青天葵转录组特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本草基因组计划(Herb Genome Program,HGP)是针对有重要经济价值、资源濒危等药用植物开展的功能基因组学、蛋白组学、代谢组学及遗传代谢工程和分子遗传育种研究,旨在选育高品质、高产量、抗胁迫的药用植物,并建立现代中药有效成分生物工程体系,其中转录组是HGP最活跃的研究领域之一。在岭南地区有不少药用植物,如青天葵,都面临着资源濒危,已有的资源获得方法无法满足需求,而且功能基因等研究仍属空白的现状。
     青天葵来源于兰科植物毛唇芋兰Nervilia fordii(Hance)Schltr.的叶片或全株。具有润肺止咳、清热解毒、散瘀止痛的功效,对小儿呼吸道疾病、小儿疳积疗效显著。青天葵不仅为岭南道地贵重药材,也是出口创汇中药,市场需求量大。由于人类过度开采和自身萌发条件苛刻,青天葵的野生资源已渐枯竭,其也己先后被列入《中国南部石灰岩稀有濒危植物名录》和《濒危动植物物种国际贸易公约》。组织培养和人工栽培是目前尝试获得青天葵资源的主要方法,但人工栽培和组织培养分别面临着种苗稀缺和“炼苗下田”、扩大种植等瓶颈问题,因此,通过这两种方法获得的青天葵远远不能满足市场和临床需求。在供需严重失衡的情况下,市场上出现了青天葵的众多混伪品、混淆种。此外,青天葵商品药材还根据叶片大小分为大、中、小叶3个等级。
     本论文通过分析青天葵及其混伪品、同属植物的DNA条形码序列的差异信息,建立起青天葵的新型真伪鉴别体系。以种质明确的青天葵为材料,在RNA水平上进行青天葵转录组高通量测序,建立起青天葵的转录组特征及其数据平台,利用生物信息学挖掘青天葵次生代谢产物合成、生理功能等相关基因,并且通过对器官大小相关基因EBP1进行克隆和表达,验证青天葵转录组特征的可行性,为利用生物技术进行化学成分调控和品种选育提供基础数据。方法和结果概括如下:
     1基于DNA条形码的青天葵真伪鉴别
     利用MEGA软件分析3种叶型青天葵及其混伪品毛叶芋兰、车前草、红薯叶、积雪草的ITS2、rbcL、matK条形码序列信息,获得的ITS2序列的变异程度最高(89.3%),变异位点总数最多的则是matK基因(242个)。青天葵的种内遗传距离在0.000~0.004之间,不同序列的平均种间遗传距离变化范围为0.088-1.138,其中ITS2平均遗传距离最大,rbcL平均遗传距离最小。青天葵及其混伪品种间遗传距离远远大于青天葵的种内遗传距离,表明3条DNA条形码序列都有足够的差异来鉴别青天葵及其混伪品,基于3条序列构建的NJ聚类树也均能直观地区别青天葵及其混伪品。然而,3种叶型青天葵的7个样品rbcL和matK序列则完全一致,中、小叶型青天葵的核ITS2序列未获得合格序列,因此未能在以上3条形码序列中找到青天葵分型依据。
     应用相应的通用引物分别进行PCR扩增并测序,进一步评估ITS2、rbcL、matK, LSU D1-D3等DNA片段对青天葵与芋兰属近缘物种的鉴别效果。各候选序列PCR扩增效率均达到100%。测序成功率以rbcL和LSU D1-D3最高,matK和ITS2稍低。在种内变异方面,matK, LSU D1-D3在各物种的居群内和不同居群间均没有变异,而ITS2和rbcL序列均存在微小的变异;ITS2种间变异则远远大于其他3个候选片段。matK序列种间和种内遗传变异没有重叠,存在明显的barcoding gap,能将供试的7个物种完全鉴别:ITS2种内和种间变异有部分重叠,但种间变异程度高,有利于区分青天葵及其同属植物。基于matK序列构建的系统发育树展示了7种芋兰属物种的亲缘关系。
     综合PCR扩增和测序成功率,barcoding gap和鉴定效率评价,matK序列较其他条形码具有明显的优势,可作为青天葵真伪鉴别的DNA标志以及芋兰属潜在DNA条形码。
     2青天葵转录组特征研究
     通过Illumina Hiseq2000高通量测序从青天葵叶片和球茎中分别获得47,668,726和54,589,832个读序,总核苷酸数达9.20Gb,最终从青天葵叶片和球茎共组装出142,220条Unigene。从筛选所获得的5,223条Unigene序列中共鉴定出5,684个SSR模体,类型为二至六核苷酸模体,其中二核苷酸AG/CT出现频率最高。青天葵转录组共有38,640条Unigene (27.17%)被注释到COG数据库的25个功能类别;110,029条Unigene (77.37%)被归类到GO数据库生物学过程、在细胞中所处的位置、分子功能三大类别;28,970条Unigene可归入KEGG数据库的黄酮类生物合成等281个代谢途径。青天葵叶片和球茎转录组表达差异显著Unigene(错误发现率不大于0.001、Unigene在球茎表达量与在叶片表达量的比值的对数值不小于1),共为62,205条,包括了表达上调Unigene31,488条和表达下调Unigene31,117条。注释获得参与青天葵黄酮类生物合成途径10个关键酶、萜类生物合成途径的18个关键酶以及生理功能过程的27个功能基因,并明确了它们在叶片和球茎中的表达水平以及组织差异性。
     3青天葵转录组的验证—器官生长调控基因NflFBP1的克隆与分析
     根据从青天葵转录组Unigene数据库比对和注释,获得NfEBPl长度为1185bp的Unigene片段。应用RACE技术扩增cDNA序列全长,通过设计引物扩增并获得1188bp的NfEBP1编码区序列,该序列与转录组Unigene片段相似度达到99%。编码蛋白NfEBP1含有395个氨基酸,分子量为43.5KDa,不含信号肽、线粒体或叶绿体靶向转运肽,整个多肽链位于膜外。NfEBP1与来源于沙冬青和土豆的EBP1蛋白同源性分别为82%和86%,均具有PA2G4细胞增殖功能域,归属于APP MetAP超级家族。
     以青天葵不同组织(叶片、叶柄和球茎)总RNA反转录产物为模板进行qPCR扩增,通过GeNorm和NormFinder软件评价5个常用内参基因18s rRNA.Actin、 Ubiquitin、EF-1α、β-tubulin的表达稳定性,确定β-tubulin作为内参基因用于校正qPCR分析NfEBP1基因在青天葵不同部位的相对表达量的差异。采用公式计算相对表达量F=2-ΔΔCt,NfEBP1基因在青天葵不同组织的表达量存在差异,其中在叶片的表达水平最高,其次为球茎,叶柄则最低。NfEBP1在青天葵不同组织中的表达趋势与其转录组特征一致,说明了青天葵转录组应用于后续研究中的可行性。
     克隆获得的器官生长调控基因NfEBP1可为后续研究中利用植物基因工程技术促进青天葵叶片等器官生长、提高青天葵产量提供基础数据。
     综上所述,本研究以通过DNA条形码鉴定的青天葵为材料,在RNA水平上建立起青天葵转录特征并验证其可行性,挖掘到参与青天葵次生代谢产物生物合成、生理过程的关键基因,为青天葵的基因调控研究和优育品种选育、产量提高奠定了坚实的基础,也为其他濒危南药的资源保护提供一种新的思路。
Herb Genome Program includes a serial of project on genomics, proteomics, metabolomics, genetic metabolic engineering and molecular breeding for greatly valuable and/or endangered medicinal plants, which aims to obtain good-quality, high-yield and anti-resistant herbal medicine and establish modern biological engineering system of pharmaceutical components. Among the field of HGP, transcriptome is one of the most remarkable and popular studies. In Lingnan area, many herbal medicines, such as Nervilia fordii, encounter resource endangerment, and the processes in existence are incapable to eaze the plight. In additional, transcriptome analysis is still blank in herbal medicines from Lingnan area.
