岗梅、广东络石藤和毛叶藤仲化学成分研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文共分为两个部分:岗梅、广东络石藤和毛叶藤仲的化学成分研究;岗梅和广东络石藤的研究概况(综述)。
     目的:
     寻找与发现具有药理活性的天然产物,阐明药用植物的药效物质基础,一直是天然药物化学的主要研究目的。我国有着丰富的天然药物资源,先人留下的药物典籍更对天然药物的研发起着指导性作用。本课题选取三种药用药物,但现代研究较为不完善的药用植物:冬青科(Aqui foliaceae)冬青属(Ilex)植物岗梅(Ilex asprella (Hook.et Arn) Champ.ex Benth.),茜草科(Rubiaceae)九节属(Psychotria L.)植物广东络石藤(psychotria serpens linn)以及夹竹桃科(Apocynaceae)鹿角藤属(Chonemorpha)植物毛叶藤仲(Chonemorpha valvata Chatt.)作为研究对象,系统深入地研究了这三种药用植物的化学成分。
     岗梅,来源为冬青科冬青属植物梅叶冬青Ilex asprella (Hook.et Arn) Champ.ex Benth.的干燥根,又名秤星树、假秤星(东莞)等,以根、叶人药。岗梅为广东、广西等岭南地区习用中药,味苦、甘、性凉,清热解毒、生津止渴用于感冒、高热烦渴、扁桃体炎、咽喉炎、气管炎和百日咳等,有增加豚鼠冠脉流量、加强心肌收缩力等作用。岗梅根还为王老吉凉茶、沙溪凉茶等的主要原料,岭南民间也广泛用岗梅自制凉茶。目前国内外对岗梅根的化学研究较少,分离主要集中在乙酸乙酯和正丁醇大极性部位,鉴于其多方面重要生物活性,其潜在的药用前景越来越引起化学家药理学家们的广泛重视,发展的潜力很大,因此,为了全面地了解岗梅的化学成分,我们对其氯仿部位进行了研究。
     广东络石藤(psychotria serpens linn)是茜草科(Rubiaceae)九节属(Psychotria L.)植物,药用部位是干燥带叶枝茎。本属植物全世界约700余种,广布于热带和亚热带地区,我国有15种,产西南部至台湾,分布于广西、广东、福建、浙江、台湾和海南等省区。药用功能主要为祛风止痛,舒筋活络。用于风湿性关节炎,腰腿疼痛,四肢酸痛,跌打损伤,疳积。经文献检索,国外学者对九节属植物分离较多,多为生物碱成分,而我国对九节属植物化学成分的研究并不多,且前人对广东络石藤的化学成分研究较少,且不系统。鉴于其多方面重要生物活性,其潜在的药用前景越来越引起化学家药理学家们的广泛重视,发展潜力很大,因此本文对其化学成分进行了研究。
     毛叶藤仲Chonemorpha valvata Chatt为夹竹桃科(Apocynaceae)鹿角藤属(Chonemorpha)植物,广泛分布于云南,泰国和缅甸,他的根和根茎长期用于骨折筋伤、外伤出血和风湿性关节炎。但是,没有报道有关毛叶藤仲的化学成分研究,现在对于我国传统中药开发的持续热点,所以我们对毛叶藤仲进行化学分离。
     方法:
     三种植物化学成分的分离鉴定
     1岗梅的提取分离
     岗梅:用70%乙醇回流提取,浓缩至无醇味,用水溶解,用石油醚脱脂,然后依次用三氯甲烷,乙酸乙酯,正丁醇萃取,其中三氯甲烷部位55g样品,浓缩过程产生很多黄色不溶物,离心后得到沉淀物400g样品。
     三氯甲烷部位采用正相硅胶、反相硅胶层析柱、Sephadex LH-20凝胶柱和RP-HPLC等方法进行分离;借助核磁共振(NMR)、红外(IR)、紫外(UV)等波谱技术,结合波普学数据以及文献报道的数据相比较鉴定化合物的结构。
     2广东络石藤的提取分离
     广东络石藤3Kg药材粉碎,甲醇提取3次,将提取液浓缩至2L,分别用石油醚,三氯甲烷和正丁醇萃取,得到石油醚部位43g,三氯甲烷部位31.8g(起泡状态下),正丁醇部位240g。
     三氯甲烷部位采用正相硅胶、反相硅胶层析柱、Sephadex LH-20凝胶柱和半制备HPLC等方法进行分离;正丁醇部位采用大孔树脂、MCI、反相硅胶层析、中低压制备液相等方法进行分离;石油醚部位采用正相硅胶、Sephadex LH-20凝胶柱方法进行分离。分得化合物借助核磁共振(NMR)、红外(IR)、紫外(UV)等波谱技术,结合波普学数据以及文献报道的数据相比较鉴定化合物的结构。
     3毛叶藤仲的提取分离
     干燥的毛叶藤仲地上部位3Kg粉碎,95%乙醇提取三次,将提取液浓缩至2L,分别用石油醚,三氯甲烷和正丁醇萃取,三氯甲烷部位33gg。
     三氯甲烷部位采用正相硅胶、反相硅胶层析柱、Sephadex LH-20凝胶柱和半制备HPLC等方法进行分离;借助核磁共振(NMR)、红外(IR)、紫外(UV)等波谱技术,结合波普学数据以及文献报道的数据相比较鉴定化合物的结构。
     结果:
     本文从岗梅根的70%乙醇提取物的三氯甲烷部位进行分离纯化,得到25个化合物,根据化合物的理化性质和光谱数据确定了其中23个化合物的结构。其中3个新化合物和1个己知相似化合物鉴定为11,12-环氧基-2,6β,20-三羟基-24-降熊果烷-1,4-二烯-3-酮-(28→13β)-内酯(11,12-epoxy-2,6β,20-trihydroxy-24-norursa-1,4-dien-3-on-(28→13)-olide, Gm-4),11,12-环氧基-2,6β-二羟基-24-降熊果烷-1,4,20(30)-三烯-3-酮-(28→13)-内酯(11,12-epoxy-2,6β-dihydroxy-24-norursa-1,4,20(30)-trien-3-on-(28→13)-olide, Gm-12),11,12环氧基-2,6β-二羟基-24-降齐墩果烷-1,4,20-三烯-3-酮-(28→13)-内酯(11,12-epoxy-2,6β-dihy droxy-24-norolean-1,4,20-dien-3-on-(28→13)-olide, Gml-1),11,12-环氧基-2,6β-二羟基-24-降熊果烷-1,4-二烯-3-酮-(28→13)-内酯(11,12-epoxy-2,6β-dihydroxy-24-norursa-1,4,20-dien-3-on-(28→13)-olide,Gm-13)。