太阳能电池正面银浆的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能是人类最重要的可再生能源之一,它是一种无污染、可再生、储量巨大、取之不尽、用之不竭的清洁能源,充满了诱人的前景。因此,太阳能的研究和应用已成为世界新能源研究的热点。银浆是制造太阳能电池电极的关键材料,电极银浆组成相的成分配方、性质和制备工艺直接影响着太阳能电池的物理和光电性能。本文瞄准当今世界科学与技术前沿,重点研究了太阳能电池正面银浆的主要组成相银粉和有机载体的性质和成分配方。利用化学液相还原法成功制备出适合太阳能电池正面银浆应用的高分散的微米/亚微米球形银粉,并成功优化出适合太阳能电池正面银浆应用的有机载体。同时,发现了银粉的粉末特性参数与太阳能电池性能的规律性,也发现了有机载体配方与太阳能电池丝网印刷性和电性能的相关性,以及银浆制备工艺与太阳能电池性能的相关性。主要研究结果如下:
     1、研究了太阳能电池正面银浆用的高分散球形或类球形超细银粉,首次揭示了聚乙烯醇是利用化学吸附和物理吸附分散银粉的机理,从而突破了化学还原法制备银粉的技术关键。作者以硝酸银为原材料,运用化学液相还原法制备银粉。通过单因素实验和正交实验两种设计方法,优化出两种适合制备太阳能电池正面银浆的工艺。
     单因素实验设计方法,探索了十一个影响银粉粒度、形貌和分散性的因素,发现规律性,成功制备出目标银粉。优化的工艺条件为:以抗坏血酸为还原剂,聚乙烯醇为分散剂,pH=7,分散剂用量为8wt%(相对硝酸银质量),12.500mL·s-1的滴液速度,200PRM的搅拌速度,还原剂溶液的初始浓度为1.177mol·L-1,硝酸银溶液初始浓度为0.294mol·L-1,分散剂加入到硝酸银溶液中,硝酸银溶液滴入到还原剂溶液中,反应温度50℃,用甘油单硬脂酸酯的乙醇溶液进行后处理改性。在该条件下,制备的银粉具有良好的分散性,形貌为球形,一次粒子的平均粒度为0.81μm,粒径分布为0.37~1.04μm,振实密度为4.9g·cm-3。在此基础上,运用紫外-可见光谱研究了以聚乙烯醇作分散剂制备银粉的分散机理,通过深入系统地分析,揭示了聚乙烯醇是利用化学吸附和物理吸附分散银粉的机理。正交实验设计方法,考察了六个因素和五个水平。优化的工艺条件为:硝酸银浓度为0.3mol·L-1,抗坏血酸浓度为1.4mol·L-1,明胶为分散剂,分散剂用量为8wt%(相对硝酸银质量),pH值为4,反应温度为50℃。在此条件下制备的银粉,形状为近球形,颗粒均匀,分散性良好,其一次粒子的平均粒度为0.89μm,分布在0.36-1.67μm之间,振实密度为5.4g·cm-3。
     通过以上两种工艺制备的银粉都适合制备太阳能电池正面银浆,各有优点,前者工艺制备的银粉分散性好,而后者工艺制备的银粉振实密度高。
     2、发现了银粉的分散性、振实密度及银浆的银含量对太阳能电池正面银浆的影响规律。高的分散性和振实密度有利于制备高品质的银浆,由其制备的太阳能电池正面银浆具有良好的丝网印刷性,其烧结厚膜的电极线条精密、平整、致密、孔洞率小,具有优异的导电性,从而提高了太阳能电池的光电转化效率,其单晶硅太阳能电池光电转化效率达17.803%。该新的发现还未见有文献报道。
     3、优化了一个满足正银浆料所需的良好流平性、触变性和印刷性的有机载体。山该有机载体制备的太阳能电池正银浆料,兼备了良好的流平性、触变性和丝网印刷性能,该正银浆料印刷的电池电极和栅线具有大的湿重、膜厚和高宽比,每片电池湿重达0.18g,膜厚达33μm,高宽比达0.306,同时,电极和栅线与晶硅界而具有高的附着力(0.4N.mm-2)和良好的可焊性,该条件下制备的太阳能电池具有优异的光电转化效率,其单晶硅电池光电转化效率达17.963%。该配方还未见有文献报道。
     4、发展了低成本、短流程正面银浆制备技术,该技术由湿态银粉直接配制浆料,最大限度地减少了银粉的团聚带来的负面影响,使电池性能进一步提高(可达18.020%)。发现制备该正银浆料的新工艺可克服银粉干燥过程加剧团聚的不利影响,摒弃了传统电子浆料生产时易使固、液混合和研磨不均匀的缺点,使得制备的正银浆料分散性更好,细度更细,提高了高精度、高分辨率、高速丝网印刷性能和增强了浆料的过网能力。
     5、发现了正银浆料的丝网印刷、烘干和烧结工艺对太阳能电池电学性能和光电转换效率的重要影响规律。将各种工艺调到最佳匹配值才能最大限度的提高电池性能。
Solar energy is the most important one of the renewable energy, and it is a pollution-free, abundant, renewable energy of the future. Therefore, the study and application of solar energy is a main direction in the future of mankind. Silver paste is the key material of mading solar cells, and its ingredient, preparation process has a direct impact on physical and electrical performance of solar cell. Aimming at the frontier of science and technology of the world today, two key ingredients of solar cell silver paste, namely silver powder and organic vehicle, were investagated. Using chemical liquid-phase reduction method, micron/submicron spherical silver powder for solar cell front silver paste application was prepared. And organic vehicle for solar cell front silver paste application was optimized. At the same time, the law of silver powder characteristics parameter and solar cell performance, the relevance between organic vechicle and scree-pinting, electrical performance and the relevance between preparation processes of silver paste with solar cell performance are discovered. The main results are as follows:
