玫瑰花产量性状、观赏特性的遗传变异及选育策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究是在对我国玫瑰(Rosa rugosa Thunb.)资源进行全面调查的基础上,对玫瑰花数量性状的遗传参数和选择效率进行了初步研究,并对玫瑰花单株产量进行了灰色分析、Kriging插值和选择指数的研究,在此基础上进行了BP神经网络模型和AMMI模型分析,并对玫瑰花期等性状进行了遗传变异分析和多变量时间序列CAR模型分析。同时为进行新品种的选育,选取了不同的玫瑰品种用秋水仙素进行了多倍体育种研究;并在观察调查的基础上选取了不同的玫瑰品种为亲本进行了杂交授粉的研究,这将进一步丰富玫瑰种质资源。主要结论如下:
     1、对20个玫瑰品种的鲜花产量及13个数量性状进行了遗传相关、相关遗传力及遗传系数通径分析等。结果表明:(1)单株花蕾数、分枝数、第1个花瓣长、第2个花瓣长、花蕾长与单株花蕾产量的遗传相关显著;(2)单株花蕾数、第2个花瓣长、分枝数和花蕾长的相关遗传力与单株花蕾产量的遗传力接近,相关选择的效率接近对单株花蕾产量的直接选择的效率;遗传系数通径分析结果进一步表明第2个花瓣长、花蕾长和花蕾宽对单株花蕾产量的直接作用都比较大;(3)根据决策系数,花蕾长、单株花蕾数、第2个花瓣长、分枝数、单蕾花瓣鲜重对单株产量有促进作用。
     2、为了探讨玫瑰高产品种的选育理论与技术,对20个玫瑰品种的15个数量性状与单株产花量进行了灰色系统分析、Kriging插值模拟、综合选择指数分析,结果表明:单株花数、分枝数、花蕾宽和单花鲜重4个性状与单株产花量的灰色关联度较大(>0.5)。根据单株产花量的Kriging插值模拟结果,单株产花量随单株花数、分枝数的增加而增加,任何单一因素的变化均不能保证主要目标性状的提高。因此,提高玫瑰单株产花量的选育方法应采用多性状综合选择法,选用单株花数、分枝数、花蕾宽和单花鲜重4个性状,以关联度为权重建立了单株产花量综合选择指数模型:I=0.3x1-318.6x2+670.1x4+6.3x8,指数遗传力=0.8014,综合育种值选择进展ΔH=245.8811,该研究结果对今后玫瑰高产花量品种的选育具有指导意义。
     3、选用13个玫瑰品种,连续两年测定了各品种的单株产花量,应用AMMI(Additive main effects and multiplicative interaction,又称为主效可加互作可乘)模型对单株产花量的基因型、环境和基因型与环境(G×E)的互作进行了探讨。结果表明:基因型、环境及G×E互作的平方和分别占总平方和的65.610%、12.352%、22.038%,均达极显著水平,而误差仅占2.75×10-17%,参试品种的单株产花量主要在500~1500g之间;AMMI双标和排序图表明品种‘紫云’、‘玉盘’、‘唐紫’、‘唐粉’、‘紫枝玫瑰’、‘朱龙游空’与2006年的环境的互作为正,而与07年的环境互作为负;‘赛西子’、‘唐红’、‘西子’、‘紫芙蓉’、‘朱紫双辉’、‘紫雁’、‘香刺果’与07年的环境互作为正,与2006年的环境的互作为负。AMMI品种适应性分析显示‘朱龙游空’、‘唐紫’和‘赛西子’具有最佳适应性。AMMI模型很好的解释了玫瑰品种产量性状的基因型效应、环境效应和G×E互作效应,根据分析结果可以得出以下结论:单株产花量高且稳定的品种有‘西子’、‘紫芙蓉’和‘赛西子’(1200~1800g),相对稳定的品种有‘玉盘’、‘唐粉’、‘紫枝玫瑰’、‘紫云’、‘紫雁’和‘朱紫双辉’(800~1150g),高产但较不稳定的有‘唐紫’和‘朱龙游空’(1700~2600g),产量低也不稳定的是‘唐红’和‘香刺果’(500~600g)。
     4、对20个玫瑰品种的8个数量性状进行方差分析的基础上,对产花量性状进行了重复力的分析,结果表明:各性状间均达到极显著差异,各品种单株产量的重复力都较高且均在0.85以上,为今后玫瑰的遗传育种和资源研究提供了理论依据。
     5、对20个玫瑰品种的所有数量性状进行反向传播神经网络(BP)分析、逐步回归,选择与单株产花量相关性比较大的单株花蕾数进行一元线性回归和一元非线性模型的二次曲线分析来预测单株产花量。结果表明:BP神经网络对所有品种的单株产花量的预测拟合结果的相对误差的绝对值最小(均小于10%),最高的达9.060%;BP神经网络的预测单株产花量的曲线与实测值的结果最接近,二者几乎达到了重叠,初步说明BP神经网络方法是一种可用于玫瑰产量预测的模型的新模拟方法。利用BP神经网络模型,可以对玫瑰单株产花量进行准确的预测,研究结果对今后玫瑰高产花量的预测具有指导意义。
     6、本文首次对13个主要栽培玫瑰品种的花期、花径、花朵数和花瓣数等与观赏特性有关的性状进行了观测和遗传变异分析,结果表明:玫瑰的花期、花径、花朵数和花瓣数等性状的差异性检验达到了极显著,而且各性状的遗传力(h2)都比较高(0.5779-0.7462),遗传变异系数0.0315-0.5235;花期及其构成单元现蕾期、初花期、盛花期和凋谢期的变异模式非常丰富,花期与花径、花瓣数、花朵数之间组合方式非常多样;单株花朵数多、花期长的有‘朱龙游空’、‘唐紫’、‘唐红’和‘西子’,花瓣数多、花期长的有‘朱龙游空’、‘紫枝玫瑰’、‘唐紫’、‘香刺果’等,‘紫枝玫瑰’花期早、花期长且多次开花;最后建立了花期的CAR(n)模型,讨论了玫瑰花期等观赏特性的育种策略,也为玫瑰杂交育种亲本交配设计提供了理论依据,这将有助于进一步提高玫瑰的观赏价值。
     7、本试验对2n花粉诱导和杂交育种技术进行了研究,通过对花粉母细胞减数分裂过程的观察,可以看出在花瓣尚未露出的花蕾(此时花瓣呈乳黄色,花药乳白色)的时期是进行2n花粉诱导的最好时期;杂交育种的结果表明以不同玫瑰品种为亲本的杂交坐果率有很大差异,为今后玫瑰的杂交亲本选择提供参考。