另外19个已知化合物分别为:丁香脂素(Syringaresinol,Gm-2),(β-hydroxypropiovanillone, Gm-2-1),豆甾醇-5,25(27)-二烯3-0-(6’-0-棕榈酰)-β-D-葡萄糖苷(Stigmasterol-5,25(27)-diene-3-0-(6'-0-palmitoyl)-β-D-glucoside, Gm2-1-8-5),β-谷甾醇(β-sitosterol, Gm-8),脑苷脂(Cerebroside,(2S,35,4R,8Z)-1-0-(b-D-Glucopyranosyl)-2-[(R)-2'-hydroxydocosan-oyl] amino-8-octadecene-1,3,4-triol) Gm-9),3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl) propan-1-one (Gm-14),右旋杜仲树脂酚(Medioresinol,Gm-15),22-脱氢赪桐甾醇(Clerosterol, Gm-17-1),赪桐甾醇(Clerosterol,Gm-17-2),α-葡萄糖(α-glucose, Gm-18), Urs-12-ene-3a,24-diol3-Acetate(Gm-19),蔗糖(sucrose, Gm-20),熊果酸(Ursolic Acid, Gm-21),24-R-豆甾醇-5,25(27)二烯-3-0-β-D葡萄糖苷(24-R-stigmasterol-5,25(27)-diene-3-0-β-D glucoside, Gm-22),胡萝卜苷(daucosterol, Gm-23),3,5-二甲氧基,4-甲基-苯酸(3,5dimethoxy4-methyl-benzoic acid, Gm-197),丁香脂素-4’-0-β-D-葡萄糖苷(Syringaresinol-4'-0-beta-the D-glucoside, Ca2-1), diasyringaresinol (Ca-1-2), diasyringaresinol-4'-0-beta-the D-glucoside (Ca-2-2)。
     本文采用正相色谱硅胶、反相色谱凝胶、LH-20凝胶和半制备高效色谱液相等多种分离方法对广东络石藤甲醇提取物的正丁醇部位、三氯甲烷部位和石油醚部位进行分离纯化,得到32个化合物,根据化合物的理化性质和光谱数据确定了其中18个化合物的结构。18个化合物分别为对-(3S,7R,10R)-3,11-二羟基-7,10-环氧基-3,7,11-三甲基十二碳-1,5-二烯(rel-(3S,7R,IOR)-3,11-dihydroxy-7,10-epoxy-3,7,11-trimethyldodeca-1,5-diene, Lstl-1),对-(3S,7S,10R)-3,11-二羟基-7,10-环氧基-3,7,11-三甲基十二碳-1,5-二烯(rel-(3S,7S,10R)-3,11-dihydroxy-7,10-epoxy-3,7,11-trimethyldodeca-1,5-diene, Lstl-2),7-羟香豆素(7-hydroxylcoumarin,Lst-3),去氢吐叶醇(dehydrovomifoliol, Lst5-1),地芰普内酯(Loliolide, Lst5-2)(E)-4-(r-1', t-2', C-4'-三羟基-2’,6’,6’-三甲基-环己基)-3-烯-2-酮((E)-4-(r-1', t-2', c-4'-trihydroxy-2',6',6'-trimethyl-cyclohexyl)but-3-en-2-one, Lst5-3),1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropyl)-2-methoxyphenoxyl]-propane-1,3-diol (Lst5-4),脑苷脂(Cerebroside,Lst-6),交让木苷(Daphylloside,Lst-7-3),β-谷甾醇(β-sitosterol,Lst-8),3β,6β,23-三羟基-熊果烷-12-烯-28-酸(3β,6β,23-trihydroxy-urs-12-en-28-oic acid, Lst-9-3-4),丁香脂素(Syringaresinol, Lst-11),吐叶醇(Loliolide, Lst-13),熊果酸(3-Hydroxy-12-ursen-28-oic acid, Lst-21),胡萝卜苷(daucosterol,Lst-23),对羟基苯甲酸(Hydroxybenzoate, Lst-24),齐墩果烷(3β-Hydroxyolean-12-en-28-oic acid,Lst-p-1),脂肪醇(Fatty alcohol,Lst-P-9),山奈酚3-0-β-D-吡喃葡萄糖(1→2)-β-D-鼠李糖苷(Kaempferol3-0-β-D-glucopyranosyl(1→2)-β-D-rhamnosidase,Lst-n-1).
     本文采用正相色谱硅胶、反相色谱凝胶、LH-20凝胶和半制备高效色谱液相等多种分离方法对毛叶藤仲95%乙醇提取物的三氯甲烷部位进行分离纯化,得到并鉴定8个化合物。化合物结构分别为5'-methoxy-7'-oxomatairesinol(Mz-1),(7R,8R,7’R)-南烛木树脂酚((+)-(7R,8R,7'R)-lyoniresinol,Mz-2),蛇菰脂醛素(balanophonin,Mz-3),β-谷甾醇(β-sitosterol,Mz-4),落叶松脂醇((+)-lariciresinol, Mz-5),丁香脂素((+)-syringaresinol,Mz-6),(-)-(7R,8S)-dihydrodehydrodiconiferyl alcohol (Mz-7),胡萝卜苷(daucosterol, Mz-8).