     1. Highly dispersive micron/submicron spherical silver powder for solar cell front silver paste is investigated. And dispersion mechanism of polyvinyl alcohol for preparing silver powder is firstly revealed, namely it is the chemical and physical adsorption, which is a key technology breakthrough of preparing silver powder by the chemical reduction method. We use silver nitrate as raw materials to prepare silver powder, using chemical liquid-phase reduction process. Through single factor experiment and orthogonal designs, we have optimized two processes preparing silver powder for the solar cell front silver paste.
     For single factor experiment design, eleven factors of influencing granularity, morphology and dispersivity of silver powder are experimented. The desired silver powder is prepared successfully and its law is discovered. The process conditions:ascorbic acid as reduction agent, PVA as disperser, pH=7, disperser usage of8wt%(relativer to the mass of silver nitrate), dipping speed of12.500mL·s-1, stirring speed of200PRM, the concentration of reducion solution of1.177mol·L-1, the concentration of silver nitrate solution of0.294mol·L-1, adding disperser to silver nitrate solution, adding silver nitrate solution to reduction solution, temperature of50℃, a ethanol solution of glyceryl monostearate as posttreatment agent, as-prepared silver powder has good dispersivity, spherical shape, the average particle size of0.81μm, the distribution of0.37~1.04μm, the tap density of4.9g·cm-3. Using ultraviolet and visible spectrum, the disperser mechanism of the preparation of silver powder using polyvinyl alcohol as disperser is suggested firstly, which mechanism is the chemical and physical absorption mechanisms.
     Using the orthogonal experimental design, six factors and five levels are experimented. The optimal process conditions:silver nitrate solution concentration of0.3mol·L-1, ascorbic acid solution concentration of1.4mol·L-1, gelatin as disperser, the disperser usage of8wt%(relative to the mass of silver nitrate), pH=4, the temperature of50℃. As-prepared silver powder has the nearly spherical shape, good dispersivity,0.36~1.67μm size distribution, average particle size of0.89μm and the tap density of5.4g·cm-3.
     Silver powders prepared through the above two kinds of processes are all suitable for preparing front silver paste of solar cell. Each of them has its advantage. Silver powder prepared by the former process has good dispersion while the one prepared by the latter process has high tap density.
     2. For the first time, a significant impact of dispersivity, tap density of silver powder and silver content in silver paste on the thick film and solar cell has discovered, and a higher dispersivity and tap density of silver powder is conducive to the preparation of the high quality silver paste, and its thick film has good screen-printing, which is helpful to increase conversion efficiency of solar cell (up to17.803%for monocrystalline silicon solar cell). This new discovery has been not reported.