     Nervilia fordii, belonging to Orchidaceae family, is a famous and valuable herbal medicine in Lingnan Area. The whole plant or leaf was used as a traditional Chinese medicine named Qingtiankui, for its benefits to human, such as moistening the lung to stop the cough, clearing away heat and relieving toxin, promoting circulation to relieve pains, and significant effect in curing pediatric respiratory diseases. Wild resource of N. fordii has endangered due to human excessive harvest and its rigorous requirements of germination and growth. The species has been listed in "Catalogue of Rare and Endangered Plants Grown on Limestone in South China" and "International Trade Convention for Endangered Plants and Animals". In order to ease the plight, existing studies have been attempting to obtain N. fordii resource by domestic cultivation and tissue culture proliferation. However, these two methods encounter their bottleneck with seedling scarcity, seedling hardening, and cultivation expanding, respectively; the resource of N. fordii acquired from these approaches is far from satisfactory of the market and clinic demand. Under the circumstance that imbalance of supply and demand and, driven by economic interests, many adulterants are mistaken as N. fordii in the market. In addition, dry N. fordii are defined to three types according to different leaf size.
     In order to resolve species confusion of N. fordii and provide a scientific foundation for resource protection and biological research of N. fordii, DNA barcoding and transcriptome analysis were carried out in this thesis. N fordii was acquired that with accurately identification using DNA barcoding; and then, transcriptome features of N. fordii were explored, genes involved in synthesis of secondary metabolites and plant physiological processes were mined by high-throughput sequencing and bioinformatics'annotation, and the reliability of transcriptome features was validated using gene cloning and expression of EBP1gene, a key regulator functionally associated with plant organ size, as a sample. The methods and conclusions were summarized below.
     1Molecular identification of Nervilia fordii using DNA barcodes
     Three DNA sequences (ITS2, rbcL, matK) acquired from three types of N. fordii and their common adulterants. Nervilia plicata, Plantago asiatica, Centella asiatisa, Ipomoea batatas et al, were analyzed using MEGA software. The Results revealed that matK exhibited longest sequence while ITS2showed shortest, and ITS2contributed most average variation while rbcL contributed least. The interspecific divergence (0.088-1.138) between N. fordii and its adulterants was far higher than the intraspecific one in N. fordii (0.000-0.004). The NJ trees constructed based on three DNA barcoding sequence independently were capable to discriminate N. fordii and its adulterants intuitively.
     To further evaluate the feasibility of ITS2, rbcL, matK and LSU D1-D3between N. fordii and its congeneric species, corresponding universal primers were used to amplify and sequence four candidate DNA barcodes respectively. All sequence exhibited well universality in Nervilia and were suitable selection of candidate barcodes in Nervilia. At intraspecific level, none variation were found in matK and LSUD1-D3regions, however,0.4%,7.2%of divergence of ITS2within N. aragoana, N. mackinnonii, and0.2%of variation of rbcL within N. fordii were detected. ITS2contributed most average interspecific variation (22.9%), followed by LSU D1-D3(4.6%), matK (3.7%) and rbcL (2.0%). Similar results were showed by wilcoxon test. However, matK gene exhibited significant barcoding gap between distribution of intra-and inter-specific variation and identified all Nervilia species used in this study. The phylogenetic tree constructed by matK gene illustrated the genetic relationship among Nervilia species.
     Therefore, matK gene can served as standard DNA sequence for authentication of N. fordii and its adulterants and congeneric species, and as a potential DNA barcode for Nervilia.
     2Transcriptome signature of Nervilia fordii
     A total of142,220Unigenes were assembled from transcriptome sequencing data of N. fordii leaf and corm. A total of5,684SSR motifs were screened out from5,223Unigenes in the database, which were composed of di-nucleotide, tri-nucleotide, tetra-nucleotide, penta-nucleotide and hexa-nucleotide, and the di-nucleotide motif AG/CT repeat most. By means of bioinformatics annotation,38,640Unigenes were classified into25function categories of COG database, and110,029Unigenes were sorted into three main categories biological process, cellular component and molecular function of GO database, and28,970Unigenes distributed in281pathways in KEGG data library. Gene expression analysis of leaf and corm revealed that62,205Unigenes exhibited remarkable diversity (FDR(?)0.001,|Log2(Corm_RPKM/Leaf_RPKM)|(?)1), including31,488up-regulated genes and31,117down-regulated ones. In additional, expression trend and tissues specific of10genes encoding enzymes related to flavonoid biosynthesis,18genes encoding key enzymes involved in terpene backbone biosynthesis, and27functional genes participating plant physiological processes were excavated and illustrated in N. fordii from transcriptome data.
