
     心电生理标测采用心内膜与心外膜同时标测的方法。心内膜标测中,
    一般最早激动点位于距二、三尖瓣环。O尖侧 Icm以上的心室部,在远场
    电位 15ms以后可记录到最早的心室内股激动(单极标测人在心中静脉。
    心后静脉或冠状静脉窦想室处记录到的心室激动领先于心室内膜处的电
    激动。于心中静脉J心后静脉或冠状静脉窦想室颈部记录到一类似前传旁
    路激动电位的高频电位。此电位被认为从冠状窦心肌被膜扩展处所产生。
    使用心室一心房期前刺激可将此电位与。O房、心室电位分离开,证实此电
    位为旁路电位,记录到该电位的部位为理想消融靶点。
     在冠状静脉窦内消融旁路的心室侧,心房内消融心房侧。消融前后行
    冠脉造影。
     结 果
     在后间隔或左后部旁路消融的 480例病人有 171例发现冠状静脉窦旁
    路。冠状静脉窦造影发现:冠状静脉窦想室36例(占ZI%),心小静脉、
    心中静脉或冠状静脉窦有纺锤样或球状扩张者有 15例(占 gO/)。其余 120
    例(占 70o),冠状静脉窦造影正常。在这 120例病人中,有 98例倍2o)
    在O中静脉处记录到冠状静脉窦电位和扩展部电位(CSE人13例 11%)
    CSE在心后静脉,6例6%)CSE既在,O中静脉又在,心后静脉,3例QO)
    CSE在冠状静脉窦内。所有病例均在心房及CSE电位之间记录到冠状静
    脉窦电位,对98例行冠状窦造影,在理想消融靶点与动脉距食Zmm 病
    例中,理想靶点消融成功率为 100%,无冠脉损伤。测两者距离 2 Zmm
    病例中,理想靶点消融成功率 100%,冠状动脉损伤 63%。离开理想靶点
    消融,在静脉内的成功率为67%,静脉外成功率为74%(包括在心房侧
    隔离心房与冠状静脉窦连接部人
     2
    
     结 论
    1.冠状静脉窦及其分支表面的肌组织与心室的异常连接产生心外膜旁路;
    2.心外膜旁路的最佳消融部位在旁路的心室测能记录到旁路电位的部位;
    3.在距离动脉茎 Zmm处消融易造成冠状动脉损伤
Objectives
    Coronary sinus (CS) diverticula have been associated with posteroseptal and left posterior accessory pathways. These diverticula contain myocardial fibers that connect to both the ventricle and the CS myocardial coat. The CS myocardial coat, present in all individuals, is anatomically and electrically connected to both atria. Completing the accessory connection.
    We hypothesized that a connection between the CS myocardial coat and the ventricle could produce an accessory pathway (CSAP) in the absence of a diverticulum(Figure 1). In an anatomic study of 240 human hearts, von Ludinghausen and coworkers found sleeve -like extensions of the CS myocardial coat covering the terminal portion of the middle cardiac vein and posterior vein in 3% and 2% of hearts, respectively. They also found myocardial cords extending around the atrioventricular groove branch of the distal left circumflex coronary artery in 6% of hearts. These myocardial sleeves or cords could serve as a connection between the ventricle and the CS myocardial coat, forming a CSAP.
    The purpose of the present study was to use CS and its tributaries to identify electrophysiological criteria for CSAP and to determine the incidence and relationship between CSAPs and anatomy of the CS and its branches, including diverticula and to find the best method of catheter ablation of AP and
    
    
    
    its safety.
    Methods
    The study population consisted of 480 consecutive patients referred for catheter ablation of a posteroseptal or left posterior accessory pathway.
    Retrograde CS angiography was performed in all patients suspected of having a CSAP . An angiographic catheter with a compliant balloon located close to the tip was inserted into the CS and great cardiac vein. The balloon was inflated with 0.5 to 1.5 ml of air to occlude the great cardiac vein. Contrast media (5 to 15 ml) was slowly injected, filling the venous system distal to the balloon.
    The earliest endocardial ventricular activation (rapid downstroke on the unfiltered unipolar electrogram, local V, was recorded >15 ms after the onset of the far-field ventricular potential at a site located >1 cm apical to the tricuspid and mitral annuli. Ventricular activation recorded from the MCV, PCV, or CS diverticulum preceded endocardial ventricular activation. A high frequency potential similar to an antegrade accessory pathway activation potential, presumably generated by an extension of the CS myocardial coat was recorded from the MCV, PCV, or neck of a CS diverticulum before the earliest far-field ventricular potential, and the antegrade CSE potential was dissociated from local atrial and ventricular activation by the use of ventricular extrastimuli.
    Results
    CSAP was defined by accessory pathway(AP) potential or earliest activation in the MCV or PCV and late activation at anular endocardial sites. A CSAP was identified in 171 of 480 patients undergoing ablation of a posteroseptal or left posterior AP. CS angiography revealed a CS diverticulum
    