     3. An optimal organic vehicle formula is found. The solar cell front silver paste prepared using it has desired levelling, thixotropy and screen printing property. And the thick film has bigger wet weight (up to0.18g), thicker thickness (up to33μm) and bigger aspect ratio (up to0.306), and the thick film is even and compact. The grid has high adhesion (up to0.4N/mm2) and good solderability. The cell has higher photo-electric conversion efficiency (up to17.963%). This formula has been not reported.
     4. This paper for the first time reported that wet silver powder is directly applied to prepare silver paste, which the negative impact of silver powder agglomeration is abated and improve cell efficiency (up to18.020%) by the greatest extent. This process has yet been not seen in reports.
     5. By improving the preparation process of silver paste, the use of advanced mechanical method in mixxing of solid/liquid and solid/solid and gridding is more even and achieving better performance than the manual methods. At the same time, a significant impact of screen printing, coasting, sintering on the performance is discovered. Only matching the various techniques can high performance be required.
引文
[1]J. P. Franey, T. E. Graedel, G. J. Gualtieri, et al. Conductive silver-epoxy pastes characteristics of alternative formulations. Journal of Materials Science,1984, 19:3281-3286.
    [2]张志浩,施利毅,代凯,等.新型纳米银导电胶的制备及其性能研究.功能材料,2008,39(2):337-340.
    [3]K. Park. D. Seo, J. Lee. Conductivity of silver paste prepared from nanoparticles. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008, 313-314:351-354.
    [4]M. M. Hilali, K. Nakayashiki, C. Khadilkar, et al. Effect of Ag particle size in thick-film Ag paste on the electrical and physical properties of screen printed contacts and silicon solar cells. Journal of the Electrochemical Society,2006, 153(1):A5-A11.
    [5]S. A. Ketkar, G. G. Umarji, G. J. Phatak, et al. Effect of glass content variation on properties of photoimageable silver conductor paste. Materials Chemistry and Physics,2006,96:145-153.
    [6]M. M. Hilali, S. Sridharan. C. Khadilkar. et al. Effect of glass frit chemistry on the physical and electrical properties of thick-film Ag contacts for silicon solar cells. Journal of Electronic Materials,2006,35(11):2041-2047.
    [7]S. Y. Chen, C. H. Chou. Effect of metal oxide precursor on sintering shrinkage, microstructure evolution and electrical properties of silver-based pastes. Journal of Materials Science,2002,37:169-175.
    [8]J. C. Lin, C. Y. Wang. Effects of surfactant treatment of silver powder on the rheology of its thick-film paste. Materials Chemistry and Physics,1996,45: 136-144.
    [9]S. A. Ketkar, G. G. Umarji, G. J. Phatak, et al. Glass frit content-Property co-relation in thick films of photoimageable silver conductor paste. Materials Science and Engineering B,2006,132:197-203.
    [10]S. Wang, D. S. Pang, D. D. L. Chung. Hydrothermal Stability of Electrical Contacts Made from Silver and Graphite Electrically Conductive Pastes. Journal of Electronic Materials.2007,36(1):65-74.
    [11]孟淑媛,吴海斌,吴松平,等.超细银粉的制备及其导电性研究.电子元件与材料,2004,23(7):35-40.
    [12]赵斌,马海燕,张宗涛,等.银超细粉末的制备.华东理工大学学报,1996,22(2):221-226.
    [13]朱振东,罗凯,苏琳,等.超支化聚酯的合成与应用-纳米银粒子的制备与表征.应用化学,2005,22(9):954-957.
    [14]周全法,李锋,张继霞,等.粗银法制备高纯度片状银粉的研究.有色金属再生与利用,2003,8:11-12.
    [15]孙德武,翟宏菊,林险峰,等.单分散纳米银溶胶的合成、表征及其性质研究.吉林师范大学学报(自然科学版),2005,3:40-41.
    [16]司民真,武荣国,张鹏翔.负电性纳米银的制备及性质研究.化学物理学报,2001,14(4):465-468.
    [17]赵婷,戴红,肖尧,等.冠醚交联壳聚糖吸附原位还原制备纳米银.中国皮革,2006,35(9):26-29.