     结论:
     岗梅中:鉴定最终共得到23个化合物,Gm-4, Gm-12, Gm-1-1三个新化合物,Gm-2-1,Gm-2-1-8-5,Gm-9,Gm-14,Gm-15,Gm-17-1,Gm-18,Gm-19,Gm-20, Gm-22,Gm-197,Cal-2, Ca2-2,13个化合物从本植物中首次分离得到。
     广东络石藤中:最终分离得到32个化合物根据化合物的理化性质和光谱数据确定了其中18个化合物的结构,其中其中化合物其中化合物Lstl-1,Lstl-2, Lst-3, Lst-5-1,Lst-5-2, Lst-5-3, Lst-5-3,Lst-6,Lst-7-3,Lst-9-3-4, Lst-11, Lst-13, Lst-24,13个化合物首次从该植物中首次分离得到。
     毛叶藤仲中:得到8个化合物,根据化合物的理化性质和光谱数据确定了其中8个化合物的结构。其中化合物Mz-1为新化合物,Mz-2-8为首次从该植物中分离得到。
This dissertation consists of two parts:one is our study of chemical constituts of Ilex asprella (Hook, et Arn) Champ, ex Benth., psychotria serpens linn and Chonemorpha valvata Chatt.; another is previous studies on Ilex asprella (Hook, et Arn) Champ, ex Benth. and psychotria serpens linn. Obejective
     Screening bio-active nature products, clarifying material foundation of medicinal effectiveness are the purpose of nature product research. China is rich in natural medicine resource, and traditional medicinal scriptures play a guide role on nature product research. In that case, three traditional medicinal plants, Aquifoliaceae, Ilex, Ilex asprella (Hook, et Arn) Champ, ex Benth.;Rubiaceae, Psychotria L, psychotria serpens linn and Apocynaceae, Chonemorpha, Chonemorpha valvata Chatt., were selected for phytochemistry investigations.
     The plant Ilex asprella (Hook, et Arn.) sourse of Aquifoliaceae, Ilex, Ilex asprella (Hook, et Arn) Champ, ex Benth dried root, also known as Cheng Xing tree, fake Chengxing tree (Dongguan), Roots, leaves used as medicine, is mainly distributed in Southern China, such as in Guangdong province and the Guangxi Zhuang autonomous region[1]. The roots of I. asprella have been widely used in Chinese medicine for the treatment of amygdalitis, laryngopharyngitis, racheitis, and pertussis, increase coronary blood flow in guinea pigs, and strengthen the role of myocardial contractility [2],This crude drug is also a major ingredient of'Wang-Lao-Ji Herbal Tea'which was formulated in1828and is widely accepted as a popular healthy beverage by Chinese people and Shaxi herbal tea, Lingnan folk also widely used Gang Mei homemade herbal tea tea. The less chemical research at home and abroad on the Ilex asprella, separation is mainly concentrated in parts of ethyl acetate and n-butanol large polarity in view of the of its multifaceted important bioactive, its potential medicinal prospects increasingly great potential caused by the extensive attention of the chemist, pharmacologist, development, in order to fully understand the chemical composition of the Ilex asprella its chloroform part of the research.
     psychotria serpens linn is a plants of Psychotria L. of Rubiaceae, medicinal part is dry leaves and stems. About700species of this genus in the worldwide, widespread in tropical and subtropical regions, China has15kinds of production from southwest to Taiwan, located in Guangxi, Guangdong, Fujian, Zhejiang, Taiwan and Hainan provinces. The medicinal function Dispelling wind and relieving pain and stimulate the circulation of the blood and cause the muscles and joints to relax. For rheumatoid arthritis, lumbar and leg pain, limb pain, bruises, malnutrition product Through literature retrieval, foreign scholars on more separation section Psychotria, many alkaloids, but not so much research on the chemical constituents of Psychotria serpens L. in China, all previous to study the chemical constituents of psychotria serpens are less, and not the system. In view of the many important biological activity, and its potential prospect in medicine and more attentions chemists, pharmacologists, development potential is very great, so this paper made a research on its chemical constituents.
     Chonemorpha friffithii hook(former name as Chonemorpha valvata Chat., Apocynaceae), is woody climber plant indigenous to Yunnan Province of China, Myanmar and thailang. its roots and rhizomes have a long history as folk medicine for the treatment of fracture and rheumatism arthritis in the Dai national area. However, no any report for C. griffithii was found thus far.A continuing interest in Chinese national folks prompted us to conduct an investigation on the chemical constituents of the title plant.
     Methods
     Isolation and identification of chemical constituents of Ilex asprella (Hook.et Arn) Champ, ex Benth. And psychotria serpens
     1Extraction and separation of Ilex asprella
     The dry roots of Ilex asprella extracted with70%ethanol under reflux, and concentrated until no alcohol flavor, dissolved in water, and the partitioned successively with petroleum ether, chloroform, ethyl acetate, the chloroform fraction(55g) sample enrichment process to produce a lot of yellow insolubles,400g sample to obtain a precipitate after centrifugation. Defatting with petroleum ether, and then followed by using chloroform, ethyl acetate, n-butanol, wherein the chloroform extracts of55g samples, enrichment process produces a lot of yellow insoluble, centrifugation to get400g sediment samples.
     We use a variety of separation techniques (n, anti-column chromatography on silica gel chromatography, preparative thin layer chromatography, MCI column chromatography, Sephadex LH-20gel column chromatography, preparative-HPLC, etc.) to separate the chemical composition of parts of the system of the chloroform extracts of Ilex asprella, using a variety of analytical tools (ESI-MS, EI-MS, IR,'H NMR spectra,13C NMR spectra, DEPT spectra, HMQC, HMBC, ROESY, etc.) for the structural identification of the compounds, combined with spectroscopic data, and reported data comparing the structure of the compounds were identified. We are part of a large amount of the compound of the in vitro antibacterial activity screening.
     2Extraction and separation of psychotria serpens
     psychotria serpens3Kg, crushed, extracted3times with methanol, respectively extracted with petroleum ether, chloroform and n-butanol, and then get petroleum ether fraction43g, chloroform fraction31.8g (foaming state), n-butanol fraction240g.
