三硫二丙烯和~(32)P包被支架预防犬冠状动脉狭窄的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管平滑肌细胞(VSMC)迁移、增生和细胞外基质(ECM)在内膜过度沉积形成新生内膜是支架内再狭窄的主要原因。与PTCA相比,冠脉内支架的应用再狭率窄已明显降低,但支架内再狭窄(in-stent restenosis,ISR)仍然是一个严重的问题。目前全身用药都未能减少ISR发生率。近距离放射治疗是预防ISR的有效方法,但最大缺点是内皮化延迟和晚期血栓形成。药物包被支架(drug-coated stent)因具有靶血管局部治疗的优点而备受关注。
     大蒜作为一种中草药已经应用了数千年,三硫二丙烯(diallyl trisulfide,DT)是大蒜的有效成分之一,具有很强的抗炎、抗血小板聚集、抑制血栓形成、预防动脉粥样硬化等多方面药理作用。体外研究结果显示DT能明显抑制兔主动脉VSMC的增殖;我们实验室已先后成功进行了放射性核素~(32)P胶体和DT包被支架的动物实验,证明血浆蛋白涂膜可良好携带~(32)P和DT,抗血流冲刷能力强,能有效预防支架术后内膜增生。
     本实验应用血浆蛋白作为载体,制作DT、~(32)P包被支架以及二者联合包被支架,分别植入犬冠状动脉,进一步研究DT预防支架术后再狭窄的剂量效应关系;研究DT与~(32)P联合支架预防再狭窄的疗效;探讨DT抑制再狭窄的可能作用机制。
     实验内容包括三部分。
     第一部分,观察DT包被支架对犬冠状动脉损伤后内膜增生的量效关系。制作蛋白包被的DT包被支架,剂量分别为0μg(对照组)、60μg(小剂量组)、130μg(中剂量组)和210μg(大剂量组)。在犬左冠状动脉分别置入过大的单纯蛋白包被支架和DT包被支架,于术后28天和6个月冠状动脉造影后处死动物,取出带支架血管组织分为三份,一份固定在2.5%戊二醛中,用于制作扫描电镜标本,观察内皮覆盖情况;一份塑料包埋,碳化钨钢刀切片,分别行elastic-van Gieson和Masson染色,形态学观察,另一份用于第三部分分子生物学指标检测。结果发现,术后28天,对照组血管内膜表面已完全内皮化,210μg DT包被支架组>90%内皮化;光镜结果显示,各组血管损伤程度无显著性差异(P>0.05)。内弹力板层包绕面积在各组间无差别。支架置入后28天,对照组内膜明显增厚,ECM面积占内膜总面积的40%,6个月后增加到91%(P<0.001)。DT呈剂量依赖性减少内膜ECM比例。血管参数分析显示,各指标在小剂量组与对照组差异均无显著性(P>0.05);
    
    术后28天,大、中剂量组的平均新生内膜厚度、新生内膜面积无差别(P>0.05),
    但均大于小剂量组和对照组(P<0.OOI);DT呈浓度依赖性增加管腔面积(P<0.OI)
    和抑制面积狭窄率(P<0.001)。术后6个月,所有指标大、中剂量组与小剂量组、
    对照组之间均有统计学差别;DT呈浓度依赖性抑制内膜增生(P<0.01);管腔面
    积、新生内膜面积及面积狭窄率在大、中剂量组间无差别(P>0.05)。上述结果表
    明,60林gDT对预防再狭窄无效,在支架置入术后6个月内,中、高剂量DT(130陀,
    210林g)包被支架呈剂量依赖性地抑制支架术后内膜增生,其机制与DT降低内膜
    SMC聚集和减少ECM沉积有关。
     第二部分,设计DT与32P联合包被支架,置入犬无病变的冠状动脉,期望经
    两个不同途径,更彻底地抑制内膜增生。分别制作蛋白涂层的DT包被支架(210林留
    支架),’ZP包被支架(20林ei/支架)和DT与犯P联合包被支架(210林g+20林ei/支
    架)置入犬冠状动脉,于术后28天和6个月行冠状动脉造影后处死动物,取材,
    分别制作扫描电镜标本和组织切片,行elastic一van Gieson和Masson染色,形态学
    观察,进行参数测量、计算。结果发现,术后6个月,DT包被支架组血管内膜表
    面完全内皮化,联合包被支架组内皮化程度与32P支架组相似(80%)。Masson染
    色显示,各治疗组抑制内膜增生的同时伴有ECM含量的降低,联合组最低。血管
    参数分析发现,术后28天和6个月,各指标在治疗组与对照组差异均有显著性意
    义(尸<0.05);联合包被组的平均新生内膜厚度、新生内膜面积和面积狭窄率均小
    于32P和DT组(尸<0.05),但管腔面积大于32P和nT组(尸<0.05);各指标在32P
    和DT两组间无差别(P>.05)。术后28天,联合包被组的平均新生内膜厚度虽小
    于32P组(尸<0.05),但与DT组无差别(P>.05);6个月后不仅联合包被组对内
    膜增生的抑制程度大于32P和DT组(尸<0.05),而且DT组对内膜增生的抑制程度
    大于32P组(尸<0.05)。6个月后冠状动脉造影结果显示,邻近参考血管直径在各组