    [18]樊新,黄可龙,刘素琴,等.化学还原法制备纳米银粒子及其表征.功能材料,2007,38(6):996-1002.
    [19]廖学红,朱俊杰,邱晓峰,等.类球形和树枝状纳米银的超声电化学制备.南京大学学报(自然科学),2002,38(1):119-123.
    [20]黄玉萍,徐淑坤,王文星,等.纳米金催化没食子酸还原法制备纳米银及机理研究.无机化学学报,2007,23(10):1683-1688.
    [21]熊金钰,徐国财,吉小利,等.纳米银的超声合成及分形研究.安徽理工大学学报(自然科学版),2004,24(3):69-72.
    [22]宋吉明,张胜义,史洪伟,等.纳米银的软模板制备方法及形成机理研究.贵金属,2006,27(4):26-31.
    [23]殷焕顺,艾仕云,钱萍,等.纳米银的制备方法及其应用.材料研究与应用,2008,2(1):6-10.
    [24]熊金钰,徐国财.纳米银的制备及表征.金属功能材料,2004,1 1(2):38-42.
    [25]和俊,司民真,纳米银的制备及其应用,光散射学报,2008,20(1),42-46
    [26]陈国杰,宫永纯,马涛,纳米银的制备及应用,辽宁化工,2008,37(9),618-619
    [27]司马真,武荣国,李世荣.纳米银的制备及有关光学性质简介.楚雄师专学报,1999,14(3):4-8.
    [28]何晓燕,俞梅.纳米银粒子的化学法制备及其表征.兰州交通大学学报(自然科学版),2005,24(3):154-158.
    [29]张云竹,代凯,施利毅,等.纳米银粒子的制备及其表征.化工新型材料,2006,34(7):31-32.
    [30]罗建斌,马晨,康兵强.树枝状PEI(聚乙烯亚胺)封端的聚氨酯的合成及其诱导制备纳米银的研究.西南民族大学学报·自然科学版,2008,34(3):530-534.
    [31]高尚芬,苏小东,李毅,等.天然松香用于制备球型纳米银的研究.化学研究与应用,2008,20(7):836-839.
    [32]李梅,赵景琨,韩莉,等.微波法制备纳米银晶及X射线衍射分析.实验室研究与探索,2006,25(1):24-25.
    [33]司民真,方炎,董刚,等.微波加热法快速制备纳米银及其SERS(表面增强喇曼散射)活性研究.光子学报,2008,37(5):1034-1037.
    [34]梁桂勇,翟学良.微乳液法制备纳米银粒子.功能材料,1999,30(5):484-485.
    [35]梁海春,容敏智,章明秋,等.微乳液法制备纳米银粒子的结构及其荧光现象研究.物理学报,2002,51(1):49-54.
    [36]徐惠,曲晓丽,翟钧,等.乙二醇水热还原法制备纳米银.贵金属,2006,27(3):22-24.
    [37]王翠英,袁铁,曾钫,等.以Si02为载体的纳米银粒子的制备及其在塑料中的应用.塑料工业,2006,34(11):57-59.
    [38]彭子飞,汪国忠,张立德,等.用银氨配离子还原法制备纳米银.材料研究学报,1997,11(1):104-106.
    [39]周辉,高愈尊,金孝刚,等.纳米银块体材料的制备及其结构表征.中国有色金属学报,2003,13(5):1107-111.
    [40]姚卿敏,张彩云.电子浆料用球形银粉的制备.电子工艺技术,2005,26(2):102-104.
    [41]刘永庆.电子浆料用片状银粉的制备.丝网印刷,2006,2:24-26.
    [42]韦群燕,谢刚,李荣兴,等.化学沉淀制备超细银粉及其形貌特征.云南冶金,2004,33(1):32-34.
    [43]傅乐峰,郑柏存,丁亮.纳米银颗粒与纳米银纤维的制备方法及应用.纳米科技,2004,1(5):17-22.
    [44]冯毅,梅海青,谭展机.化学法生产电子元件用超细银粉的工艺及设备.广东化工,2002,5:45-47.
    [45]S. D. Sathaye, K. R. Patil, D. V. Paranjape, et al. Nanocrystalline silver particulate films by liquid-liquid interface reaction technique (LLIRT). Materials Research Bulletin,2001,36:1149-1155.