The article studied the comprehensive investigation in Chinese rose (Rosa rugosa) and preliminary research on genetic parameters and selection efficiency of quantitative traits of fresh floral bud in Rosa rugosa. The analysis of grey system, Kriging interpolation and integration selection index were employed to investigate the flower number/plant. Based on it the analysis of Back Propagation (BP) neural network and AMMI model were done on the floral yield. There were considerable differences in drought-resistance in rugosa rose cultivars by the preliminary study on drought-resistance in Rugosa Rose cultivars and provenances. The genetic variation and CAR model of multivariable time Series on flowering period etc. in Rugosa Rose was analyzed. The different cultivars were selected to do polyploid induction breeding of new cultivars by colchicine and hybrid pollination. This will enrich the germplasm resource in Rugosa rose. The main results are as following:
     1.The floral bud yield/plant (y) and 13 quantitative traits of 20 rugosa rose cultivars were investigated. Analysis of genetic correlation, correlative heritability (hxy) and path analysis were carried out. The results indicated: (1) the number of floral bud/plant (x8), the number of branches (x13), the length of the first petal (x3), the length of the second petal (x5), the length of floral bud (x1) had significant genetic correlation relationship with y; (2) hxy of x8, x5, x13 and x1 related to y were higher respectively, and which were close to heritability (h2) of y. The efficiency of correlation selection of these traits would not be much lower than direct selection of y; the result of path analysis of genetic coefficient showed further that the length of the second petal (x5), the length and width of floral bud have higher direct effect of the floral bud yield/plant. (3) x1, x8, x5,x13, the fresh weight of pedals/floral bud (x9) played an important positive part in improving y according to decision coefficient.
     2.Seeking for the theory and techniques of selection breeding of high flower yield rugosa rose cultivars, the analysis of grey system, Kriging interpolation and integration selection index were employed to investigate the relationship between the flower yield per plant and 15 quantitative traits of 20 rugosa rose cultivars. The result showed that: The grey relational grade (GRG) of the flower number/plant, the number of branch, the width of floral bud and the weight of single flower to the flower yield/plant were larger (> 0.5). Kriging interpolation simulation was applied to analyze the flower yield/plant. It was found that the value of target trait went up with increase of the number of flower/plant and the number of branch. Moreover, the indirect selection of either trait couldn’t get better improvement of flower yield/plant. It’s necessary to improve flower yield/plant by multi-trait selection. The integration selection index equation of flower yield/plant was established with the characters flower number/plant, the number of branch, the width of floral bud and the weight of single flower. I =0.3x1 -318.6 x2 +670.1x4 +6.3x8. Index heritability = 0.8014, selective response of the integration breeding value = 245.8811. This will provide theoretic base for genetic breeding of rugosa rose.