    间差异无显著性。其余指标在治疗组与对照组差异均有显著性意义(P<0.05)。支
    架段血管直径狭窄程度,联合包被组小于犯P组和DT组(尸<0.05)。支架边缘段
    血管直径狭窄程度,DT组和对照组无差别,但32P组和联合组直径狭窄程度均大
    于对照组(p至0.016)。冠造结果未发现动脉瘤及局部血栓形成。上述结果表明,
    DT和犯P联合包被支架抑制内膜增生程度大于单纯犯P和DT包被支架,但内皮化
    程度没有进一步减少,提示联合包被支架预防ISR疗效更显著,但不增加副作用。
    联合包被支架的应用为开发即能有效预防内膜增生,又能快速内皮化的药物提供
    了新的思路。
     第三部分,观察DT包被支架对基质金属蛋白酶一9,一2(MMP一9,一2)和金属蛋
    
    白酶组织抑制剂一1,一2(TIMP一1,一2)基因表达的影响,并探讨血管?
Intimal hyperplasia due to migration and proliferation of smooth muscle cells (SMCs) from the media to the intima and extracellular matrix (ECM) deposition is a major component of restenosis after stent implantation. Although intracoronary stent placement reduces restenosis compared with conventional coronary angioplasty alone, in-stent restenosis (ISR) still remains a serious problem in interventional cardiology. No pharmacologic agents were effective in reducing the incidence of ISR. At present, vascular brachytherapy has been shown to be an effective treatment option. Nevertheless, this therapy is not 100% effective and recurrent ISR after brachytherapy occurs. Antirestenosis therapy offered by drug-coated stents has obvious merits in the ability to target therapy locally.
    Garlic has been used in herbal medicine for thousands of years. Some reports have shown that diallyl trisulfide (DT), a component of garlic, has protective effects against atherosclerosis as well as inhibits platelet function and thrombus formation. Studies in vitro revealed that DT exhibited a profound antiproliferative effect in SMCs. Our previous studies had shown that plasma-coated stent with DT or 32P significantly inhibited intimal hyperplasia in the canine coronary restenosis model.
    The purpose of this study was thus to test whether DT-coated stent prevented neointimal proliferation in a concentration-dependent manner, and to evaluate the effect of stents coated with DT and 32P concomitantly on neointimal proliferation in canine coronary arteries injury model. In addition, we established a cascade-based study model to explore the mechanism of the effect of DT-coated stents on neointima formation. This experiment included three parts.