    [46]J. J. Zhu, Q. F. Qiu, H. Wang, et al. Synthesis of silver nanowires by a sonoelectrochemical method. Inorganic Chemistry Communications,2002,5: 242-244.
    [47]刘瑜.化学沉积法生产超细银粉的工艺研究.无机盐工业,2003,35(6):27-29.
    [48]谢明,刘建良,邓忠民,等.快速凝固制造贵金属微细粉末.贵金属,2000,21(3):12-17.
    [49]肖旺钏,陈燕萍,赖文忠,等.溶剂热合成纳米银及其表征.应用化工,2007,36(11):1056-1057.
    [50]谭松庭,周建萍,姜忠民,等.微乳液法制备超细金属银粉的研究.湘潭大学自然科学学报,2001,23(4):60-62.
    [51]冯晓,徐少辉,朱自强.用热分解方法在多孔硅中形成纳米银粒子.华东师范大学学报(自然科学版),2006,l:116-119.
    [52]廖学红,朱俊杰,赵小宁,等.纳米银的电化学合成.高等学校化学学报,2000,21(12):1837-1839.
    [53]宋永辉,兰新哲,张秋利.超声波强化制备超细银粉.稀有金属,2005,29(4):502-504.
    [54]邵丽,王西奎,国伟林,等.超声化学法制备树枝状纳米银的研究.无机化学学报,2007,23(10):1824-1828.
    [55]王振阳,关晓,何洪,等.超声膜扩散法制备纳米银粒子.高等学校化学学报,2007,28(9):1756-1758.
    [56]廖学红,李鑫.电化学制备纳米银.黄冈师范学院学报,2001,21(5):58-59.
    [57]金宗莲,徐华蕊,赵斌,等.SP法制备球形的金属银超细粉体.上海金属,2001,23(2):37-40.
    [58]高远浩,刘平.废定影液制取超细银粉.平顶山师专学报,2001,16(2):62-63.
    [59]刘志宏,刘智勇,李启厚,等.喷雾热分解法制备超细银粉及其形貌控制.中国有色金属学报,2007,17(1):149-155.
    [60]司民真,方炎,彭家林,等.电解法制备纳米银溶胶及其SERS活性研究.光谱学与光谱分析,2007,27(5):948-952.
    [61]Y. W. Ao, Y. X. Yang, S. L. Yuan, et al. Preparation of spherical silver particles for solar cell electronic paste with gelatin protection. Materials Chemistry and Physics,2007,104:158-161.
    [62]兰尧中,刘进,李现强,等.水合肼还原法制备超细银粉的研究.贵金属,2005,26(4):22-26.
    [63]张健,吴贤,李程,等.水合联氨还原制备超细银粉.稀有金属材料与工程,2007,36(增刊3):399-403.
    [64]江建军,谈定生,刘久苗,等.葡萄糖还原制取超细银粉.上海有色金属,2004,25(1):5-8.
    [65]梁敏,唐霁楠,林保平.电子材料用球形超细银粉的制备.中国粉体技术,2006,3:16-19.
    [66]宋建恒,郑学军.双氧水还原制备超细银粉.中国有色金属学报,1998,8(增刊2):242-243.
    [67]吴建设.氢气还原制备超细银粉.湖南有色金属,1998,14(2):22-24.
    [68]P. K. Khanna, V. V. V. S. Subbarao. Nanosized silver powder via reduction of silver nitrate by sodium formaldehydesulfoxylate in acidic pH medium. Materials Letters.2003,57:2242-2245.
    [69]张文阁,郭靖洪.超细金属银粉的研制.
    [70]陈峤,俞守耕.用作DC电极的可焊银导体浆料.贵金属,1997,18(2):14-17.
    [71]A Slistan-Grijalva, R. Herrera-Urbina, J. F. Rivas-Silva. et al. Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol. Materials Research Bulletin,2008,43:90-96.
    [72]M. Shinde, A. Pawar, S. Karmakar, et al. Uncapped silver nanoparticles synthesized by DC arc thermal plasma technique for conductor paste formulation. Journal of Nanoparticle Research,2009,11:2043-2047.
    [73]L. H. Xin, R. M. Zhou, B. G. Ekoko, et al. Synthesis of silver nano-particles by EB irradiation. Journal of Radiation Research and Radiation Processing,2004, 22 (2):69-72.