     3. 13 Rugosa Rose cultivars were employed in this experiment. The flower yield/plant during continuous two years was measured and analyzed by AMMI (Additive main effects and multiplicative interaction) model. The article discussed the genotype, environment and interactive effects of genotype by environment (G×E) of flower yield/plant. The results showed that the proportions of the sum of squares of genotype, environment and G×E interactive effects to total sum of squares was 65.610%、12.352%、22.038% respectively, the error only 2.75×10-17%. And there were significant effects in genotype, environment and G×E interaction. The flower yield/plant in the 13 cultivars was mainly between 500-1000g. AMMI plots and taxis plots showed that there were positive interaction effects of cultivars R. rugosa‘Purple Cloud’, R. rugosa‘Jade Plate’, R. rugosa‘Tang Purple’, R. rugosa‘Tang Pink’, R. rugosa‘Purple Branch’, R. rugosa‘Puce Dragon’by environment in 2006 and negative by environment in 2007, positive interaction effects of cultivars R. rugosa‘Saixizi', R. rugosa‘Tang Red’, R. rugosa‘Xizi’, R. rugosa‘Zifurong’, R. rugosa‘Zhuzishuanghui’, R. rugosa‘Purple Goose’, R. rugosa‘Xiangciguo’by environment in 2007 and negative by environment in 2006. The adaptability analysis revealed that R. rugosa‘Puce Dragon’, R. rugosa‘Tang Purple’, R. rugosa‘Saixizi' were optimal adaptation to environment. AMMI model explained clearly the genotype, environment and G×E interactions of yield trait in rugosa rose cultivars. We can reach the conclusion that: The most stable and high output cultivars were R. rugosa‘Xizi’, R. rugosa‘Zifurong’and R. rugosa‘Saixizi('1200~1800g). The relative stable ones were R. rugosa‘Jade Plate’, R. rugosa‘Tang Pink’, R. rugosa‘Purple Branch’, R. rugosa‘Purple Cloud’, R. rugosa‘Purple Goose’and R. rugosa‘Zhuzishuanghui’(800~1150g). The high yield but less unstable cultivars were R. rugosa‘Tang Purple’and R. rugosa‘Puce Dragon’(1700~2600g). The lower yield and unstable cultivars were R. rugosa‘Tang Red’and R. rugosa‘Xiangciguo’(500~600g).
     4. Based on the ANOVA of 8 quantitative traits in 20 Rugosa rose cultivars, the analysis of repeatability was investigated in the research. The result showed that there was significant difference in each trait. The repeatability of the yield per plant in every cultivar was great (over 0.85). This will provide theoretic base for genetic resource research and breeding of Rugosa rose.
     5. All the quantitative traits of 20 rose cultivars were presented to the analysis of Back Propagation (BP) neural network and stepwise regression. The flower number/plant which was more correlation with the flower yield/plant was selected to do the analysis of one-variable linear regression and conic of one-variable nonlinear to predict the flower yield/plant. The result showed that the absolute values of relative error of the prediction in flower yield/plant of all cultivars were the smallest by the analysis of Back Propagation (BP) neural network (<10%), the highest was 9.060%. The curve of Back Propagation (BP) neural network in flower yield/plant was near to the actual values, they were almost overlapped. This suggested that Back Propagation (BP) neural network was a new simulation method in the application to prediction in the yield. The flower yield/plant was accurately predicted by Back Propagation (BP) neural network. It will provide guiding significance for high flower yield.
     6. The study presented, for the first time, the observation, analysis of genetic variation and CAR(n) model on flowering period、flowering diameter、the number of flower/plant and the number of petal/flower which are associated with ornamental value it, such as in 13 main rugosa rose cultivars. The results showed that the differences between these ornamental traits were significant. The heritability (h2) of each trait was higher(0.5779-0.7462). Genetic variation coefficients were between 0.0315-0.5235. The variation patterns of flowering periods and their component units which are squaring period, initial blooming stage, florescence stage and faded stage considerable various. The combinations between flowering period and flowering diameter, the number of petal, or the number of flower were diverse. The cultivars‘Puce Dragon’,‘Tang Purple’,‘Tang Red’and‘Xizi’possessed larger number of flowers/plant and longer flowering period.‘Puce Dragon’,‘Purple Branch’,‘Tang Purple’and‘Xiangciguo’possessed larger number of petals and longer flowering period.‘Purple Branch’was the earliest and longest in flowering period, and multiple flowering. Then the CAR (n) model was developed. Finally, the breeding strategies of ornamental traits such as flowering period etc. in rugosa rose were discussed. This will provide theoretical basis for new cultivars breeding and parental mating design which will further improve the ornamental value of rugosa rose.