    The first part was designed to investigate the efficacy of DT-coated coronary stents in preventing neointimal proliferation in canine coronary artery injury model. DT-coated stents (0, 60, 130, or 210 ug/stent) were deployed with mild oversizing in both left circumflex coronary arteriy (LCX) and left anterior descending coronary artery (LAD) of 20 dogs. Arteries were harvested 28 days (n=18) and 6 months (n=22) after stenting, One third of the stented region was cut off each one, and fixed in 2.5% Glutaral for scanning electron microscopic (SEM) analysis. One third of stented region was embedded in acrylic plastic, sectioned with a tungsten carbide knife and either stained with elastic-van Gieson or Masson for light microscopic examination. The remaining third of stented region was stored at liguid nitrogon. At 28 days after stenting, SEM
    
    
    
    showed >90% stent surface endothelialization in DT (210ug) coated stents group, whereas complete endothelization was exhibited in control group. Masson staining showed that intimal extracellular matrix (ECM) content increased with time after stenting. ECM consisted of 40% of total intimal volume at 28 days and increased to 91% at 6 months (P<0.001), which markedly reduced by DT in a concentration-dependent manner. There was no significant difference in injury score among all groups (P>0.05). Histomorphometric analysis at day 28 indicated that the mean neointimal hyperplasia and neointimal area were similar in high-dose and immediate-dose group (P>0.05), but were less than those in low-dose or control group (.P<0.001). The percent area stenosis deceased with increasing dose (P<0.001), whereas the luminal area increased with escalating dose (P<0.01) in three DT-coated stents groups. After 6 months, the mean neointimal hyperplasia markedly reduced in high-dose group compared with immediate-dose group (P=0.008), low-dose group as well as control group (P<0.001). The neointimal area, the percent area stenosis and the luminal area were no significant difference between in high-dose group and immediate-dose group (P>0.05), but those indices in either group were significantly different from either low-dose or control group (P<0.001). There were no cases of aneurysm or thrombosis. In summary, in a canine model of restenosis, the low-dose DT (60ug) failed to reduce restenosis, w
引文
1. Hodge G, Hodge S, Han P. Allium sativum (garlic) suppresses leukocyte inflammatory cytokine production in vitro: potential therapeutic use in the treatment of inflammatory bowel disease. Cytometry, 2002,48:209-215.
    2. Keiss HE Dirsch VM, Hartung T, et al. Garlic (Allium sativum L.) modulates cytokine expression in lipopolysaccharide-activated human blood thereby inhibiting NF-kappaB activity. J Nutr, 2003,133:2171-2175.
    3. Liu L, Yeh YY. Inhibition of cholesterol biosynthesis by organosulfur compounds derived from garlic. Lipids, 2000,35:197-203.
    4. Chan KC, Hsu CC, Yin MC. Protective effect of three diallyl sulphides against glucose-induced erythrocyte and platelet oxidation and ADP-induced platelet aggregation. Thromb Res, 2002,108:317-322.
    5. DeBoer LW, Folts JD. Garlic extract prevents acute platelet thrombus formation in stenosed canine coronary arteries. Am Heart J, 1989,117:973-975.
    6. Berthold HK, Sudhop T. Garlic preparations for prevention of atherosclerosis. Curr Opin Lipidol, 1998,9:565-569.
    7.李自成,李庚山,黄从新.大蒜素对兔主动脉平滑肌细胞增殖的影响.中国中医杂志,1998,23:109-110.
    8.聂晓敏,江洪,李庚山,等.大蒜素包膜支架对犬冠状动脉损伤后再狭窄的影响.中国循环杂志,2002,17:229-231.
    9. Schwartz RS, Huber KC, Murphy JG, et al. Restenosis and the proportional response to coronary artery injury: results in a porcine model. J Am Coll Cardiol, 1992,19:267-274.
    10. Muller DW, Ellis SG, Topol EJ. Experimental models of coronary artery restenosis. J Am Coll Cardiol, 1992,19:418-432.
    11. Keamey M, Pieczek A, Haley L, et al. Histopathology of in-stent restenosts in patients with peripheral artery disease. Circulation, 1997,95:1998-2002.