    [74]Y. H. Wang, J. Zhou, T. Wang. Preparation and characterization of stable dispersive colloidal silver nanoparticles. Chinese Journal of Inorganic Chemistry,2007,23(8):1485-1490.
    [75]Z. T. Zhang, B. Zhao, L. M. Hu. PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. Journal of Solid State Chemistry,1996,121:105-110.
    [76]江成军,段志伟,张振忠,等.不同表面活性剂对纳米银粉在乙醇中分散性能的影响.稀有金属材料与工程,2007,36(4):724-727.
    [77]王爱丽,殷恒波,任敏,等.不同有机官能团对室温下纳米银形貌控制合成的影响.贵金属,2006,27(2):27-34.
    [78]徐光年,乔学亮,邱小林,等.单分散球形纳米银粒子的制备新方法及其抗 菌性能.稀有金属材料与工程,2008,37(9):1669-1672.
    [79]李娟,封克光,杨长印.电子浆料所用银粉新方法的研制.现代电子技术,1999,8:29-31.
    [80]吴海斌,孟淑媛.电子元件用贵金属超细粉末的生产.电子工艺技术,2008,29(4):199-202.
    [81]冯毅,冯雪冰,陈时菊.高纯超细球形银粉生产工艺与设备的开发研究.中国粉体技术,2002,8(5):18-20.
    [82]周宇松,曹过洲,逯庆国,等.高振实密度超细银粉的研制.兵器材料科学与工程,2007,30(5):22-24.
    [83]敖毅伟,杨云霞,袁双龙,等.化学还原法中制备条件对超细银粉形貌的影响.粉末冶金技术,2007,25(5):355-359.
    [84]Y. P. Zhang, Y. X. Yang, J. H. Zheng, et al. Thermal properties of glass frit and effects on Si solar cells. Materials Chemistry and Physics,2009,114:319-322.
    [85]S. A. Ketkar, G. G. Umarji, G. J. Phatak, et al. Lead-free photoimageable silver conductor paste formulation for high density electronic packaging. Materials Science and Engineering B,2006,132:215-221.
    [86]唐霁楠,林保平.PbO-SiO2-B2O3系玻璃组成及性质研究.第七届全国精细化学品化学学术会议论文集,201-204.
    [87]张亚萍,杨云霞,郑建华,等.玻璃粉的润湿性对硅太阳电池性能的影响.硅酸盐学报,2008,36(7):1022-1026.
    [88]钱建保.低温玻璃粉的生产.江苏陶瓷,2002,35(3):36-38.
    [89]钱建保.低温玻璃粉的制造.电瓷避雷器,2003,4:25-27.
    [90]罗世永,杨丽珍,葛袁静,等.电子浆料用超微细玻璃粉的等离子体改性.电子元件与材料,2006,25(7):56-58.
    [91]陈群星.复合玻璃粉在ZnO压敏电阻用银浆料中的作用.电子元件与材料,2006,25(3):46-47.
    [92]C. J. Shih, S. J. Shih, H. C. Lin, et al. Thermal-decomposition and crystallization behaviour of coupling agents for silver paste application. Nanotechnology,2003, 14:1014-1018.
    [93]I. B. Pelikainova, M. Tucan, D. Busek. Viscosity of polymer paste materials for electronics.30th ISSE,2007,229-234.
    [94]何锦华,钟海涛,梁超,等.PDP荧光粉浆料用有机载体的制备研究.真空电子技术,2008,35-38.
    [95]杨华荣,堵永国,张为军,等.表面活性剂对厚膜电子浆料流平性的影响, 电子元件与材料,2004,23(7):25-27.
    [96]梁文平.表面活性剂及其在分散体系中的应用.日用化学工业,1999,1:7-11.
    [97]罗世永,庞远燕,郝燕萍,等.电子浆料用有机载体的挥发性能.电子元件与材料,2006,25(8):49-51.
    [98]肖凤英,林庆红.端电极浆料中有机粘合剂的研究.实验技术与管理,2001,18(4):112-114.
    [99]姚志刚,徐凡,王通.改性内烯酸树脂型高温电子浆料有机载体的制备.中国胶粘剂,2000,10(3):13-14.