     7. The experiment studied the 2n pollen-induction and hybrid breeding in Rugosa rose. Based on the study on the meiotic process of pollen mother cells, it can be found that it is time when the petals were not exerted the bud (the petal is yellow, the anther is milk- white.) to induce 2n pollen. The hybrid result showed that there was considerable difference in fruit setting rate in different parent. This will provide reference for the selection of crossing parents in Rugosa rose breeding.
引文
[1]安鸿志,陈兆国.时间序列的分析与应用[M].北京:科学出版社,1986
    [2]白守信,刘翠云,张振刚,周双娇.单倍体小麦染色体加倍的研究.遗传学报,1979(2): 230-232
    [3]陈建军,王景辉,李亚东,王东升.野生玫瑰果实的营养成分分析.营养学报,1992,14 (4):419-421
    [4]陈俊愉.中国花卉品种分类学.北京:中国林业出版社, 2000:132-150
    [5]陈翔高,房伟民,汪诗珊,王保根,张思平.梅花开花物候期及加长观赏期的研究.北京林业大学学报,1999,21(2): 22-26
    [6]陈英智,李立新.刺玫果.特种经济植物,2001,9:26
    [7]陈有民(主编).园林树木学.北京:中国林业出版社,1998
    [8]戴雄泽,沈美娟.干辣椒数量性状相关遗传力的通径分析.湖南农业大学学报, 1996, 22(1):20-23
    [9]党宏忠,赵雨森,陈祥伟.甘肃省高原山地树种的抗旱性研究.中国水土保持科学, 2003,1(4):21-25
    [10]丁德生.国外香料工业动态与我国发展香料之前景.上海:上海轻工业, 1994, 2: 39- 41
    [11]邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990: 33-85
    [12]邓自立,郭一新.动态系统分析及其应用[M].沈阳:辽宁科学技术出版社,1985
    [13]冯立国,丰震,赵兰勇,生利霞.野生玫瑰与玫瑰栽培品种光合特性的比较.林业科学, 2007,43(2):31-36
    [14]傅大立,刘友全.黄皮树种源苗木性状遗传参数及其相关选择效率研究.林业科学研究, 1999,12(1):1-10
    [15]高鹏,林威,康向阳.秋水仙碱诱导杜仲花粉染色体加倍的研究.北京林业大学学报,2004,26(4):39-43
    [16]弓成林,郭爱民,汪小伟,李骏,蔡智勇.灰色关联度和层次分析法在葡萄品质评价上的应用.西南农业学报,2002,15(1):79-82
    [17]谷晓峰,罗正荣.柿品种禅寺丸的花粉染色体加倍研究.中国农业科学,2003,36(4): 426-428
    [18]郭天财,马冬云,朱云集,王晨阳,夏国军,罗毅.冬播小麦品种主要品质性状的基因型与环境及其互作效应分析.中国农业科学,2004,37:948-953
    [19]韩进,丰震,赵兰勇,曹永福,杨传强,孔雨光,孔青.月季杂交育种的初步研究.山东农业大学学报(自然科学版),2004,35 (4): 517-520
    [20]侯景儒,尹镇南.实用地质统计学.北京:地质出版社,1998
    [21]黄钦才,董茂山,林静芳.重瓣玫瑰营养芽离体培养.植物生理通讯,1984, (3):44
    [22]江东,王建华,杨小唤,王乃斌.应用神经网络建立冬小麦产量预测模型[J].农业系统科学与综合研究, 1999, 15(2): 95-97
    [23]蒋开锋,郑家奎,赵甘霖,朱永川,万先齐.基于AMMI模型的NCⅡ交配设计试验的配合力分析.作物学报,2000,26(6):959-962
    [24]金敬宏.玫瑰的综合开发.中国野生植物资源.2000, 1:21
    [25]精细化学品辞典编辑委员会.精细化学品辞典.北京:化学工业出版社,1995
    [26]康向阳,朱之悌,林惠斌.杨树花粉染色体加倍有效时期的研究.1999,35(4):21-24
    [27]雷家军,吴禄平,代汉萍,胡文玉,葛会波.草莓茎尖染色体加倍研究.园艺学报, 1999, 26(1):13-18
    [28]李艳艳,丰震,赵兰勇,戴庆敏,张宝,张照坤.玫瑰切花产量性状遗传参数和选择效率的初步研究.园艺学报, 2007,34(4):955-958
    [29]李万英,王文中.我国玫瑰资源初探.园艺学报,1983(3):211-215
    [30]李文嘉,方锋学,李立志,梁任繁,康德贤.节瓜主要农艺性状的遗传相关与通径分析.园艺学报,2003,30 (6):734-736
    [31]梁一池.锥栗数量性状遗传参数分析.经济林研究,1995,13(3):25-28
    [32]刘峰.应用Kriging算法实现气象资料空间内插.气象科技,2004,32(2): 111-115.