     3Cloning and analysis of plant organ size regulator EBP1gene from N. fordii
     An1185-bp Unigene encoding EBP I gene was selected from transcriptome database, and then cloned from N. fordii using RACE-PCR. The acquired gene was named as NfEBP1, with an ORF contained1188base pairs and encoded395amino acids, which shared99%identity with the Unigene. Bioinformatics analysis revealed that molecular weight of NfEBPl protein was43.5kDa and the isoelectric point was6.12, and its overall structure exhibited hydrophilic; NfEBP1contains none of the signal peptide, chloroplast transit peptide, mitochondrial targeting peptide, and located entirely outside cell membrane. The predicted secondary structure of NfEBP1was composed of21α-helixes,21extend strands,18β-turners and28random coils. The putative model of three-dimensional structure exhibited high homology with the crystal structure of human EBP1. NfEBPl also showed high homology with EBP1protein from other plants, and possessed a functional domain PA2G4.
     For expression analysis of NfEBP1, five common reference genes (18s rRNA, Actin, Ubiquitin, EF-1α,β-tubulin) were compared in different tissues (leaf, corm and petiole) of N. fordii. The stability of the candidate reference genes were evaluated by Ct value using GeNorm and NormFinder software. The analysis of GeNorm and NormFinder revealed that β-tubulin was more stable than others and could be served as reference gene for the normalization of gene expression in different tissues of N. fordii using real-time fluorescence PCR. The relative expression of NfEBP1in three tissues was calculated by formula F=2-ΔΔCt. NfEPB1was ubiquitously expressed in all tissues of N. fordii, and the relative expression level reached the highest in leaf, and the lowest in petiole, which was coincident with the trait of NfEBP1in transcriptome. The results validated the feasibility of transcriptome database in the subsequent study of N. fordii.
     Manipulating organ size regulator NfEBPl acqured from this study would provided an approach for promoting organ size and yield of N. fordii.
     In conclusion, the transcriptome profile of N. fordii with quick and accurate identification using DNA barcoding was demonstrated, and several key genes participated in synthesis of secondary metabolites and plant physiological processes were found and their expression trends were illustrated, which provide a firm foundation for variety breeding and resource protection of N. fordii by means of molecular biological approaches, and a novel and considerable research way for other endangered medicinal plants in Lingnan area.
引文
[1]南京中医药大学.中药大辞典(第二版)(上册)[M].上海:上海科技出版社,2006:1731.
    [2]陈蔚文.岭南本草(二)[M].广州:广东科技出版社,2011:318-335.
    [3]陈蔚文,徐鸿华.岭南道地药材研究[M].广州:广东科技出版社,2007:326.
    [4]杜勤,叶木荣,徐鸿华,等.青天葵镇咳、平喘药理作用研究[J].广州中医药大学学报,2006,23(1):45-47.
    [5]钟振国,袁叶飞,周燕园,等.青天葵活性部位的体外抗肿瘤作用研究[J].时珍国医国药,2008,19(2):259-261.
    [6]王振华,杜勤,张奉学,等.青天葵抗甲、乙型流感病毒作用研究[J].时珍国医国药,2007,18 (12):2940-2941.
    [7]甄汉深,周燕园,袁叶飞,等.青天葵活性部位体内抗肿瘤作用研究[J].中药材,2007,30(9):1095-1098.
    [8]张丽,赵钟祥,林朝展,等.青天葵化学成分研究[J].中药新药与临床药理,2012,23(4):454-456.
    [9]杜勤,徐鸿华,王振华.青天葵化学成分分析[J].广州中医药大学学报,2005,22(3):225.
    [10]卢传礼,周光雄,王恒山,等.青天葵水溶性成分研究[J].时珍国医国药,2010,21(12):3087-3088.
    [11]甄汉深,丘琴,莫缓恒,等.青天葵石油醚部分化学成分研究[J].中药材,2010,33(5):717-719.
    [12]甄汉深,周燕园,袁叶飞,等.青天葵乙酸乙酯部位化学成分的研究[J].中药材,2007,30(8):942-045.
    [13]梅全喜.广东地产药材研究[M].广州:广东科技出版社,2011:389-392.
    [14]文和群,许兆然.中国南部石灰岩稀有濒危植物名录.广西植物,1993,13(2):110-127.
    [15]梅全喜.青天葵的资源、栽培与鉴别研究进展[J].中国药房,2008,19(18):1426-1428.
    [1]陈士林,苏钢强,邹健强,等.中国中药资源可持续发展体系构建[J].中国中药杂志,2005,30(15):1141-1146.
    [2]Hebert P D, Gregory T R. The promise of DNA barcoding for taxonomy [J]. Syst Biol,2005, 54:852-859.
    [3]陈士林,姚辉,宋经元,等.基于DNA条形码(DNA barcoding)技术的中药材鉴定[J].世界科学技术-中医药现代化,2007,9(3):7-12.
    [4]Taberlet P, Coissac E, Pompanon F, et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding [J]. Nucleic Acids Res,2007,35:e14.
    [5]Hebert P D, Ratnasingham S, deWaard J R. Barcoidng animal life:cytohrome c oxidase subunit 1 devergences among closely related species [J]. Proc Biol Sci,2003,7:270 Suppl 1: S96-99.
    [6]Remigio E A, Hebert P D. Testing the utility of partial COI sequences for phylogenetic estimates of gastropod relationships [J]. Mol Phylogenet Evol,2003,29:641-647.
    [7]Kress W J. Erickson D L. A two-locus global DNA barcode for land plants:the coding rbcL gene complements the non-coding trnH-psbA spacer region [J]. Plos One,2007,2:e508.
    [8]Chase M W, Cowan R S, Hollingsworth P M, et al. A proposal for a standardised protocol to barcode all plants [J]. Taxon,2007,56:295-299.
    [9]Hollingsworth P M. Foresst L L, Spouge J L, et al. A DNA barcode for land plants [J]. Proc Natl Acad Sci USA.2009.106:12794-12797.
    [10]段中岗.陈蔚文.中药材DNA条形码研究[R].广州中医药大学博士后研究工作报告,2008.
    [11]Chen S L. Yao H. Han J P. et al. Validation of The ITS2 Region as a novel DNA barcode for identifying medicinal plant species [J]. PLoS One,2010,5:e8613.
    [12]Li D Z, Gao L M. Li H T. et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcodes for seed plants [J] Proc Natl Acad Sci USA.2011,108:19641-19646.
    [13]陈士林.中药DNA条形码分子鉴定[M].北京:人民卫生出版社.2012.
    [14]童家资,黄琼林.马新业.基于1TS2序列的秤星树等冬青属8种药用植物的分子鉴别[J].安徽农业科学.2012,40(5):2684-2686,2689.