    12. Farb A, Sangiorgi G, Carter AJ, Walley VM, Edwards WD, Schwartz RS, Virmani R. Pathology of acute and chronic coronary stenting in humans. Circulation, 1999,99: 44-52.
    13. Brieger D, Topol E. Local drug delivery system s and prevention of restensois. Cardiol Res, 1997,35:405-413.
    
    
    14.刘学波,葛均波,王克强,等.载Rapampcin多聚物涂层支架在猪冠状动脉模型预防再狭窄的实验研究.中华心血管病杂志,2002,30:290-293.
    15.Sino-SIRIUS研究组.国人应用雷帕霉素药物洗脱支架预防再狭窄的初步经验.Sino-SIRIUS临床试验.中华心血管病杂志,2003,31:814-817.
    16. Marx SO, Jayaraman T, Go LO, et al. Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. Circ Res, 1995,76: 412-417.
    17. Poon M, Marx SO, Gallo R, et al. Rapamycin inhibits vascular smooth muscle cell migration. J Clin Invest, 1996,98:2277-2283.
    18. Tsao SM,Yin MC. In-vitro antimicrobial activity of four diallyl sulphides occurring naturally in garlic and Chinese leek oils. J Med Microbiol, 2001,50:646-649.
    19.陆茂松,阂吉梅,王夔.大蒜有机硫化物的研究(Ⅱ).中草药,2002,33:1059-1061.
    20.顾银娜,黄蕴慧,李新岗.大蒜有效成分的提取及药理作用.南京军医学院学报,2000,2:249-250.
    21.王燕,狄亚敏,魏萍.大蒜及其制剂防治心脑血管疾病研究进展.解放军药学学报,2001,17:90-92.
    22.高艳景,袁孟彪,辛华,等.大蒜素抑制人肝癌细胞中VEGF mRNA表达的研究.中国药理学通报,2001,17:531-533.
    23.李霞,于庆海.大蒜抗动脉粥样硬化作用研究进展.沈阳药科大学学报,2000,17:75-78.
    24.张久亮,孙瑞娟,史载祥,等.大蒜素对急性脑梗死患者外周血白细胞表面粘附分子表达及变形性的影响.中国中西医结合杂志,2002,22:423-425.
    25. Qi R, Liao F, Inoue K, et al. Inhibition by diallyl trisulfide, a garlic component, of intracellular Ca~(2+) mobilization without affecting inositol-1,4,5-trisphosphate (IP_3) formation in activated platelets. Biochem Pharmacol, 2000,60:1475-1483.
    26. Li Y, Lu YY. Isolation of diallyl trisulfide inducible differentially expressed genes in human gastric cancer cells by modified cDNA representational difference analysis. DNA Cell Biol, 2002,21:771-780.
    27. Sakamoto K, Lawson LD, Milner JA. Allyl sulfides from garlic suppress the in vitro proliferation of human A549 lung tumor cells. Nutr Cancer, 1997,29:152-156.
    28. Cho A, Reidy MA. Matrix Metalloproteinase-9 Is Necessary for the Regulation of Smooth Muscle Cell Replication and Migration After Arterial Injury. Circ Res, 2002,91:845-851.
    
    
    29. Tamai H, Igaki K, Kyo E, et al. Initial and 6-month results of biodegradable poly-1-lactic acid coronary stents in humans. Circulation, 2000,102:399-404.
    30. Suzuki T, Kopia G, Hayashi S, et al. Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model. Circulation, 2001,104: 1188-1193.
    31. Farb A, Heller PF, Shroff S, et al. Pathological analysis of local delivery of paclitaxel via a polymer-coated stent. Circulation, 2001,104:473-479.
    32. Kolodgie F, John M, Khurana C, et al. Sustained reduction of in-stent neointimal growth with the use of a novel systemic nanoparticle paclitaxel. 2002,106: 1195-1198.
    1. Hoffmann R, Langenberg R, Radke P, et al. Treatment of In-Stent restenosis using a stent with non-polymer-based paclitaxel elution. Am J Cardiol, 2004,93:760-762.