    [33]刘纪正,刘建华,董富英,程传格.玫瑰与玫瑰油分析.山东科学,1991,4(1):71-76
    [34]刘来福.作物数量遗传.北京:农业出版社,1984
    [35]刘贤谦,师光禄,张厉燕.应用灰色观联度分析关键因子的研究.林业科学,1996, 32 (5):447-453
    [36]马学毅,潘惠平,赵凡智,李海泉,陈耀祖.引种欧洲香型玫瑰精油化学成分研究.分析测试学报, 1993,12(5):1-6
    [37]马希汉,王永红,胡亚云,张广军.精油玫瑰研究.西北林学院学报,2004, 19(4): 138- 141
    [38]马希汉,王永红,尉芹,张广军.玫瑰花精油含量的动态变化.林业科学,2006,42(3): 77-80
    [39]马燕.刺枚、月季育种的系统研究:[学位论文].北京:北京林业大学园林学院,1992
    [40]牛风英.玫瑰的繁殖与栽培.林业.1992, 5:34
    [41]牛维和,徐玉冰,刘纪红.诱导君子兰多倍体的初步研究[.园艺学报,1986,13(1):61 -63
    [42]彭世祺,潘季淑.中国农业百科全书(果树卷)-物候期.北京:农业出版社, 1993: 351 -352
    [43]秦忠时,胡群,何兴元,于兴华.野生玫瑰分布及其生态群落类型.生态学杂志.1994, 13(6): 52-54
    [44]任宪威.树木学.中国林业出版社,1997(1):314-319
    [45]任玉芬.玫瑰组织培养繁殖初报.宁夏农林科技,1986, 5:36, 50
    [46]时翠平,葛会波,张成合,郭振怀.草莓未减数配子形成的细胞学研究.中国农业科学,2002, 35(10):1260-1263
    [47]孙守家,赵兰勇,仇兰芬,于守超,赵汝侍.平阴玫瑰鲜花花蕾采后衰老生理机制研究.林业科学,2004, 5:79-83
    [48]孙用明,陈付贵,姚树文.人工神经网络在预报棉花烂铃病中的应用.河南农业大学学报,2000, 34(2):165-167
    [49]唐启义,冯明光.DPS数据处理系统.科学出版社,2006, 9
    [50]屠曾平.水稻光合特性研究与高光效育种.中国农业科学, 1996,30(3): 28-35
    [51]万向元,胡培松,王海莲,孔令娜,毕京翠,陈亮明,张坚勇,翟虎渠,万建民.水稻品种直链淀粉含量糊化温度和蛋白质含量的稳定性分析.中国农业科学, 2005, 38 (1): 1-6
    [52]王清,王蒂,司淮军,戴朝曦.马铃薯体细胞染色体加倍的研究.中国马铃薯,2001,6: 343-348
    [53]王景辉,陈建军.野生玫瑰硬枝扦插试验.林业科技通讯,1994, 1:32
    [54]王丽波,孙红罡,刘璐,郭满才,袁志发.综合选择指数的决策分析.西北农林科技大学学报(自然科学版),2005,33(10):33-36
    [55]王立秋.北方早熟玉米9个主要性状间的灰色关联度分析.玉米科学,2001,9(2): 44-46
    [56]汪小飞,向其柏.桂花品种组合延长最佳观赏期的方案研究.安徽农业大学学报, 2005, 32(3):389-392
    [57]王文莉,赵兰勇,丰震,朱西存,张友朋,王延龄.平阴玫瑰花粉显微形态及品种分类研究.园艺学报,2005,32(3):527-530
    [58]王莹,黄中文,刘芳.二棱啤酒大麦杂种一代及其亲本主要性状的灰色系统分析.西北植物学报,2002,22(1):104-111
    [59]王英,庄南生,王石化,莫饶,高和琼,郑成木.旱稻数量性状的遗传参数分析.热带作物学报,2005,26 (3): 34-38
    [60]王振中,林孔勋,范怀忠.小白菜花叶病时间序列分析预测法.植物保护学报,1990, 19(3): 269-273
    [61]魏俊杰,池书敏,刘志增.关于玉米单倍体人工加倍方法及花粉活力测定的初步研究.玉米科学,2001,9(3):12-13
    [62]吴中贤.统计遗传学.北京:科学出版社,1979,66-69
    [63]向长萍,谢军,周逊,汪李平.灰色系统理论应用于苦瓜主要品种的评估.园艺学报, 2001,28(6):567-569
    [64]邢世岩,倪国祥,张运吉,李廷涛.银杏叶数量性状的遗传分析.林业科学,2000,36(5): 47- 53
    [65]徐建华.现代地理学中的数学方法.北京:高等教育出版社,2002
    [66]续九如.重复力及其在树木育种中的应用.北京林业大学学报,1988,(4):97-102
    [67]杨瑞芳,郑思乡,郭清泉,程尧出,唐训香,方建林.莲多倍体研究II.莲花粉母细胞减数分裂行为观察.湖南农业大学学报,1998,24(2):95-98
    [68]姚晓红.林分生长数据的时间分析探讨.北京林业大学学报, 1990,12(4):10-16
    [69]于静.鹅掌楸属树种花被片色素与花果数量性状遗传变异研究[D].南京林业大学, 2005