    [15]高建平.王彦涵,乔春峰,等.中药南五味子及其混淆品绿叶五味子果实的ITS序列分析[J].中国中药杂志,2003.28(8):706-710.
    [16]秦民坚.杨光.射干及类似药用植物叶绿体rbcL基因序列分析[J].药学学报,2003,38(2):147-152.
    [17]Ma X Y. Xie C X, Liu C. et al. Species identification of medicinal pteridophytes by a DNA barcode marker, the chloroplast psbA-trnH intergenic region[J].Biol Pharm Bull 2010.33: 1919-1924.
    [18]安冉,杨锦芬,刘军民,等.基于26S rDNA D1-D3区序列分析的鸡血藤及其混淆品的分子鉴别[J].广州中医药大学学报,2010,27(4):403-406.
    [19]Li M, Chan K L, Li W H, et al. Establishment of DNA barcodes for the identification of the botanical sources of the Chinese "cooling" beverage [J]. Food Control,2012,25:758-766.
    [20]马剑,李迪强,张于光,等.基于matK基因的几种重要重楼属植物遗传关系分析[J].中国中药杂志,2010,35(1):18-21.
    [21]黄琼林,杨锦芬,段中岗,等.基于26SrDNA D1-D3区和matK基因序列分析的阳春砂分子鉴别[J].广州中医药大学学报,2010,27(2):151-155.
    [22]刘春生,王朋义,陈自泓,等.紫花前胡分类位置修订的分子基础研究[J].中国中药杂志,2006,31(18):1488-1490.
    [23]薛华杰,闫茂华,王年鹤,等.基于ITS序列研究当归属、前胡属间的关系与紫花前胡的分类地位[J].南京师大学报(自然科学版),2007,30(3):97-101.
    [24]薛华杰,闫茂华.陆长梅,等.基于ITS序列的东亚当归属植物的分类研究[J].植物分类学报,2007,45(6):783-795.
    [25]闫坤,赵楠.李宏庆.地黄属种间亲缘关系研究[J].西北植物学报,2007,27(6):1112-1120.
    [26]曹晖,蔡金娜.蛇床子地理分布与叶绿体matK基因序列的相关性分析[J].中国药学杂志,2001,36(6):373·376.
    [27]马玉花,杨吉安,贾万忠,等.中国不同地区杜仲rDNA的ITS序列分析[J].西北林学院学报,2004.19(4):16-19.
    [28]刘瑾.巴戟天道地药材形成的生态因子及分子机制研究[D].广州:广州中医药大学,2009.
    [29]韩建萍,宋经元.姚辉,等.中药材DNA条形码鉴定的基因序列比较[J].中国中药杂志.2012.,37(8):1056-1061.
    [30]Liu C. Shi L, Xu X, et al. DNA barcode goes two-dimensions:DNA QR code web server [J]. PLoS One,2012,7:e35146.
    [31]任毅,黄三文.功能基因组学在蔬菜中的应用[J].中国蔬菜,2009,(2):1-6.
    [32]王勇波,刘忠,赵爱华,等.功能基因组学方法在药用植物次生代谢物研究中的应用[J].中国中药杂志,2009,34(1):6-10.
    [33]Velculescu V E, Zhang L, Zhou W, et al. Characterization of the yeast transcriptome [J]. Cell, 1997.88:243-251.
    [34]Lander E S, Linton L M, Birren B. et al. Initial sequencing and analysis of the human genome [J]. Nature,2001,409:860-921.
    [35]黄琛,武明花,李桂源.鼻咽癌转录组学研究的现状与进展[J].生物化学与生物物理进展,2007,34(11):1129-1135.
    [36]于酷.基因芯片技术及其数据处理方法[J].科技通报,2012,28(5):70-75.
    [37]郭新红,姜孝成,潘晓玲,等.基因芯片技术与基因表达谱分析[J].生物学杂志,2001,18(5):1-2.13.
    [38]史硕博,陈涛,赵学明.转录组平台技术及其在代谢工程中的应用[J].生物工程学报,2010,26(9):1187-1198.
    [39]Velculescu V E, Zhang L, Vogelstein B, et al. Serial analysis of gene expression [J]. Science, 1995,270:484-487.
    [40]Marti J, Piquemal D, Manchon L, et al. Transcriptome for serial of gene expression [J]. J Soc Biol,196:303-307.
    [41]王大力,黄大鹏.基因表达系列分析技术研究进展[J].动物医学进展,2009,30(4):69-72.
    [42]Brenner S, Johnson M, Bridgham J, et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol,2000,18:630-634.
    [43]秦楠,栗东芳,杨瑞馥.高通量测序技术及其在微生物研究中的应用[J].微生物学报,2011,51(4):455-457.
    [44]Ji H, Shendure J. Next-genration DNA sequncing [J]. Nat Biotechnol,2008.26:1135-1145.
    [45]Ansorge W J. Next-generation DNA sequencing techniques [J]. Nat Biotechnol,2009,25: 195-203.
    [46]王曦,汪小我,王立坤,等.新一代高通量RNA测序数据的分析与处理[J].生物化学与生物物理进展.2010,37(8):834-846.
    [47]陈士林,何柳,刘明珠.等.本草基因组方法学研究[J].世界科学技术-中医药现代化,2010,12(3):316-324.
    [48]李滢,孙超,罗红梅.等.基于高通量测序454 GS FLX的丹参转录组学研究[J].药学学报,2010,45(4):524-529.
    [49]Yan Y P. Wang Z Z. Tian W, et al. Generation and analysis of expressed sequence tags from the medicinal plants Salvia miltiorrhiza [J]. Sci China Life Sci,2010,53:273-285.
    [50]Wu Q, Song J Y, Sun Y Q, et al. Transcript profiles of Panax quinquefolius from flower, leaf and root bring new insights into genes related to ginsenosides biosynthesis and transcriptional regulation [J]. Physiol Plantarum,2010,138:134-149.
    [51]Sun C, Li Y, Wu Q, et al. De novo sequencing and analysis of American ginseng root transcriptome using a GS FLX Titanium platform to discover putative gene involved in ginsenoside biosynthesis [J]. BMC Genomics,2010,11:262.
    [52]Li Y, Luo H M. Sun C. et al. EST analysis reveals putative genes involved in glycyrrhizin biosynthesis [J]. BMC Genomics,2010,22:268.
    [53]Lin X. Zhang J. Li Y. et al. Functional genomics of a living fossil tree. Ginkgo, based on next-generation sequencing technology [J]. Physiol Plant,2011,143:207-218.