    2. Kavanagh CA, Rochev YA, Gallagher WM, et al. Local drug delivery in restenosis injury: thermoresponsive co-polymers as potential drug delivery systems. Pharmacol Ther. 2004.102:1-15.
    3.江洪,黄从新,王洪如.支架携带放射性核素能力的实验研究.中国介入心脏病学杂志,2001,9:107-109.
    4.聂晓敏,江洪,李庚山,等.大蒜素包膜支架对犬冠状动脉损伤后再狭窄的影响.中国循环杂志,2002,17:229-231.
    5. Baumgart D, Bonan R, Naber C, et al. Successful reduction of in-stent restenosis in long lesions using beta-radiation-subanalysis from the RENO registry. Int J Radiat Oncol Biol Phys, 2004,1,58:817-827.
    6. Popma JJ. Final results of the Stents and Radiotherapy (START) trial. Anaheim, CA: 49th annual scientific sessions of the American College of Cardiology, 12-15 March 2000.
    7. Waksman R. Final results of INHIBIT trial (Intimal Hyperplasia Inhibition with Beta In-Stent trial). New Orleans, LA: American Heart Association 2000 Scientific Session, 12-15 November 2000.
    8. Laird JR, Carter AJ, Kufs WM, et al. Inhibition of neointimal proliferation with low dose, irradiation from a β-particle emitting stent. Circulation, 1996,93:529-536.
    9. Rahel BM, Suttorp MJ, Te Riele HA, et al. Stenting for restenotic lesions with the BARD XT stent. J Interv Cardiol, 2003,16:227-230.
    10. Carter AJ, Laird JR, Kufs WM, et al. Coronary stenting with a novel stainless steel
    
    balloon-expandable stent: determinants of neointimal formation and changes in arterial geometry after placement in an atherosclerotic model. J Am Coll Cardiol, 1996,27:1270-1277.
    11. Karas SP, Gravanis MB, Santoian EC, et al. Coronary intimal proliferation after balloon injury and stenting in swine: an animal model of restenosis. J Am Coll Cardiol, 1992,20:467-474.
    12. Waksman R, White RL, Chan RC, et al. Intracoronary gamma-radiation therapy after angioplasty inhibits recurrence in patients with in-stent restenosis. Circulation, 2000,101:2165-2171.
    13. Mintz GS, Weissman NJ, Teirstein PS, et al. Effect of intracoronary gamma-radiation therapy on in-stent restenosis: an intravascular ultrasound analysis from the gamma-1 study. Circulation, 2000,102:2915-2918.
    14. Bhargava B, Mintz GS, Mehran R, et al. Serial volumetric intravascular ultrasound analysis of the efficacy of beta irradiation in preventing recurrent in-stent restenosis. Am J Cardiol, 2000,85:651- 653.
    15. Teirstein PS, Massullo V, Jani S, et al. Three-year clinical and angiographic folloivup after intracoronary radiation: Results of a randomized clinical trial. Circulation, 2000,101:360-365.
    16. Popma JJ, Suntharalingam M, Lansky AJ, et al. Randomized Trial of ~(90)Sr/~(90)Y B-Radiation Versus Placebo Control for Treatment of In-Stent Restenosis, Circulation, 2002,106:1090-1096.
    17. Leon MB, Teirstein PS, Moses JW, et al. Localized intracoronary gamma radiation therapy to inhibit the recurrence of restenosis after stenting. N Engl J Med, 2001,344: 250-256.
    18. Verin V, Popowski Y, Urban P, et al. Intra-arterial beta irradiation prevents neointimal hyperplasia in a hypercholesterolemic rabbit restenosis model. Circulation, 1995,92:2284-2290.
    19. Apisamthanarax S, Chougule P. Intravascular Brachytherapy: A Review of the Current Vascular Biology. Am J Clin Oncol, 2003,26:e 13-21.
    20. Schiele TM, Pollinger B, Kantlehner R, et al. Evolution of angiographic restenosis rate and late lumen loss after intracoronary beta radiation for in-stent restenotic lesions. Am J Cardiol, 2004,93:836-842.