    [70]于守超,丰震,赵兰勇.平阴玫瑰品种数量分类研究的探讨.园艺学报.2005, 35(2): 327-330
    [71]余新晓.降雨侵蚀力指数的时间序列分析.北京林业大学学报, 1990,12(2):55-62
    [72]岳含云.灰色关联度分析在作物性状分析上的应用.农业系统科学与综合研究, 2000,16(4):296-298,302
    [73]曾献英.AMMI模型在棉花区域试验中的应用.棉花学报, 2004,16(4):233-235
    [74]张荷观.时间序列的ARIMA模型在预测树木生长量中的应用.林业科学, 1986, 22 (1):94-100
    [75]张坚勇,肖应辉,万向元,刘世家,王春明,陈亮明,孔令娜,翟虎渠,万建民.水稻品种外观品质性状稳定性分析.作物学报,2004, 6(30): 548-554
    [76]张君,王丕武,杨伟光,张恺.大豆主要性状间的灰色关联度分析.沈阳农业大学学报,2004-02, 35(1):1-3
    [77]张莉,续九如.水分胁迫下刺槐不同无性系生理生化反应的研究.林业科学, 2003, 39(4):162-167
    [78]张清海,张桂兰,刘万代,王喜安,黄忠奇.“九五”期间黄淮南片小麦冬水组参试品种主要性状的灰色关联度分析.中国农学通报.2002, 18(3): 40-42, 54.
    [79]张睿,魏安智,杨途熙,撒文清,杨恒,杜保国.秦渭玫瑰精油提取工艺研究.林业科学, 2005,41(4):216-218
    [80]张素芬,夏乃斌,屠泉洪.油松毛虫种群动态的ARMA(P,q)模型.北京林业大学学报, 1992,14(1):93-97.
    [81]张晓林,王祖铭,金声,邢其毅,马娅萍.北京妙峰山玫瑰花头香成分的分析研究.北京大学学报(自然科学版),1985,4:8-17
    [82]张新征,刘国俭. 2n配子在植物育种和种质创新中利用的研究进展.华北农学报, 2003,18(院庆专辑):30- 35
    [83]郑万钧主编.中国树木志.北京:中国林业出版社,1985
    [84]中国香料植物栽培与加工编写组.中国香料植物栽培与加工.北京:轻工业出版社, 1985
    [85]周世良.夏腊梅的遗传多样性及其保护.生物多样性,2002,10(1):1-6
    [86]周晓果,张正斌,徐萍.小麦主要育种目标的灰色系统方法探讨.农业系统科学与综合研究,2005,21(3):81-84
    [87]周伟军,唐桂香,张国庆,Hagberg P.甘蓝型油菜小孢子秋水仙碱处理提高双单倍体频率研究.中国农业科学, 2002,35(4):410-414
    [88]朱春云,赵越,刘霞,高崇辉,刘雅林.锦鸡儿等旱生树种抗旱生理的研究.干旱区研究, 1996,13(1):59-63
    [89]朱之悌.林木遗传学基础.中国林业出版社,1990:16-18
    [90] Anderson J A. An introduction to neural networks. London: MIT Press[J], 1995, 5-9
    [91] Adugna W, Labuschagne M T. Genotype×environment interactions and phenotypic stability analyses of linseed in Ethiopia. Plant Breeding, 2002, 121:66-71
    [92] Baydar H, Baydar N G. The effects of harvest date, fermentation duration and Tween 20 treatment on essential oil content and composition of industrial oil rose (Rosa damascena Mill.). Ind Crop Prod, 2005, (21):251-255
    [93] Bj?rn A.Gustavsson. Genetic variation in horticulturally important traits of fifteen wild lingonberry Vaccinium vitis-idaea L. populations. Euphytica, 2001, 120: 173- 182
    [94] Box G E P, Jenkins G M. Time Series analysis: forecasting and control. San Francisco: HoldenDay, 1970
    [95] Bretagnolle F, Thompson J D. Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytologist, 1995, 129:1- 22.