     The chloroform fraction using normal phase silica gel column chromatography, reversed phase silica gel column chromatography, Sephadex LH-20gel column and preparative HPLC and other methods of separation; n-butanol fraction using macroporous resin, MCI, reversed phase silica gel column chromatography, low-voltage preparative liquid equal other methods of separation; petroleum ether fraction using normal phase silica gel, Sephadex LH-20gel column method of separation. Share of compounds with nuclear magnetic resonance (NMR), infrared (IR), ultraviolet (UV),'H NMR spectra,13C NMR spectra, DEPT spectra, HMQC, HMBC, ROESY, etc. spectral technology, combined with the spectroscopic data and data reported in the literature comparing the structures of the compounds were elucidated.
     3Extraction and separation of Chonemorpha friffithii hook
     The dried aerial part of C. griffithii (3.0kg) was extracted at r. t. three times with95%EtOH. The extract was concentrated under reduced pressure to2L, and then partitioned successively with petroleum ether, CHC13, and n-BuOH. The CHCl3-soluble fraction (33g).
     We use a variety of separation techniques (n, anti-column chromatography on silica gel chromatography, preparative thin layer chromatography, MCI column chromatography, Sephadex LH-20gel column chromatography, preparative-HPLC, etc.) to separate the chemical composition of parts of the system of the chloroform extracts of Ilex asprella, using a variety of analytical tools (ESI-MS, EI-MS, IR,'H NMR spectra,"C NMR spectra, DEPT spectra, HMQC, HMBC, ROESY, etc.) for the structural identification of the compounds, combined with spectroscopic data, and reported data comparing the structure of the compounds were identified. We are part of a large amount of the compound of the in vitro antibacterial activity screening.
     Result
     Detailed chemical investigation of the roots of Ilex asprella70%ethanol extract chloroform fraction led to the isolation of25compounds by various chromatographic methods. The structure of23compounds were fully determined on the basis of spectroscopic analysis, including triterpenoids, sterols, lignans, phenylpropanoids, et al. Among them3compounds were identified as new compounds, and a known similar compound, identified asll,12-epoxy-2,6β-dihydroxy-24-norolean-1,4,20-dien-3-on-(28→13)-olide (Gm-1-1),11,12-epoxy-2,6β,20-trihydroxy-24-norursa-1,4-dien-3-on-(28→13)-olide (Gm-4),11,12-epoxy-2,6β-dihydroxy-24-norursa-1,4,20(30)-trien-3-on-(28→13)-olide (Gm-12),11,12-epoxy-2,6β-dihydroxy-24-norursa-1,4,20-dien-3-on-(28→13)-olide (Gm-13),15compounds which were identified as the known properties are Syringaresinol(Gm-2),β-hydroxypropiovanillone(Gm-2-1), Stigmast-erol-5,25(27)-diene-3-0-(6'-0-palmitoyl)-β-D-glucoside (Gm-2-1-8-5), Cerebroside(2S,3S,4R,82)-1-0-(b-D-Glucopyranosyl)-2-[(R)-2'-hydroxydocosan-oyl] amino-8-octadecene-1,3,4-triol(Gm-9),3-hydrox y-1-(4-hydroxy-3,5-dimethoxyphenyl) propan-1-one (Gm-14), Medioresinol (Gm-15),22-dehyclerosterol(Gm-17-1), Clerosterol(Gm-17-2), α-glucose (Gm-18), Urs-12-ene-3a,24-diol3-Acetate(Gm-19), sucrose(Gm-20), Ursolic Acid(Gm-21),24-R-stigmasterol-5,25(27)-diene-3-0-β-D glucoside(Gm-22), daucosterol(Gm-23),3,5-dimethoxy-4-methyl benzoic acid (Gm-197), diasyringaresinol(Ca-1-2), Syringaresinol-4'-0-beta-the D-glucoside(Ca-2-1), diasyringaresinol-4'-O-beta-the D-glucoside(Ca-2-2).
     To study the chemical constituents of the leaves and stems of psychotria serpens lin for reveal the active components for their further development. The compounds were isolated by normal phase silica gel column chromatography, reversed phase silica gel column chromatography, Sephadex LH-20gel column and preparative HPLC and other methods of separation and identified on the nuclear magnetic resonance (NMR), infrared (IR), ultraviolet (UV),'H NMR spectra,13C NMR spectra, DEPT spectra, HMQC, HMBC, ROESY, etc.32compounds were obtained and eighteen compounds were identified.18compounds which were identified as the known properties are rel-(3S,7R,10R)-3,11-dihydroxy-7,10-epoxy-3,7,11-trimethyldodeca-1,5-diene(Lstl-1), rel-(3S,7S,10R)-3,11-dihydroxy-7,10-epoxy-3,7,11-trimethyldodeca-1,5-diene (Lstl-2),7-hydroxylcoumarin(Lst-3), dehydrovomifoliol (Lst5-1), Loliolide (Lst5-2),(E)-4-(r-1', t-2', c-4'-trihydroxy-2',6',6' trimethyl-cyclohexyl)but-3-en-2-one(Lst5-3),1-(4-hydroxy-3-methox yphenyl)-2-[4-(3-hydroxypropyl)-2-methoxyp henoxyl]-propane-1,3-d-iol(Lst5-4), Cerebroside(2S,3S,4R,8Z)-1-0-(b-D-Glucopyranosyl)-2-[(R)-2'-hydroxydocosan-oyl] amino-8-octadecene-1,3,4-triol (Lst-6), Daphylloside(Lst-7-3), β-sitosterol (Lst-8),33,6β,23-trihydroxy-urs-12-en-28-oic acid(Lst-9-3-4), Syringaresinol (Lst-11), Loliolide (Lst-13),3-Hydroxy-12-ursen-28-oic acid(Lst-21), daucosterol(Lst-23), Hydroxybenzoate(Lst-24),33-Hydroxyolean-12-en-28-oic acid(Lst-p-1), Fatty alcohol (Lst-p-9), Kaempferol3-0-3-D-glucopyranosyl (1→2)-β-D-rhamnosidase(Lst-n-1).