    [54]Graham I A, Besser K. Blumer S, et al. The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalaria drug Artemisinin [J]. Science,2010,327:328-331.
    [55]Mihous W K, Weina P J. Plant Science. The botanical solution for malaria [J]. Science,2010, 327:279-280.
    [56]Hao D C, Ma P, Mu J, et al. De novo characterization of the root transcriptome of a traditional Chinese medicinal plant Polygonum cuspidatum [J]. Sci China Life Sci,2012,42: 398-412.
    [57]Hao D, Ge G, Xiao P, et al. The first insight into the tissue specific Taxus transcriptome via Illumina second generation sequencing [J]. PLoS One,2011,6:e21220.
    [58]Tang Q, Ma X, Mo C, et al. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-Seq and digital gene expression analysis [J]. BMC Genomics, 2011,12:343.
    [59]Yuan Y, Song L, Li M, et al.Genetic variation and metabolic pathway intricacy govern the active compound content and quality of the Chinese medicinal plant Lonicera japonica thunb [J]. BMC Genomics,2012,13:195.
    [60]吴琼,孙超,陈士林,等.转录组学在药用植物研究中的应用[J].世界科学技术-中医药现代化,2010,12(3):457-462.
    [61]Tsukaya H, Beemster G T. Genetics, cell cycle and cell expansion in organogenesis in plants [J]. J Plant Res,2006,119:1-4.
    [62]Niinemets O, Portsmuth A, Tobias M. Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants [J]. New Phytol,2006,171:91-104.
    [63]Choe S, Fujioka S, Noguchi T, et al. Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis [J]. Plant J,2001.26:573-582.
    [64]Werner T, Motyka V, Strnad M, et al. Regulation of plant growth by cytokinin [J]. Proc Natl Acad Sci USA,2001,98:10487-10492.
    [65]Harberd N P, King K E. Carol P, et al. Gibberellin:Inhibitor of an inhibitor of...? [J] Bioessays,1998,20:1001-1008.
    [66]Guzman P, Ecker J R. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants [J]. Plant Cell.1990,2:513-523.
    [67]龚蓉.水稻生长素结合蛋白ABP1及生长素受体蛋白TIR1的原核表达与纯化[D].长沙:湖南农业大学,2010.
    [68]Fu X, Harberd N P. Auxin promotes Arabidopsis root growth by modulating gibberellin response [J]. Nature,2003,421:740-743.
    [69]Li H, Johnson P, Stepanova A, et al. Convergence of signaling pathways in the control of differential cell growth in Arabidopsis [J]. Dev. Cell.2004.7:193-204.
    [70]Nemhauser J L, Mockler T C, Chory J. Interdependency of brassinosteroid and auxin signaling in Arabidopsis [J]. PLoS Biol,2004,2:e258.
    [71]Kim G T, Tsukaya H, Saito Y, et al. Changes in the shapes of leaves and flowers upon overexpression of cytochrome P450 in Arabidopsis [J]. Proc Natl Acad Sci USA,1999,96: 9433-9437.
    [72]Tsuge T, Tsukaya H, Uchimiya H. Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh [J]. Development,1996,122:1589-1600.
    [73]王保,高建伟.控制植物器官大小的分子机理[J].生物学杂志,2009,26(5):67-68.
    [74]Sugimoto-Shirasu K, Roberts K.'Big it up':endreduplication and cell-size control in plants [J]. Curr Opin Plant Biol,2003,6:544-553.
    [75]Beemster G T, Fiorani F, Inze D. Cell cycle:the key to plant growth control? [J] Trends Plant Sci,2003,8:154-158.
    [76]Horiguchi G, Ferjani A, Fujikura U, et al. Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana [J]. J Plant Res,2006,119:37-42.
    [77]Yoo J Y, Wang X W, Rishi A K, et al. Interaction of the PA2G4 (EBP1) protein with ErbB-3 and regulation of this binding by heregulin [J]. Cancer,2000,82:683-690.
    [78]Liu Z, Ahn J Y, Liu X. et al. Ebpl isoforms distinctively regulate cell survival and differentiation [J]. Proc Natl Acad Sci USA,2006.103(29):10917-10922.
    [79]Horvath B M, Magyar Z, Zhang Y X, et al. EBP1 regulates organ size through cell growth and proliferation in plants [J]. EMBO J,2006,25:4909-4920.
    [80]Cao P. Song J, Zhou C, et al. Characterization of multiple cold induced gene from Ammopiptanthus mongolicus and functional analyses of gene AmEBPl[J]. Plant Mol Biol. 2009,69(5):529-539.
    [81]Lobler M, Klambt D. Auxin binding protein of corn(Zea mays L.) I. Purification by immunological methods characterization [J]. J Bio Chem,1985,260:9894-9853.
    [82]Ruck A, Palme K, Venis M A, et al. Patchclamp analysis establishes a role for an auxin binding protein in the auxin stimulation of plasma membrane current in Zea mays protoplast [J]. Plant J,1993,4:41-46.
    [83]Maurel C, Leblance N, Barbrie-Brygoo H, et al. Single role gene from the Agrobacterium rhizogenes TL-DNA alter some of the cellular response to auxin in Nicotiana tabacum [J]. Plant physiol,1991,97:212-216.
    [84]John A M, Herman E M. KDEL-containing auxin binding protein is secreted to the plasma membrane and cell wall [J]. Plant Physiol.1993.101:595-606.
    [85]Lobter M. Klambt D. Auxin-binding protein of corn:Localization of a potation receptor [J]. Biol Chem,1985,260:9854-9859.
    [86]Chen J G, Shimomura S, Folke S. et al. The role of auxin-binding protein in expansion of tobacco leaf cells [J]. Plant J,2001,28:607-617.
    [87]Jones A M, Im K H, Savka M A, et al. Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1[J]. Science,1998,282:1114-1117.
    [88]Thomas C, Meyer D, Wolff M, et al. Molecular characterization and spatial expression of the sunflower ABP1 gene. Plant Mol Biol,2003,52:1025-1036.
    [89]Tromas A, Braun N, Muller P, et al. The auxin binding protein 1 is required for different auxin response mediating root growth [J]. PLoS One,2009,4:e6648-6658.
    [90]Wan S B, Wang W, Luo M, et al. cDNA cloning, prokaryotic Expression, polyclonal antibody preparation of the auxin binding protein 1 gene from Grape Berry [J]. Plant Mol Biol Rep, 2010,28:373-380.