    
    
    in 36(21%) and fusiform or bulbous enlargement of the small cardiac vein, MCV, or CS in 15(9%) patients. The remaining 120(70%) patients had an angiographically normal CS. A CSMC extention potential(CSE), like an AP potential, was recorded in the MCV in 98(82%), in the PCV in 13(11%), in both the MCV and PCV in 6(5%), and in the CS in 3(2%) of 120 patients. CSMC potentials were recorded between the timing of atrial and CSE potentials. In 98 patients with CS angiography, the successful rate of ablation in the ideal target sites was 100% in patients with the distance more than 2mm between target site and coronary artery and no coronary arterial injury. Although the successful rate was also 100% in patients with the distance equal to or less than 2mm, but 63% patients had coronary arterial injury. The successful rate of intravenous ablation with small distance away from ideal ablation site was 67%, and 74% for extravenous ablation, (including isolation between CS and left atrium by ablation.)
    Conclusion
    l.CSAPs are formed by CS and the conne
引文
1. Gerlis LM, Davies MJ, Boyle R, et al. Pre-excitation due to accessory sino Ventricular connexions associated with coronary aneurysms: areport of two cases. Br Heart J,1985, 3:314-322.
    2. Segni ED, Siegal A, Katzenstein M. Congential diverticulum of the heart arising from the coronary sinus. Br Heart J, 1986,56:380-384.
    3. Guiraudon GM, Guiraudon CM, Klein GJ et al. The coronary sinus diverticulum: a pathologic entity associated with Wolff-Parkinson-White syndrome. Am J Cardiol 1988; 62733-735.
    4. Ho SY, et al Coronary venous aneurysms and accessory atrio-vebtricular connections. Br Heart J. 1988;60:348-351.
    5. Weiss C, Cappato R, Willens S, et al. Prospective evaluation of the coronary sinus anatomy in patients undergoing electrophysiological study. Clin Cardiol. 1999;22:537-543.
    6. von. Ludinghausen M, Ohmachi N, Boot C. Myocardial coverage of the coronary sinus and related veins. Clinical Anatomy 1992; 5:1-15.
    7. Piffer CR, Piffer MIS, Zorzetto: Anatomic data of the human coronary sinus. Anat Anz 1990; 170:21-29.
    8. Maros TN, Racz L, Plugor S. et al.Contributions to the morphology of the human coronary sinus.Anat Anz. 1983; 154:133-144.
    9. Chauvin M, Shah DC, Haissaguerre M , et al. The anatomic basis of connections between the coronary sinus musculature and the left atrium in humans. Circulation 2000; 101:647-652.
    10. Antz M, Otomo K, Arruda M, et al. Electrical conduction between the right atrium and the left atrium via the musculature of the coronary sinus. Circulation 1998:1790-1795.
    11. Jackman WM, Wang X, Friday KJ, et al. Catheter ablation of accessory radiofrequency current. N Engl J Med atrioventricular pathways (Wolff-Parkinson-White syndrome) by 1991;324:1605-1611.
    12. Hirao K, Otomo K, Wang X, et al. Para-Hisian pacing: new method for
    
    differentiating retrograde conduction over an accessory AV pathway from conduction over the AV node. Circulation. 1996; 94:1027-1035.
    13. Otomo K, Gonzalez M, Beckman KJ, et al,. Reversing the direction of the paced ventricular and atrial activation wavefronts reveals an oblique course in accessory AV pathways and improves localization for catheter ablation. Circulation. 2001; 104:550-556.
    14. Arruda MS, McClelland JH, Wang X, et al. Development and validation of an ECG algorithm for identifying accessory pathway ablation site in Wolff-Parkinson-White syndrome. J Cardiovasc Electrophysiology 1998; 9:2-12.
    15. Jackman WM, Friday KJ, Yeung-Lai-Wah JA, et al. New catheter technique for recording left free-wall accessory atrioventricular pathway activation. Identification of pathway fiber orientation. Circulation 1988;78:598-610
    16. von. Ludinghausen M, Schott C. Microanatomy ofthehuman coronary sinus and its major tributary. In: Meerbaum S. ed. Myocardial Perfusion, Reperfusion. Coronary Venous Retroperfusion. Danrmstadt: Steinkopff Verlag; 1990:93-122.
    17. Becker AE, Anderson RH, Durrer D, et al. Theanatornical substrates of Wolff-Parkinson-White syndrome: a clinicopathologic correlation in seven patients. Circulation. 1978;57:870-879

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700