    [96] Byrne D H, Pemberton H B. The use of amphidiploidy in the development of black spot resistant rose germplasm. Acta Horticulturae, 1996,424:269-272
    [97] Calderini O, Mariani A.Increasing 2n gamete production in diploid alfalfa by cycles of phenotypic recurrent selection [J].Euphytica, 1997, 93:113-118.
    [98] Campbell B T, Jones M A.Assessment of genotype×environment interactions for yield and fiber quality in cotton performance trials. Euphytica, 2005(144):69-78
    [99] Cauch H G. Model selection and validation for yield trials with interaction. Biometrica, 1998, 44:705-715
    [100]Chandra S, Nigam S N, Cruickshank A W, Bandyopadhyaya A, Harikrishna S. Selection index for identifying high-yielding groundnut genotypes in irrigated and rainfed environments. Annals of Applied Biology, 2003, 11:303-310
    [101]Chen H H, Tsai P J, Chen S H. Grey Relational Analysis of Dried Roselle (Hibiscus Sabdariffa L.). Journal of Food Processing & Preservation, 2005, 5:228-245
    [102]Conchita Alonso. Early Blooming's Challenges: Extended Flowering Season, Diverse Pollinator Assemblage and the Reproductive Success of Gynodioecious Daphne laureola. Annals of Botany, 2004, 93:61-65
    [103]Daniel Franco, Manuel Pinelo, Jorge Sineiro, Mar?a Jose Nun?ez. Processing of Rosa rubiginosa: Extraction of oil and antioxidant substances. Bioresource Technology, 2007, 98 (2007):3506-3512.
    [104]Falconer D S. Introduction to Quantitative Genetics. 1981:126-133
    [105]Fan L J, Hu B, Shi C H, Wu J G. A method of choosing locations based on genotype×environment interaction for regional trials of rice. Plant Breeding, 2001, 120:139- 142
    [106]Flores F, Moreno M T, Martinez A, Cubero J I. Genotype×environment interaction in faba bean: comparison of AMMI and principal coordinate models. Field Crops Research, 1996, 47:117-127
    [107]Franco D, Pinelo M, Sineiro J, Nunez M J. Processing of Rosa rubiginosa: Extraction of oil and antioxidant substances. Bioresource Technology, 2007, 98 (2007): 3506 -3512.
    [108]Geidel H, Weber W E, Mechelke W, Haufe W. Selection for sugar yield in sugar beet, Beta vulgaris, using different selection indices. Plant Breeding. 2000, 4:188-190
    [109]Haining R. Spatial Data Analysis in the Social and Environmental Sciences. Great Britain: Cambridge University Press, 1993
    [110]Hasan Baydar, Nilgün G?ktürk Baydar. The effects of harvest date, fermentation duration and Tween 20 treatment on essential oil content and composition of industrial oil rose (Rosa damascena Mill.). Industrial Crops and Products, 2005, 21: 251-255
    [111]Hashidoko Y. The phytochemistry of Rosa rugosa. Phytochemistry, 1996, 43 (3): 535-549
    [112]Hawes J G. The Diversity of Crop Plants. Harvard University Press, 1983: 76
    [113]Kell Kristiansen, Conny Wang Hansen, Kirsten Brandt. Flower induction in seedlings of Aster novi-belgii and selection before and after vegetative propagation. Euphytica, 1997, 93: 361–367
    [114]Kenga R, Tenkouano A. Genetic and Phenotypic Association between Yield Components in Hybrid Sorghum (Sorghum bicolor (L.) Moench) populations. Biomedical and Life Sciences. 2006, 8(3):319-326
    [115]Kunitake H, Imamizo H, Mii M. Somatic Embryogenesis and Plant-regeneration from Immature Seed-derived Calli of Rugosa Rose (Rosa-rugosa Thunb). Plant Science, 1993, 90 (2): 187-194
    [116]Li W, Yan Z H, Wei Y M, Lan X J, Zheng Y L. Evaluation of Genotype×Environment Interactions in Chinese Spring Wheat by theAMMI Model, Correlation and Path Analysis. Journal of Agronomy and Crop Science, 2006, 192: 221-227
    [117]Mahmood N, Piacente S, Pizza C, Burke A, Khan A I, Hay A J. The Anti-HIV Activity and Mechanisms of Action of Pure Compounds Isolated from Rosa damascena. Biochemical and Biophysical Research Communications, 1996, 229 (1):73-79.