    [91]刘晓柱,黄妤,彭珍子,等.烟草wS38生长素结合蛋白cDNA的克隆及序列分析[J].湖南农业大学学报(自然科学版),2010,36(4):388-391.
    [92]Huang Y, Liu F, Guo Q Q, et al. Cloning and expression of auxin binding protein lgene in Ramie [Boehmeria nivea (Linn.) Gaud.] [J]. Acta Agronmica Sinica,2008,34:1358-1365.
    [93]Hu Y, Xie Q, and Chua N H. The Arabidopsis auxin inducible gene ARGOS controls lateral organ size [J]. Plant Cell,2003,15:1951-1961.
    [94]Wang B, Sang Y L, Song J, et al. Expression of a rice OsARGOS gene in Arabidopsis promotes cell division and expansion and increases organ size [J]. J Genet Genomics,2008, 36:31-40.
    [95]Wang B, Zhou X C, Xu F, et al. Ectopic expression of a Chinese cabbage BrARGOS gene in Arabidopsis increases organ size [J]. Transgenic Res,2010,19:461-472.
    [96]Kuluev B R. Knyazev A V. Iljassowa A A. et al. Constitutive expression of the ARGOS gene driven by dahlia mosaic virus promoter in tobacco plants [J]. Russ J of Plant Physiol,2011, 58:443-452.
    [97]Krizek B A. Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs [J]. Dev Genet.1999,25:224-236.
    [98]Dinneny J R, Yadegari R. Fischer R L. et al. The role of JAGGED in shaping lateral organs [J]. Development,2004,131:1101-1110.
    [99]Dinneny J, Weigel D, Yanofsky M F. NUBBIN and JAGGED define stamen and carpel shape in Arabidopsis [J]. Development,2006,133:1645-1655.
    [100]Mizukami Y. and Fischer R.L. Plant organ size control:AINTEGUMENTA regulates growth and cell numbers during organogenesis [J]. Proc Natl Acad Sci USA.2000.97:942-947.
    [101]Ohno C K, Reddy G V, Heisler M G, et al. The Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development [J]. Development,2004,131:1111-1122.
    [102]Elliott R C, Betzner A S. Huttner E. et al. AINTEGUMENTA. an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth[J]. Plant Cell,1996,8:155-168.
    [103]Klucher K M, Chow H, Reiser L, et al. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2 [J]. Plant Cell,1996,8:137-153.
    [104]De Veylder L, Beeckman T, Beemster G T, et al. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis [J]. Plant Cell.2001,13:1653-1668.
    [105]Wang H, Zhou Y, Gilmer S, et al. Expression of the plant cyclin-dependent kinase inhibitor ICK1 affects cell division, plant growth and morphology [J]. Plant J,2000,24:613-623.
    [106]Disch S, Anastasiou E, Sharma V K, et al. The E3 ubiquitin ligase BIG BROTHER controls Arabidopsis organ size in a dosage-dependent manner [J]. Curr. Biol.,2006,16:272-279.
    [107]Li Y H, Zheng L Y, Corke F, et al. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana [J]. Genes Dev,2007,8:1331-1336.
    [108]Fang W, Wang Z, Cui R, Li Y. Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana [J]. Plant J 2012.70:929-939.
    [109]Xu R, Li Y H. Control of final organ size by mediator complex subunit 25 in Arabidopsis thaliana [J]. Development,2011,138:4545-4554.
    [110]Xu R, Li Y. The Mediator complex subunit 8 regulates organ size in Arabidopsis thaliana [J]. Plant Signal Behav,2010,7:1-2.
    [111]Okushima Y, Mitina I. Quach H L, et al. AUXIN RESPONSE FACTOR2 (ARF2):a pleiotropic development regulator [J]. Plant J,2005.43:29-46.
    [112]Schruff M C, Spielman M, Tiwari S, et al. The AUXIN REPONSE FACTOR 2 gene of Arabidopsis links auxin signaling, cell division, and the size of seeds and other organ [J]. Development,2006,133(2):251-261.
    [113]Delessert C, Kazan K, Wilson I W, et al. The transcription factor ATAT2 represses the expression of pathogenesis-related in Arabidopsis [J]. Plant J,2005.43:745-757.
    [114]Wang Y, Henriksson E, Soderman E, et al. The Arabidopsis homeobox gene, ATHB16. regulates leaf development and the sensitivity to photeperiod in Arabidopsis [J]. Dev Biol. 2003,264:228-239.
    [115]Szecsi J, Joly C, Bordji K, et al. BIGPETALp, a bHLH transcription factor is involved in the control of Arabidopsis petal size [J]. EMBO J,2006.25:3912-3920.
    [116]Crawford B C, Nath U, Carpenter R, et al. CINCINNATA control both cell differentiation and growth in petal lobes and leaves of antirrhinum [J]. Plant physiol,2004.135:244-253.
    [117]Horiguchi G, Kim G T, Tsukaya H. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordial of Arabidopsis thaliana [J]. Plant J,2005,43:68-78.
    [118]Kim J H, Choi D, Kende H. The AtGRF family of putative transcription factor is involved in leaf and cotyledon growth in Arabidopsis [J]. Plant J,2003,36:94-104.
    [119]Jiang C Z. Method for modifying plant biomass [P].US, inventor, NO.6717034, April 6th, 2004.
    [120]Century K, Reuber T L, Ratcliffe O J. Regulating the regulators:the future prospects for transcription-factor-based agricultural biotechnology products [J]. Plant Physiol,2008,147: 20-29.
    [121]Palatnik J F, Allen E, Wu X, et al. Control of leaf morphogenesis by mircroRNAs [J]. Nature, 2003,425:257-263.
    [122]Schommer C, Palatnik J F, Aggarwal P, et al. Control of jasmonate biosynthesis and senescence by miR319 targets [J]. PLos Biol,2008,6:e230.
    [123]Kwon S H, Lee B H, Kim E Y, et al. Overexpresson of a Brassica rapa NGATHA gene in Arabidopsis thaliana negatively affects cell proliferation during lateral organ and root growth [J]. Plant Cell Physiol,2009,50(12):2162-2173.
    [124]Skirycz A, Reichelt M, Burow M, et al. DOF transcription factor AtDofl.1 (OBP2) is part of regulatory network controlling glucosinolate biosynthesis in Arabidopsis [J]. Plant J,2006, 47:10-24.
    [125]White D W. PEAPOD regulates lamina size and curvature in Arabidopsis [J]. Proc Natl Acad Sci. USA,2006,103:13238-13243.