    [100]罗世永,吕勇,许文才,等.中温烧结型电子浆料用水性载体.电子元件与材料,2007,26(12):50-52.
    [101]韦群燕,谢刚,李荣兴,等.超细银粉的聚集状态与银膜微观结构演化的关系.有色金属,2007,59(3):12-16.
    [102]姚志刚,徐凡,E通.高温银浆生产技术的讨论.苏州大学学报(工科版),2002,22(5):53-55.
    [103]T. Wang, X. Chen, G. Q. Lu. et al. Low-temperature sintering with nano-silver paste in die-attached interconnection. Journal of Electronic Materials,2007. 36(10):1333-1440.
    [104]C. H. Lin, S. Y. Tsai, S. P. Hsu, et al. Investigation of Ag-bulk glassy-phase Si heterostructures of printed Ag contacts on crystalline Si solar cells. Solar Energy Materials & Solar Cells,2008,92:1011-1015.
    [105]X. Y. Wang, Z. S. Zhang. Nano-silver paste with low roasting temperature.2005 6th International Conference on Electronic Packaging Technology,2005.
    [106]S. J. Jeon, S. M. Koo, S. A. Hwang. Optimization of lead-and cadmium-free front contact silver paste formulation to achieve high fill factors for industrial screen-printed Si solar cells. Solar Energy Materials & Solar Cells,2009, 93:1103-1109.
    [107]L. M. Porter, A. Teicher, D. L. Meier. Phosphorus-doped, silver-based pastes for self-doping ohmic contacts for crystalline silicon solar cells. Solar Energy Materials & Solar Cells.2002,73:209-219.
    [108]G. G. Umarji, S. A. Ketkar, G. J. Phatak, et al. Photoimageable silver paste for high density interconnection technology. Materials Letters,2005,59:503-509.
    [109]S. Y. Luo, N. Wang, W. C. Xu, et al. Preparation and rheological behavior of lead free silver conducting paste. Materials Chemistry and Physics,2008,111: 20-23.
    [110]S. Park, D. Seo, J. Lee. Preparation of Pb-free silver paste containing nanoparticles. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,313-314:197-201.
    [111]D. S. Seo, S. H. Park, J. K. Lee. Sinterability and conductivity of silver paste with Pb-free frit. Current Applied Physics,2009,9:S72-S74.
    [112]X. Chen, R. Li, K. Qi, et al. Tensile Behaviors and ratcheting effects of partially sintered chip-attachment films of a nanoscale silver paste. Journal of Electronic Materials,2008,37(10):1574-1579.
    [113]J. P. Franey, T. E. Graedel, G. J. Gualtieri. et al. The morphology and corrosion resistance of a conductive silver-epoxy paste. Journal of Materials Science,1981. 16:2360-2368.
    [114]M. M. Hilali, M. M. Al-Jassim, B. To, et al. Understanding the formation and temperature dependence of thick-film Ag contacts on high-sheet-resistance Si emitters for solar cells. Journal of the Electrochemical Society,2005,152 (10): G742-G749.
    [115]M. Xu. J. Q. Feng, X. L. Cao. Study on preparation and dielectric properties of nano-Ag/epoxy resin composite. Rare Metal Materials and Engineering,2007, 36(8):1369-1372.
    [116]韦群燕,潘云昆.超细银粉在有机介质中的分散及其稳定性.电子元件与材料,2000,19(1):22-24.
    [117]赵汝云,敖已忠,刘婀娜.瓷介质电容器银浆堆烧“粘片”讨论.贵金属,1998,19(1):14-17.
    [118]谭富彬,赵玲,陈亮维,等.单晶硅太阳能电池硅与电极间的欧姆接触.贵金属,2001,22(1):12-16.
    [119]吴红.导电银浆涂膜均匀性和致密性的研究.涂料工业,2003,33(2):3-5.
    [120]姚志刚,徐凡,王通,等.高温银浆中超细银粉的形态对压电陶瓷振子电性能的影响.电子元件与材料,2001,20(2):12-13.
    [121]林喜斌,林安中,谢元锋.硅太阳电池N型银浆用银粉的研究.中国稀上学报,2003,21(增刊):164-165.