     To study the chemical constituents of the leaves and stems of psychotria serpens lin for reveal the active components for their further development. The compounds were isolated by normal phase silica gel column chromatography, reversed phase silica gel column chromatography, Sephadex LH-20gel column and preparative HPLC and other methods of separation and identified on the.nuclear magnetic resonance (NMR), infrared (IR), ultraviolet (UV),'H NMR spectra,13C NMR spectra, DEPT spectra, HMQC, HMBC, ROESY, etc.8compounds were obtained and identified, Among them1compound were identified as new compound,5'-methoxy-7'-oxomatairesinol (Mz-1),7compounds which were identified as the known properties are(+)-(7R,8R,7'R)-lyoniresinol (Mz-2), balanophoni(Mz-3), β-sitosterol(Mz-4),(+)-lariciresinol(Mz-5),(+)-syringaresinol (Mz-6),(-)-(7R,8S)-dihydrodehydrodiconiferyl alcohol(Mz-7), daucosterol(Mz-8).
     Conclusion
     In the Ilex asprella:A total of25final compounds obtained from Ilex asprella, and indentified23compounds,11,12-epoxy-2,6β-dihydroxy-24-norolean-1,4,20-dien-3-on-(28→13)-olide(Gm-1-1),11,12-epoxy-2,6β,20-trihydroxy-24-norursa-1,4-dien-3-on-(28→13)-olide(Gm-4),11,12-epoxy-2,6β-dihydroxy-24-norursa-1,4,20(30)-trien-3-on-(28→13)-olide(Gm-12) three new compounds, β-hydroxypropiovanillone (Gm-2-1), Stigmasterol-5,25(27)-diene-3-0-(6'-0-palmitoyl)-β-D-glucoside (Gm-2-1-8-5), Cerebroside,(2S,3S,4R,8Z)-1-0-(b-D-Glucop yranosyl)-2-[(R)-2'-hydroxydocosan-oyl]amino-8-octadecene-1,3,4-triol(Gm-9),11,12-epoxy-2,6β-dihydroxy-24-norursa-1,4,20-dien-3-on-(28→13)-olide(Gm-13),3-hydroxy-1-(4-hydroxy-3,5-dimethoxy phenyl)propan-1-one(Gm-14), Medioresinol(Gm-15),22-dehyclerosterol (Gm-17-1), α-glucose (Gm-18), Urs-12-ene-3a,24-diol3-Acetate(Gm-19), sucrose (Gm-20),24-R-stigmasterol-5,25(27)-diene-3-0-β-D glucoside (Gm-22),3,5-dimethoxy-4-methyl-benzoic acid (Gm-197), diasyringaresinol (Ca-1-2), diasyringaresinol-4'-0-beta-the D-glucoside (Ca-2-2). thirteen compounds isolated from this plant for the first time.
     In the psychotria serpens:A total of32final compounds obtained from Ilex asprella, and indentified18compounds. rel-(3S,7R,10R)-3,11-dihydroxy-7,10-epoxy-3,7,11-trimethyldodeca-1,5-diene(Lstl-1), rel-(3S,7S,10R)-3,11-dihydroxy-7,10-epoxy-3,1,11-trimethyldodeca-1,5-diene(Lstl-2),7-hydroxylcoumarin(Lst-3), dehydrovomifoliol(Lst5-1), Loliolide(Lst5-2),(E)-4-(r-1', t-2', c-4'-trihydroxy-2',6',6' trimethyl-cyclohexyl)but-3-en-2-one(Lst5-3),1-(4-hydroxy-3-met hoxyphenyl)-2-[4-(3-hydroxypropyl)-2-methoxyp henoxyl]-propane-1,3- diol.(Lst5-4), Cerebroside,(2S,3S,4R,8Z)-1-0-(β-D-Glucop yranosyl)-2-[(R)-2'-hydroxydocosan-oyl] amino-8-octadecene-1,3,4-triol(Lst-6), Daphylloside(Lst-7-3),33,60,23-trihydroxy-urs-12-en-28-oic acid(Lst-9-3-4), Syringaresinol(Lst-11), Loliolide (Lst-13), Hydroxybenzoate(Lst-24), thirteen compounds isolated from this plant for the first time.
     In Chonemorpha friffithii hook:A total of8final compounds obtained from Ilex asprella, and indentified8compounds.and5'-methoxy-7'-oxomatairesinol (Mz-1) is new compound, Mz2-8seven compounds isolated from this plant for the first time.
引文
[1]江苏新医学院.中药大辞典[M].上册.上海:上海科学技术出版社,1986.
    [2]祁银德,任玉凤.岭南地区习用中药岗梅研究进展[J].亚太传统医药,2009,5(3):29-32.
    [3]王宁生,冯美蓉,赵萍,等.岗梅根化学成分定性鉴别及其方法的探讨[J].广州中医学院学报,1991,1:28-30.
    [4]李敏华,俞世杰,杜上剑[J].岗梅根的化学成分研究.中草药,1997,28(8):454-456.
    [5]Lei Wang, Yan Cai, Xiao-Qi Zhang, et al. New triterpenoid glycosides from the roots of Ilex asprella [J]. Carbohydrate Research,2012,349 (15):39-43.
    [6]张志耕,中国植物志[M].Beijing:Science and Technology Press,71 (2):60.
    [7]谢郁峰,孙崎.冬青属植物成分及活性研究的进展[J].中药材,1997,20(5):26-28.
    [8]解军波,李萍.冬青属植物化学成分及药理活性研究进展[J].中草药,2002,22(1):85-88.
    [9]ZU-JIAN WU, MING-AN OUYANG, CONG-ZHOU WANG, et al. Anti-Tobacco Mosaic Virus (TMV) Triterpenoid Saponins from the Leaves of Ilex oblonga [J]. J. Agric. Food. Chem,2007, 55,1712-1717.