    [126]Cnops G, Jover-Gil S, Peter J L. et al. The rotunda2 mutants identify a role of the LEUNIG gene in vegetative leaf morphogenesis [J]. J Exp Bot.2004,55:1529-1539.
    [127]Duguay J, Jamal S, Liu Z, et al. Leaf-specific suppression of deoxyhypusine synthase in Arabidopsis thaliana enhances growth without negative pleiotropic effects [J]. J Plant Physiol, 2006,164:408-420.
    [128]Deprost D, Yao L, Sormani R, et al. The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation [J]. EMBO Rep,2007,8(9):864-870.
    [129]Liu Y, Wang F, Zhang H, et al. Functional characterization of the Arabidopsis ubiquitin-specific protease gene family reveals specific role and redundancy of individual members in developments [J]. Plant J,2008,55:844-856.
    [130]Yuan T. Fujioka S, Takatsuto S. et al. BEN1, a gene encoding a dihydroflavonol 4-reductase (DFR)-like protein, regulate levels of brassinosteroids in Arabidopsis thaliana [J]. Plant J, 2007,51:220-233.
    [131]Wang Z Y, Stero H. Fujioka S. et al. BRI1 is a critical component of a plasma-membrane receptor for plant steroid [J]. Nature,2001,410:380-383.
    [132]Coll-Garcia D, Mazuch J, Altmann T, et al. EXORDIUM regulates brassinosteroid-responsive genes [J]. FEBS Lett,2004,563:82-86.
    [133]Nam K H, Li J. The Arabidopsis transthyretin-like protein is a potential substrate of BRASSINOSTEROID-INSENSITIVE1 [J]. Plant Cell,2004,16:2406-2417.
    [134]Cho H T, Cosgrove D J. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana [J]. Proc Natl Acad Sci USA,2000,97:9783-9788.
    [135]Kwon Y R, Lee H J, Kim K H, et al. Ectopic expression of Expansin3 or Expansinβ1 causes enhanced hormone and salt stress sensitivity in Arabidopsis [J]. Biotechnol Lett,2008,30: 1281-1288.
    [136]Choi D Lee Y, Cho H T, et al. Regulation of expansin gene expression affects growth and development in transgenic rice plants [J]. Plant Cell,2003,1386-1398.
    [137]Coles J P, Phillips A L, Croker S J, et al. Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes [J]. Plant J,1999,17:547-556.
    [138]Huang S, Raman A S, Ream J E, et al. Overexpression of 20-oxidase confers a gibberellins-overexproduction phenotype in Arabidopsis [J]. Plant Physiol,1998,118:773-781.
    [139]Oikawa T, Koshioka M, Kojima K, et al. A role of OsGA20oxl, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice [J]. Plant Mol Biol,2004,55: 687-700.
    [140]Godge M R, Kumar D, Kumar P P. Arabidopsis HOG1 gene and its petunia homolog PETCBP act as key regulators of yield parameters [J]. Plant Cell Rep.2008,27:1497-1507.
    [141]Li J. Yang H. Peer W A. et al. Arabidopsis H--PPase AVP1 regulates auxin-mediated organ development [J]. Science.2005.310:121-125.
    [142]Park S. Li J, Pittman J K, et al. Up-regulation of a H+-pyrophosphatase (H--PPase) as a strategy to engineer drought-resistant crop plants [J]. Proc Natl Acad Sci USA,2005,102: 18830-18835.
    [143]Strabala T J, O'Donnell P J, Smit A-M, et al. Gain-of-function phenotypes of many CLACATA3/ESR genes, including four new family members, correlate with tandem variation in the conserved CLACATA3/ESR domain [J]. Plant physiol,2006,140: 1331-1344.
    [144]Anastasiou E, Kenz S, Gerstung M, et al. Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling [J]. Dev Cell,2007,13:843-856.
    [145]Imaishi H, Matsuo S, Swai E, et al. CYP78A1 preferentially expressed in developing inflorescences of Zea mays encoded a cytochrome P450-dependent lauric acid 12-monoxygenase [J]. Biosci Biotechnol Biochem,2000,64:1696-1701.
    [146]De Veylder L, Beeckman T, Beemster G T, et al. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis [J]. Plant Cell,2001,13:1653-1668.
    [147]Kim G T, Tsukaya H, Uchimiya H. The ROT UN DI FOLIA 3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells [J].Genes Dev,1998,12:2381-2391.
    [148]Eyuboglu B, Pfister K, HAberer G, et al. Molecular characterisation of the STRUBBELIG-RECEPTOR FAMILY of genes encoding putative leucine-rich repeat receptor-like kinases in Arabidopsis thaliana [J]. BMC Plant Biol,2007,7:16.
    [149]Masuda H P, Cabral L M, De Veylder L, et al. ABAP1 is a novel plant Armadillo-BTB protein involved in DNA replication and transcription [J]. EMBO J,2008,27:2746-2766.
    [150]Li S, Liu Y, Zheng L, Chen L, et al. The plant-specific G protein y subunit AGG3 influences organ size and shape in Arabidopsis thaliana [J]. New Phytol,2012,194:609-703.
    [151]Guo M, Rupe M A, Dieter J A, et al. Cell number regulatorl affects plant and organ size in maize:implications for crop yield enhancement and heterosis [J]. Plant Cell,2010,22: 1057-1073.
    [152]Frary A, Nesbitt TC, Grandillo S. et al. fw2.2:a quantitative trait locus key to the evolution of tomato fruit size [J]. Science,2000,289(5476):85-88.
    [153]Footitt S. Cornah J E, Pracharoenwattana I, et al. The Arabidopsis 3-ketoacyl-CoA thiolase-2 (kat2-1) mutant exhibits increased flowering bu reduced reproductive success [J]. J Exp Bot,2007,58:2959-2968.
    [154]Sonoda Y, Sako K, Maki Y. et al. Regulation of leaf organ size by the Arabidopsis RPT2a 19S proteasome subunit [J]. Plant J,2006.60:68-78.
    [155]Autran D, Jonak C, Belcram K. et al. Cell number and leaf development in Arabidopsis:a functional analysis of the STRUWWELPETER gene [J]. EMBO J,2000.21:6036-6049.
    [1]Chen S L, Yao H, Han J P, et al. Validation of The ITS2 Region as a novel DNA barcode for identifying medicinal plant species [J]. PLoS One,2010,5:e8613.
    [2]Hollingsworth P M, Foresst L L, Spouge J L, et al. A DNA barcode for land plants [J]. Proc Natl Acad Sci USA,2009,106:12794-12797.