    [118]Ma Y, Crane C F, Byrne D H. Meiotic behavior in a tetraploid rose and its hybrid progeny. Hortscience, 2000, 35 (6): 1127-1131
    [119]Ma Y, Byrne DH, Chen J. Amphidiploid induction from diploid rose interspecific hybrids. Hortscience, 1997, 32 (2): 292-295
    [120]Malek B V, Debener T. Genetic analysis of resistance to blackspot (Diplocarpon rosae) in tetraploid roses.Theor Appl Genet, 1998, 96:228-232
    [121]Mark D M. Some problems with the use of regression analysis in geography. In: Gaile GL. Spatial Statistics and Models. Netherlands: Dreidel Publishing Company, 1984: 191-199
    [122]McCoy T J, Rowe D E. Single cross alfalfa (Medicago sativa L) hybrids produced via 2n gametes and somatic chromosome doubling: experimental and theoretical comparisons. Theor Appl Genet, 1986, 72: 80 - 83.
    [123]NdoumbéM, Bieysse D, Cilas C. Multi-trait selection in a diallel crossing scheme of cocoa. Plant Breeding, 2001, 8: 365-367
    [124]Noriyuki Osada, Shinji Sugiura. Effects of pollinators and flower bud herbivores on reproductive success of two ericaceous woody species differing in flowering season. Canadian Journal of Botany, 2006, 84(1): 112-119
    [125]Norton A J, Bennett S J, Hughes M, Dimmock J P R E, Wright D, Newman G, Harris I M, Edwards-Jones G. Determining the physical properties of flax fibre for industrial applications: the influence of agronomic practice. Annals of Applied Biology, 2006, 149(1): 15-25
    [126]Plucknett D L, Smith N H J, Williams J T, Anishetty N M. Gene Banks and The World's Food, Princeton University Press, 1987: 35
    [127]Rami J F, Dufour P. Quantitative trait locifor grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). TAG Theoretical and Applied Genetics, 1998, 9: 605-616
    [128]Rieksta D, Jakobsone G, Rihtere A. Classical breeding of Rosa rugosa roses and in vitro cultivation of immature embryos as an expanded resource for selection. Proceedings of the international symposium on classical versus molecular breeding of ornamentals. 2003, 612: 35-38
    [129]Robinson J, Jalli M. Sensitivity of Resistance to Net Blotch in Barley. Journal of Phytopathology, 1998, 4(117): 395-397
    [130]Santalla M, Monteagudo A B, Gonz′alez A M, De Ron A M. Agronomical and quality traits of runner bean germplasm and implications for breeding. Euphytica, 2004, 135: 205–215
    [131]Seyed Reza Tabaei-Aghdaei, Alireza Babaei,Morteza Khosh-Khui, Kamkar Jaimand, Mohammad Bagher Rezaee, Mohammad Hassan Assareh, Mohammad Reza Naghavi. Morphological and oil content variations amongst Damask rose (Rosadamascena Mill.) landraces from different regions of Iran. Scientia Horticulturae, 2007, 2: 44-48
    [132]Sudaric′A,ˇimic′D S, Vrataric M. Characterization of genotype by environment interactions in soybean breeding programmes of southeast Europe. Plant Breeding, 2006, 125: 191-194
    [133]Tai G C C, De J H. A comparison of performance of tetraploid progenies produced by diploid and their vegetatively doubled (tetraploid) counterpart parents. Theor Appl Genet, 1997, 94:303-308
    [134]Toyoshi Umezu, Hiroyasu Ito, Kimiyo Nagano, Miho Yamakoshi, Hiroko Oouchi, Misao Sakaniwa, Masatoshi Morita. Anticonflict effects of rose oil and identification of its active constituents. Life Sciences, 2002, 72: 91-102.
    [135]Utz H F, Melchinger A E, Seitz G. Economic Aspects of Breeding for Yield and Quality Traits in Forage MaizeII. Derivation and Evaluation of Selection Indices. Plant Breeding. 1994, 3: 110-119
    [136]Wamatu J N, Thomas E. The Influence of Genotype×Environment Interaction on the Grain Yields of 10 Pigeonpea Cultivars Grown in Kenya. Journal of Agronomy and Crop Science, 2002, 188: 25-33
    [137]Watanabe L, Tamogam S. Ester compounds of rose concetre (Rose damascena). Kyoto Preceedings of International Congress of Essential Oils, 1997: 461-466
    [138]Xue F Z, Wang J Z, Hu P, Li G R. The“Kriging”Model of Spatial Genetic Structure in Human Population Genetics. Acta Genetica Sinica, 2005, 32 (3):219-233
    [139]Yan M, Byrne D H, Jing C. Propagation of rose species in vitro. In Vitro Cellular & Developmental Biology-Plant. 1996, 32 (2): 103-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700