    [10]Guang-bo Xie, Lian-di Lei, Peng-fei Tu. Complete assignments of 1H and 13C NMR spectroscopic data for two new triterpenoid saponins from Ilex pernyi [J]. Magn. Reson. Chem,2007,45:997-1000.
    [11]Guang-Bo XIE, Si-Xiang ZHOU, Ya-Nan LU, et al. Triterpenoid Glycosides from the Leaves of Ilex pernyi [J]. Chem. Pharm. Bull 2009,57 (5):520-524.
    [12]Cui-Xian Zhang, Chao-Zhan Lin, Tian-Qin Xiong, et al. New triterpene saponins from the root of Ilex pubescens [J]. Fitoterapia.2010,81:788-792.
    [13]Si-Xiang Zhou, Jun-Shan Yang, Fu-Cheng Liua, et al. Triterpenoids from the Leaves of Ilex hainanensis [J]. Helvetica Chimica Acta 2007,90(1):121-127.
    [14]Taketa lexandre T, Gnoatto imone C B, Gosmann Grace, et al. Triterpenoids from Brazilian Ilex Species and Their in Vitro Antitrypanosomal Activity [J]. Journal of Natural Products,2004,67(10):1697-1700.
    [15]Li Tang, Yong Jiang, HaiTao Chang, et al. triterpene sponins from the leaves of ilex kudingcha [J]. J. Nat. Prod,2005,68:1169-1174.
    [16]Zhi-Hong Jiang, Jing-Rong Wang, Min Li, et al. Hemiterpene Glucosides with Anti-Platelet Aggregation Activities fromllex pubescens [J]. J. Nat. Prod 2005,68 (3): 397-399.
    [17]Hiroyuki fucino, Hironori Tachibana, Nobutoshi Tananka. three new hemiterpene glycosides from ilex macropoda [J]. Chem Pharm Bull,1997,45 (9):1533-1535.
    [18]Xiao-Qing Chen, Ke Zan, Jie Yang, et al. A novel flavanone from Ilex Hainanensis Merr [J]. Natural Product Research,2009,23 (5):442-447.
    [19]Lu-Jun Li, Yue Zhang, Peng Zhang, et al. Flavans from the leaf of I1ex Centrochinensis [J]. Journal of Asian Natural Products Research,2011,13 (4):367-372.
    [20]Anastasia Karioti, Anna Rita Bilia, Chiara Gabbiani, et al. Proanthocyanidin glycosides from the leaves of Quercus ilex L [J]. Tetrahedron Letters 2009,50:1771-1776.
    [21]林立冬,秦国伟,徐任生.华中冬青的化学成分研究[J].植物学报,1994,36(5):393-397.
    [22]Yan Li, Tao Wu, Zhi-hong Chen, et al. New Triterpene Saponins and Flavonol Glycosides from the Leaves of Ilex corunta [J]. Chinese Journal of Chemistry,2006,24 (4):577-579.
    [23]杨鑫,丁怡,张东明.毛冬青中木质素苷类化学成分的研究[J].中国中药杂志,2007,32(5):1303-1305.
    [24]年进兴.中药毛冬青抗HIV活性成分研究[D].北京:中国人民解放军军事医学科学院,2005.
    [25]Ai-Lian Zhang, QI Ye, Bo-Gang Li, et al. Phenolie and triterpene glyeosides from the stems of Ilex litseaefoli [J]. J. Nat. Prod,2005,68:1531-1535.
    [26]X. Yang, Y. Ding, Z.-H Sun, et al. Studies on chemical constituents from Ilex pubescens [J]. Journal of Asian Natural Products Research,2006,8 (6):505-510.
    [27]Saldana Marleny D. A., Mohamed Rahoma S., Baer, Martin G., et al. Extraction of Purine Alkaloids from Mate (Ilex paraguariensis) Using Supercritical CO2 [J]. Journal of Agricultur-al and Food Chemistry,1999,47 (9):3804-3808.
    [28]Dong-Xu Wen, Zhong-Liang Chen. A dimeric sinapaldehyde glueoside from Ilex routunda [J]. phytochemistry,1996,41 (2):657-659.
    [29]秦文娟,焦钟音,范志同.秃毛冬青化学成分的研究.药学学报[J].1980,15(11):669-673.
    [30]Fabio D P A Arbutin-2'-sulphonyl from the infusion of Ilex theezans leaves [J]. Fitoterapia,2004,75 (7):782-784.
    [31]Lutfun Nahar, Wendy R.Russell, Moira Middleton, et al. Antioxidant phenylacetic acid derivatives from the seeds of llexa quifolium [J]. Acta. Pharm,2005,55:187-193.
    [32]Strassmann Betina B, Vieira Ana R, Pedrotti Enio L, et al. Quantitation of methylxanthinic alkaloids and phenolic compounds in mate (Ilex paraguariensis) and their effects on blood vessel formation in chick embryos [J]. Journal of agricultural and food chemistry 2008,56 (18):8348-8353.
    [33]Munehiro Nakatani, Yuji Miyazaki, Takashi Iwashita, et al. Triterpenes from Ilex rotunda fruits [J]. Phytochemistry,1989,28 (5):1479-1482.
    [34]Keiichi Nishimura, Toshiyuki Fukuda, Toshio Miyase, et al. Activity-Guided Isolation of Triterpenoid Acyl CoA Cholesteryl Acyl Transferase (ACAT) Inhibitors from Ilex kudincha [J]. J. Nat. Prod.,1999,62:1061-1064.
    [35]中山医学院第一附属医院外科.毛冬青对兔离体器官血管作用的实验及其在断肢再植中的临床应用.中华医学杂志[J].1974,54(2):97-100.
    [36]朱伟群,晏桂华,李沛波.岗梅水提取物抗炎作用的实验研究[J].广东药学院学报,2007,23(3),304-306.
    [37]罗荣敬,陈洁文,周乐全,等.毛冬青甲素对心血管功能及其神经调节的影响[J].中药新药与临床药理,1995,6(4):30-33.