    [3]Keller A, Schleicher T. Schultz J, et al.5.8S-28S rRNA interaction and HMM-based ITS2 annotation [J]. Gene,2009,430:50-57.
    [4]Schultz J, Muller T, Achtziger M. et al. The internal transcribed spacer 2 database-a web server for (not only) low level phylogenetic analyses [J]. Nucleic Acids Res,2006,34:704-707.
    [5]张秀明,徐志东,赖秀珍,等.青天葵及其伪品细辛的性状显微鉴别[J].中药材,2007,30(6):649-651.
    [6]乐凡.青天葵的真伪鉴别[J].黑龙江中医药,2006,(6):46-47.
    [7]广东省药材公司.常用中药材真伪鉴别[M].广州:广东科技出版社,1998:128-129.
    [8]杜勤,魏志强,田军.基于RAPD的青天葵遗传多样性及鉴别研究[J].中药新药与临床药理,2009,26(6):554-557.
    [9]刘心纯.两种青天葵的鉴别研究[J].中药材,1996,19(12):612-615.
    [10]朱华,傅鹏,黄秋洁,等.青天葵与毛叶青天葵紫外光谱鉴别[J].广西中医药,2006,29(5):59-60.
    [11]杜勤,徐鸿华,王振华.人工种植青天葵生长情况的初步调查[J].中药材,2005,28(10):869-870.
    [12]段中岗,陈蔚文.中药材DNA条形码研究[R].广州中医药大学博士后研究工作报告,2008.
    [13]Song J Y, Yao H, Li Y, et al.Authentication of the family Polygonaceae in Chinese pharmacopoeia by DNA barcoding technique [J]. J Ethnopharmacol,2009,124:432-439.
    [14]Yao H, Song J Y, Ma X Y, et al.Identification of Dendrobium species by acandidate DNA barcode sequence:ThechloroplastpsbA-trnH intergenic region [J]. Planta Med,2009,75: 667-669.
    [15]Gadek PA, Alpers D L, Heslewood M M, et al. Relationships within Cupressacea sensu lato: a combined morphological and molecular approach [J]. Amer J Bot,2000,87:1042-1057.
    [16]Kuzoff R K, Sweere J A, Soltis D E, et al. The phylogenetic of entire 26S rDNA Sequence in Plants [J]. Mol Biol Evol,1998,15:251-263.
    [17]Eberhardt U. Methods for DNA barcoding of fungi [J]. Methods Mol Biol,2012,858:183-205.
    [18]Newmaster S G, Fazekas A J, Ragupathy S. DNA barcoding in the land plants:evaluation of rbcL in a multigenetiered approach [J].Can J Bot,2006,84:335-341.
    [19]Han J P, Song J Y. Liu C. et al. Identification of Cistanche species (Orobanchaceae) based on sequences of the plastid psbA-trnH intergenic region [J]. Acta Pharmaceutica Sinica,2010,15: 126-130.
    [20]Ma X Y, Xie C X, Liu C, et al. Species identification of medicinal pteridophytes by a DNA barcode marker, the chloroplast psbA-trnH intergenic region [J]. Biol Pharm Bull,2010,33: 1919-1924.
    [1]陈新.榛子花芽转录组文库的Solexa测序及冷调节基因的表达谱分析[D].北京:中国林业科学研究院,2011.
    [2]方从兵,宛晓春,江昌俊.黄酮类化合物生物合成的研究进展[J].安徽农业大学学报,2005,32(4):498-504.
    [3]申培林,杨铁钊,张小全,等.烟草类萜类生物合成途径中关键酶基因的克隆与表达调控[11].江苏农业科学,2012,40(1):37-40.
    [4]张丽,赵钟祥,林朝展,等.青天葵化学成分的研究[J].中药新药与临床药,2012.23(4):453-455,479.
    [5]甄汉深,丘琴,莫缓恒,等.青天葵石油醚部分化学成分研究[J].中药材,2010,33(5):717-719.
    [6]Powell W, Machray G C, Provan J. Polymorphism revealed by simple sequence repeats [J]. Trends Plant Sci,1996,7:215-222.
    [7]葛亮.基于转录组信息的百合SSR标记开发及种质分子鉴定研究[D].北京:中国农业科学院,2012.
    [1]Horvath B M, Magyar Z, Zhang Y X, et al. EBP1 regulates organ size through cell growth and proliferation in plants [J]. EMBO J,2006,25:4909-4920.
    [2]Cao P, Song J, Zhou C. et al. Characterization of multiple cold induced gene from Ammopiptanthus mongolicus and functional analyses of gene AmEBP1[J]. Plant Mol Biol, 2009,69(5):529-539.
    [3]Bustin S A. Benes V, Garson J A. et al. The MIQE guidelines:minimum information for publication of quantitative real-time PCR experiments [J]. Clin Chem,2009,55:611.
    [4]Pfaffl M W. Ales T. Christian P, et al. Determination of stable hosekeeping genes, differentially regulated target genes, and sample integrity:BestKeeper—Excel-based tool using pair-wise correlations [J]. Biotechnol Lett,2004,26:509.
    [5]侯维海.孙鹏.陈全家.等.地黄实时定量PCR内参基因的筛选[J].中国农学通报,2011,27(17):76.
    [6]Andersen C L, Jensen J L, Orntoft T F. Normalization of real-time quantitative reverse transcription-PCR data:a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets [J]. Cancer Res,2004,64: 5245.
    [7]张艳君,朱志峰,陆融.基因表达转录分析中内参基因的选择[J].生物化学与生物物理 进展,2007,34:546.
    [8]Guenin S, Mauriat M, Pelloux J, et al. Normalization of qRT-PCR data:the necessity of adopting a systematic, experimental conditions specific validation of references [J]. J Exp Bot,2009,60:487.
    [9]Li Q F, Sun Sumeul S M, Lyu A, et al. Validation of candidate reference genes for the accurate normalization of real-time quantitative RT-PCR data in rice during seed development [J]. Plant Mol Biol Rep,2010,28:49.
    [10]Czechowski T, Stitt M, Altmann T, et al. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis [J]. Plant Physiol,2005,139:5.
    [11]李钱峰,蒋美艳,于恒秀.水稻胚乳RNA定量RT-PCR分析中参照基因选择[J].扬州大学学报(农业与生命科学版),2008,29:61.
    [12]Nicot N, Hausman J F, Hoffmann L, et al. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress [J]. J Exp Bot,2005,56:2907.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700