    [122]张世强,李万河,徐品烈.硅太阳能电池的丝网印刷技术.太阳能制造,2007,148:55-59.
    [123]王毅.厚膜浆料及其应用.微电子技术,1995,23(4):1-7.
    [124]刘远瑞,许佩新.填充型丙烯酸树脂导电银浆电性能的研究.涂料工业, 2005,35(1):1-3.
    [125]崔永杰,刘雄,王志涛.银粉吸附乙基纤维素的机理.催化学报,1997,18(3):258-260.
    [126]甘卫平,张海旺,刘妍,等.低温烧结型银基浆料烧结膜孔洞率的研究.电子元件与材料,2008,27(6):18-21.
    [127]甘卫平,刘妍,甘梅.低温烧结型银浆料对半导体芯片贴装性能的影响.中国有色金属学报,2008,18(3):476-482.
    [128]甘卫平,甘梅,刘妍.低温烧结型银浆料在半导体芯片组装时的附着力.粉末冶金材料科学与工程,2007,12(4):211-215.
    [129]甘卫平,刘妍,张海旺.芯片贴装用银浆料的热物理与力学性能.电子元件与材料,2008,27(3):25-28.
    [130]崔作林.纳米技术与纳米材料.北京:国防工业出版社,2000.
    [131]尾崎义治.超微颗粒导论.武汉:武汉工业大学出版社,1991.
    [132]徐彬士.纳米表面工程.北京:化学工业出版社,2004.
    [133]陆厚根,张庆红,梅芳.超细碳酸钙表面改性.上海化工,1996,21(4):15-18.
    [134]朱协彬.软化学法制备纳米ITO材料及其介孔组装体系研究:[博士学位论文].长沙:中南大学,2007.
    [135]李荣生,甄开吉,王国甲.催化作用基础.北京:科学出版社,1990.
    [136]李卫.铋铜铬系列氧化物、复合氧化物纳米粉体材料的湿化学法合成、结构与性能研究:[博士学位论文].长沙:中南大学,2005.
    [137]L.W Hrubesh.Aerogel applications.Journal of Non-crystalline solids,1998, 225:335-342.
    [138]M.Schmidt,F.Schwertfeger.Applicaions for silica aerogel products.Journal of Non-crystalline Solids,1998,225:364-368.
    [139]T. Sugimoto.Preparation of monodeispersed colloidal particles.Advances in Colloid and Interface Science,1987,28,65-108.
    [140]http://zhidao.baidu.com/question/170999562.html
    [141]D.W.Johnson.American Ceramic Society Bulletin.1972,31(12):986.
    [142]黄培云.粉末冶金原理.北京:冶金工业出版社,1981.
    [143]魏丽丽,徐盛明,徐刚,等.表面活性剂对超细银粉分散性的影响.中国有色金属学报,2009,19(3):595-600.
    [144]S.B.Rane,P.K.Khanna,T.Seth,et al.Firing and processing effects on microstructure of fritted silver thick film electrode materials for solar cells. Materials Chemistry and Physics,2003,82:237-245.
    [145]E. M. Tory, B. H. Church, M. K. Tarn, et al. Simulated random packing of equal apheres. Canadian Journal of Chemical Engineering,1973,51:484-493.
    [146]A. Bezrukov, M. Bargie. D. Stoyan. Statistical analysis of simulated random packings of spheres. Particle & Particle Systems Characterization,2002,19: 111-118.
    [147]G. C. Barker, A. Mehta. Vibrated powders:structure, correlation, and dynamics. Physical Review A,1992.45:3435-3446.
    [148]http://www.r4e.cn/bbs/thread-4109-1-1.html
    [149]http://baike.baidu.com/view/649467.htm
    [150]今野卓哉.导电的厚膜组合物、电极和由其形成的太阳能电池.中国专利,公开号CN1877748A,2006-12-13
    [151]荀建华,孙铁囤,潘盛,等.无铅太阳能电池银浆及其制备方法.中国专利,公开号CN101271929A,2008-9-24
    [152]杨云霞,郑建华,张亚萍,等.太阳能电池正面电极用导电浆料.中国专利,公开号CN101118932A,2008-2-6
    [153]季福根.太阳能硅光电池用无铅电子浆料组成及制备方法.中国专利,公开号CN101M5263A,2009-1-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700