    [38]陈根成,杨志敏,黄培新,等.毛冬青甲素对实验性高血压性脑出血大鼠血压的影响[J].广东中医药大学学报1996,13(3):61-62.
    [39]M uccillo BaischAL, Johnston K B, Paganini Stein F L, et al. Endo thelium-dependent vaso relaxing activity of aqueous extraets of ilex paraguariensis on mesenteric arterial bed of rats [J]. J Ethnopharmacol,1998,60 (2):133-139.
    [40]Xiang HL, Xu HD, Tian W Y, et al. An experimented study on the effeets of China Ilex kudincha on hypelipidemia in mice [J]. China J Chin Mater Med,1994,19:497-498.
    [41]ChenY, Li KS, xie TG. Hypotensive action of the extraet of kudingeha dong qing ye (Ilex kudingeha) [J]. Chin Tradit Herb Drugs,1995,26:250-252.
    [42]吕江陵,刘惠纯.苦丁茶浓缩袋泡剂对肥胖症大鼠小肠绒毛影响的电镜研究[J].中药材,1999,22(12):641-642.
    [43]Anastasia karioti, Anna rita Bilia, Chiara Gabbiani, et al. Proanthocyanidin glycosides from the leaves of Quercus ilex L. (Fagaceae) [J]. Tetrahedron Letters,2009, 16 (50):1771-1776.
    [44]A. Berahou, A. Auhmani, N. Fdil, et al. Antibac.erial activity of Quercus Ilex bark's extracts [J]. J Ethnopharmacology,2007,25:426-429.
    [45]朱伟群,刘汉胜,晏桂华等.岗梅水提取物抗流感病毒的实验研究[J].热带医学杂志,2007,7(6):555-557.
    [46]Sirima Puangpraphant, Elvira Gonzalez de Mejia. Saponins in Yerba Mate Tea(ilex paraguariensis A. St.-hil) and Quercetin Synergistically Inhibi iNOS and COX-2 in Lipopolysaccharide-Induced Macrophages through NF kB pathways [J]. J Agric, Food Chem. 57(19),2009:8873-8883.
    [47]Y. Kashiwada, De-Cheng Zhang, Yuh-Pan Chen, et al. Antitumor Agents,145. Cytotoxic Asprellic A and C and Asprellic Acid B, New p-Coumaroyl Triterpenes, form Ilex asprella [J]. J. Nat. Prod,56 (12),1993:2077-2082.
    [48]Elvira Gonzalez de Mejia, Young Soo Song, Marcovinicio Ramirez-Mares, et al. Effect of Yerba Mate (Ilex paraguariensis)Tea on Topoisomerase Inhibution and Oral Carinoma Cell Proliferation [J]. J. Agric. Food. Chem,53(6),2005:1966-1973.
    [49]Vitor A. Kerber, Tatiana S. Gregianini, Jucuara T. Paranhos, et al. Brachycerine, a Novel Monoterpene Indole Alkaloid from Psychotria brachyceras [J].2001,64,677-679.
    [50]V. A. Kerber, C. S. Passos, H. Verli, et al. Psychollatine, a Glucosidic Monoterpene Indole Alkaloid from Psychotria umbellate [J]. J Nat Prob,2008,71:697-700.
    [51]Lee KH, YM Lin, TS Wu, et al. Antitumor agents. LXXXVIII. The cytotoxic principles of Prunella vulgaris, Psychotria serpens, and Hyptiscapitata:ursolic acid and related derivatives [J]. Planta Med,1988,54:308-311.
    [52]Gregianini TS, VC Silveira, DD Porto, et al. The alkaloid brachycerine is induced byultraviolet radiation and is a singlet oxygen quencher [J]. Photo chem Photobiol, 2003,78:470-474.
    [53]Nepokroeff M, Bremer B, Kenneth J S, et al. Reorganization of the genus Psychotria and tribe Psychotrieae (Rubiaceae) inferred from ITS and rbcL sequence data [J]. Syst Bot,1999,24:25-27.
    [54]Lopes S, GL von Poser, VA Kerber, et al. Taxonomic significance of alkaloids and iridoid glucosides in the tribe Psychotrieae (Rubiaceae) [J]. Biochem Syst Ecol,2004, 32:1187-1195.
    [55]Ame'lia T. Henriques, Sl'lvia 0. Lopes, Jucara T. Paranhos, et al. N, b-d-Glucopyranosyl vincosamide, a light regulated indole alkaloid from the shoots of Psychotria leiocarpa [J]. Phytochemistry,2003,65,449-454.
    [56]J. H. A. Paul, A. R. Maxwell, W. F. Reynolds. Novel Bis (monoterpenoid) Indole Alkaloids from Psychotria bahiensis [J]. J Nat Prod,2003,66:752-754.
    [57]Antonia Torres A'vila Pimenta, Raimundo Braz-Filho, Piero Giuseppe Delprete, et al. Structure elucidation and NMR assignments oftwo unusual monoterpene indole alkaloids from Psychotria stachyoides [J]. Magn. Reson. Chem.2010,48,734-737.
    [58]Martin Bernhard, Hannes Fasshuber, Wolfgang Robien, et al. Dopamine-iridoid alkaloids in Carapichea affinis (Psychotria borucana) confirm close relationship to the vomiting root Ipecac [J]. Biochemical Systematics and Ecology,2011,39:232-235.
    [59]Achenbach Hans, Lottes Monika, Waibel Reiner, et al. Alkaloids and other compounds from Psychotria correae [J]. Phytochemistry (1995),38 (6),1537-1545.
    [60]Hua Zhoua, Hong-Ping He, Yue-Hu Wang, et al. A New Dimeric Alkaloid from the Leaf of Psychotria calocarpa [J]. Helvetica Chimica Acta,2010,93 (8),1650-1652.
    [61]Matsuda Yohei, Kitajima Mariko, Takayama Hiromitsu. First Total Synthesis of Trimeric Indole Alkaloid, Psychotrimine [J]. Organic Letters (2008),10 (1),125-128.