    21. Fischell TA, Carter AJ, Laird JR. The beta-particle-emitting radioisotope stent (isostent): animal studies and planned clinical trials. Am J Cardiol, 1996,78:45-50.
    22. Carter AJ, Laird JR, Bailey LR, et al. Effects of endovascular radiation from a beta-particle-emitting stent in a porcine coronary restenosis model. A dose-response
    
    study. Circulation, 1996,94:2364-2368.
    23. Verin V, Popowski Y, Bochaton-Piallat ML, et al. Intraarterial beta irradiation induces smooth muscle cell apoptosis and reduces medial cellularity in a hypercholesterolemic rabbit restenosis model. Int J Radiat Oncol Biol Phys, 2000,46:661-670.
    24. Scott NA, Crocker IR, Yin Q, et al. Inhibition of vascular cell growth by X-ray irradiation: comparison with gamma radiation and mechanism of action. Int J Radiat Oncol Biol Phys, 2001,50:485-93.
    25. Albiero R, Adamian M, Kobayashi N, et al. Short- and intermediate-term results of (32)P radioactive beta-emitting stent implantation in patients with coronary artery disease: The Milan Dose-Response Study. Circulation, 2000,101 : 18-26.
    26. Ajani AE, Cheneau E, Leborgne L, et al. Late thrombosis: a problem solved? J Interv Cardiol, 2003,16:9-13.
    27. Apple M, Waksman R, Chan RC, et al. Radioactive 133-Yenon gas-filled balloon to prevent restenosis: dosimetry, efficacy, and safety considerations. Circulation, 2002,106:725-729.
    28. Farb A, Shroff S, John M, et al. Late arterial responses (6 and 12 months) after (32)P beta-emitting stent placement: sustained intimal suppression with incomplete healing. Circulation, 2001,103:1912-1919.
    29. Carter AJ, Scott D, Bailey L, et al. Dose-response effects of ~(32)P radioactive stents in an atherosclerotic porcine coronary model. Circulation, 1999,100:1548-1554.
    30. Coussement PK, Stella P, Vanbilloen H, et al. Intracoronary beta-radiation of de novo coronary lesions using a (186)Re liquid-filled balloon system: six-month results from a clinical feasibility study. Cathet Cardiovasc Intervent, 2002,55: 28-36.
    31. Costa MA, Sabat M, van der Giessen WJ, et al. Late coronary occlusion after intracoronary brachytherapy. Circulation, 1999,100:789-792.
    32. Waksman R, Bhargava B, Mintz GS, et al. Late total occlusion after intracoronary brachytherapy for patients with in-stent restenosis. J Am Coll Cardiol, 2000,36: 65-68.
    33. Kaluza GL, Raizner AE, Mazur W, et al. Long-term effects of intracoronary beta-radiation in balloon- and stent-injured porcine coronary arteries. Circulation, 2001,103:2108-2113.
    34. Teirstein PS. Living the dream of no restenosis. Circulation, 2001,104:1996-1998.
    
    
    1. Cho A, Reidy MA. Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circ Res, 2002,91:845-851.
    2. Schwartz SM. Smooth muscle migration in atherosclerosis and restenosis. J Clin Invest, 1997,100:S87-S89.
    3. Watanabe N, Ikeda U. Matrix metalloproteinases and atherosclerosis. Curr Atheroscler Rep, 2004,6:112-20.
    4. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res, 2002,90:251-262.
    5. Furman C, Luo Z, Walsh K, et al. Systemic tissue inhibitor of metalloproteinase-1 gene delivery reduces neointimal hyperplasia in balloon-injured rat carotid artery. FEBS Lett, 2002,531:122-126.
    6. Liu B, Fisher M, Groves P. Down-regulation of the ERK1 and ERK2 mitogen-activated protein kinases using antisense oligonucleotides inhibits intimal hyperplasia in a porcine model of coronary balloon angioplasty. Cardiovasc Res, 2002,54:640-8.
    7. Hoshi S, Goto M, Koyama N, et al. Regulation of vascular smooth muscle cell proliferation by nuclear factor-kappaB and its inhibitor, I-kappaB. J Biol Chem, 2000,275:883-889.
    8. Terada Y, Inoshita S, Nakashima O, et al. Regulation of cyclin D1 expression and cell cycle progression by mitogen-activated protein kinase cascade. Kidney Int, 1999,56:1258-1261.
    9. George SJ, Zaltsman AB, Newby AC. Surgical preparative injury and neointima formation increase MMP-9 expression and MMP-2 activation in human saphenous vein. Cardiovasc Res, 1997,33:447-459.
    10. Jenkins GM, Crow MT, Bilato C, et al. Increased expression of membrane-type matrix metalloproteinase and preferential localization of matrix metalloproteinase-2 to the neointima of balloon-injured rat carotid arteries. Circulation, 1998,97:82-90.
    11. Feldman LJ, Mazighi M, Scheuble A, et al. Differential expression of matrix metalloproteinases after stent implantation and balloon angioplasty in the hypercholesterolemic rabbit. Circulation, 2001,103:3117-3122.
    12. Sperti G, van Leeuwen RT, Quax PH, et al. Cultured rat aortic vascular smooth muscle cells digest naturally produced extracellular matrix: involvement of
    
    plasminogen-dependent and plasminogen-independent pathways. Circ Res, 1992,71:385-392.
    13. Bendeck MP, Irvin C, Reidy M, et al. Smooth muscle cell matrix metalloproteinase production is stimulated via alpha(v)beta(3) integrin. Arterioscler Thromb Vasc Biol, 2000,20:1467-1472.
    14. Southgate KM, Fisher M, Banning AP, et al. Upregulation of basement membrane-degrading metalloproteinase secretion after balloon injury of pig carotid arteries. Circ Res, 1996,79:1177-1187.
    15. Lamfers ML, Grimbergen, JM, Aalders MC, et al. Gene transfer of the urokinase-type plasminogen activator receptor-targeted matrix metalloproteinase inhibitor TIMP-1.ATF suppresses neointima formation more efficiently than tissue inhibitor of metalloproteinase-1. Circ Res, 2002,91:945-952.
    16. Porter KE, Thompson MM, Loftus IM, et al. Production and inhibition of the gelatinolytic matrix metalloproteinases in a human model of vein graft stenosis. Eur J Vasc Endovasc Surg, 1999,17:404-412.
    17. Shofuda K, Nagashima Y, Kawahara K, et al. Elevated expression of membrane-type 1 and 3 matrix metalloproteinases in rat vascular smooth muscle cells activated by arterial injury. Lab Invest, 1998,78:915-923.
    18. Margolin L, Fishbein I, Banai S, et al. Metalloproteinase inhibitor attenuates neointima formation and constrictive remodeling after angioplasty in rats: augmentative effect of alpha(v)beta(3) receptor blockade. Atherosclerosis, 2002,163:269-277.
    19. Dollery CM, Humphries SE, McClelland A, et al. Expression of tissue inhibitor of matrix metalloproteinases 1 by use of an adenoviral vector inhibits smooth muscle cell migration and reduces neointimal hyperplasia in the rat model of vascular balloon injury. Circulation, 1999,99:3199-3205.
    20. George SJ, Johnson JL, Angelini GD, et al. Adenovirus-mediated gene transfer of the human TIMP-1 gene inhibits smooth muscle cell migration and neointimal formation in human saphenous vein. Hum Gene Ther, 1998,9:867-877.
    21. Cheng L, Mantile G, Pauly R, et al. Adenovirus-mediated gene transfer of the human tissue inhibitor of metalloproteinase-2 blocks vascular smooth muscle cell invasiveness in vitro and modulates neointimal development in vivo. Circulation, 1998,98:2195-2201.
    22. Sukhova GK, Williams JK, Libby P, et al. Statins reduce inflammation in atheroma of nonhuman primates independent of effects on serum cholesterol. Arterioscler Thromb Vasc Biol, 2002,22:1452-1458.
    
    
    23. Luan Z, Chase AJ, Newby AC. Statins inhibit secretion of metalloproteinases-1, -2, -3, and -9 from vascular smooth muscle cells and macrophages. Arterioscler Thromb Vasc Biol, 2003,23:769-775.
    24. Miano JM, Vlasic N, Tota RR. Smooth muscle cell immediate-early gene and growth factor activation follows vascular injury. Arterioscler Thromb Vasc Biol, 1993,13:211-219.
    25. Hu Y, Cheng L, Hochleitner BW, et al. Activation of mitogerr activated protein kinases (ERK/ JNK) and AP-1 transcription factor in rat carotid arteries after balloon injury. Arterioscler Thromb Vasc Biol, 1997,17:2808-2816.
    26. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature, 2001,410:37-40.
    27. Gennaro G, Ménard C, Giasson, E, et al. Role of p44/p42 MAP kinase in the age-dependent increase in vascular smooth muscle cell proliferation and neointimal formation. Arterioscler Thromb Vasc Biol, 2003,23:204-210.
    28. Ohashi N, Matsumori A, Furukawa, Yu, et al. Role of p38 Mitogen-activated protein kinase in neointimal hyperplasia after vascular injury. Arterioscler Thromb Vasc Biol, 2000,20:2521-2526.
    29. Indolfi C, Avvedimento EV, Rapacciuolo A, et al. In vivo gene transfer: prevention of neointima formation by inhibition of mitogen-activated protein kinase kinase. Basic Res Cardiol, 1997,92:378-384.
    30. Koyama H, Olson NE, Dastvan FF, et al. Cell replication in the arterial wall: activation of signaling pathway following in vivo injury. Cir Res, 1998,82:713-721.
    31. Zou Y, Hu Y, Nbtzler B, et al. Signal transduction in arteriosclerosis: mechanical stress-activated MAP kinases in vascular smooth muscle cells. Int J AV Nkd, 1998,1:827-834.
    32. Force T, Bonventre JV. Growth factors and mitogerr activated protein kinases. Hypertension, 1998,31(1 Pt 2):152-161.
    33. Jians Y, Liu AN, Huang QB, et al. p38 MAPK signal is necessary for TNF-α geneexpression in RAW cells. Acta Biochim Biophys Sin, 1999,31:9-15.
    34. Jians Y, Han JH. P38 MAPK signaltrans duction pathway. Chin Bull Life Sci, 1999,11:102-106.
    35. New L, Han J. The p38 MAP kinase pathway and its biological function. Trends Cardiovasc Med, 1998,8:220-229.
    36. Han J, Jiang Y, Li Z, et al. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammxtion. Nature, 1997,386:296-299.
    
    
    37. Cho A, Graves J, Reidy MA. Mitogen-activated protein kinases mediate matrix metalloproteinase-9 expression in vascular smooth muscle cells. Arterioscler Thromb Vase Biol, 2000,20:2527-2532.
    38. Khan KM, Falcone DJ, Kraemer R. Nerve Growth Factor Activation of Erk-1 and Erk-2 Induces Matrix Metalloproteinase-9 Expression in Vascular Smooth Muscle Cells. J Biol Chem, 2002,277:2353-2359.
    39. Gum R, Wang H, Lengyel E, et al. Regulation of 92 kDa type Ⅳ eollagenase expression by the jun amino terminal kinase- and the extracellular signal-regulated kinase-dependent signaling cascades. Oneogene, 1997,14:1481-1493.
    40. Lovdahl C, Thyberg J, Hultgardh-Nilsson A. The synthetic metalloproteinase inhibitor batimastat suppresses injury-induced phosphorylation of MAP kinase ERK1/ERK2 and phenotypic modification of arterial smooth muscle cells in vitro. J Vase Res, 2000,37:345-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700