    [62]Li Xiao-Ning, Zhang Yu, Cai Xiang-Hai, et al. Psychotripine:A New Trimeric Pyrroloindoline Derivative from Psychotria pilifera [J]. Organic Letters,2011,13 (21): 5896-5899.
    [63]Jannic Valerie, Gueritte Francoise, Laprevote Olivier, et al. Pyrrolidinoindoline Alkaloids from Psychotria oleoides and Psychotria lyciiflora [J]. Journal of Natural Products,1999,62 (6):838-843.
    [64]PABLO N SOLiS, ANGEL G. RAVELO, J. ANTONIO PALENZUELA, et al. QUINOLINE ALKALOIDS FROM PSYCHOTRIA GLOMERULATA [J]. Phytochemistry 1997,44 (5),963-969.
    [65]Verotta Luisella. Pilati Tullio, Tato, Marco, et al. Pyrrolidinoindoline Alkaloids from Psychotria colorata [J]. Journal of Natural Products,1998,61 (3),392-396.
    [66]J. M. M. Andrade, R. Biegelmeyer, C. A. G. Xavier, etal. ESSENTIAL OIL CONSTITUENTS OF Psychotria leiocarpa [J]. Chemistry of Natural Compounds,2010,46 (4):649-650.
    [67]林晓丹,向俊,陆慧宁,等.山大颜挥发油化学成分初步研究[J].广东药学院学报,2010,26(4)337-340.
    [68]Benevides Paulo Jose Coelho, Young Maria Claudia Marx, Bolzani Vanderlan da Silva. Biological activities of constituents from Psychotria spectabilis [J]. Pharmaceutical Biology (Lisse, Netherlands),2004,42 (8),565-569.
    [69]Hayashi T, Smith F T, Lee K H, et al. Antitumor agents.89. Psychorubrin, a new cytotoxic naphthoquinone from Psychotria rubra and its structure-activity relationships [J]. J Med Chem,1987,30:2005-2008.
    [70]张翠仙,彭光天,何细新,等.九节属药用植物Psychotria sp.化学成分分析(1)[J].中山大学学报,2010,49(4):147-149.
    [71]Witherup Keith M, Bogusky Michael J, Anderson Paul S, et al. Cyclopsychotride A, a biologically active,,31-residue cyclic peptide isolated from Psychotria longipes [J]. Journal of Natural Products,1994,57(12),1619-1625.
    [72]Samantha L. Gerlach, Ramesh Rathinakumar, Geetika Chakravarty, et al. Anticancer and Chemosensitizing Abilities of Cycloviolacin O2 from Viola odorata and Psyle Cyclotides from Psychotria leptothyrsa [J]. Biopolymers,2010,94 (5),617-625.
    [73]Lee Kuo Hsiung, Lin Yuh Meei, Wu, Tian Shung. Antitumor agents. LXXXVIII. The cytotoxic principles of Prunella vulgaris, Psychotria serpens, and Hyptis capitata: ursolic acid and related derivatives [J]. Planta Medica 1988,54 (4),308-11.
    [74]Roth A, Kuballa B, Cabalion P, et al. Preliminary study of the alkaloids of Psychotria Forsteriana [J]. Planta Med,1985,3:289-292.
    [75]Yuh-Chi Kuo, Chien-Chih Chen, Wei-Jern Tsai, et al. Regulation of herpes simplex virus type 1 replication in Vero cells by Psychotria serpens:relationship to gene expression, DNA replication, and protein synthesis [J]. Antiviral Res,2001,51 (2): 95-109.
    [76]Khan M R, Kihara M, Omoloso A D. Antimicrobial activity of Psychotria microlabastra [J]. Fitoterapia,2001,2 (7),818-821.
    [77]Tarsila Maria da Silva Moraes, Marlon Heggdorne de Araujo, Natalia R. Bernardes, et al. Antimycobacterial Activity and Alkaloid Prospection of Psychotria Species (Rubiaceae) from the Brazilian Atlantic Rainforest [J]. Planta Med,2011,77:964-970.
    [78]Gerlach, Samantha L, Rathinakumar, Ramesh, Chakravarty, Geetika, et al. Anticancer and chemosensitizing abilities of cycloviolacin 02 from Viola odorata and psyle cyclotides from Psychotria leptothyrsa [J]. Biopolymers,2010,94 (5),617-625.
    [79]Locher C P, Burch M T, Mower H F, et al. Anti-microbial activity and anti-complement activity of extracts obtained from selected Hawaiian medicinal plants [J]. J Ethnopharm, 1995,49:23-32.
    [80]Verotta L, Orsini F, Sbacchi M, et al. Synthesis and antinociceptive activity of chimonanthines and pyrrolidinoindoline-type alkaloids [J]. Bioorganic & Medicinal Chemistry,2002,10 (7),2133-2142.
    [81]Schultes R.E, Raffauf R. F. The Healing Forest [J]. Portland, OR:Dioscorides Press, 1990,392-396.
    [82]Caballero GC, Vanderheyden P M, Solis P N, et al. Biological screening of selected medicinal Panamanian plants by radioligand-binding techniques [J]. Phytomed:Int J Phytother phytopharm,2001,8:59-70.
    [83]Itoh A, Baba Y; Tanahashi T; Nagakura N. Ipecac alkaloids from Cephaelis acuminate [J]. Phytochemistry,1999,52:1169-1176.
    [84]Itoh A, Tanahashi Takao, Nagakura Naotaka, et al. Tetrahydroisoquinoline -monoterpene glucosides from Alangium lamarckii and Cephaelis ipecacuanha [J]. Phytochemistry,1994, 36:383-387.
    [85]Itoh A, Tanahashi Takao, Nagakura Naotaka. Six tetrahydroisoquinoline -monoterpene glucosides from Cephaelis ipecacuanha [J]. Phytochemistry,1991,30:3117-3123.
    [86]Lajis Nordin H, Mahmud Zurinah, Toia R FT. he alkaloids of Psychotria rostrata [J]. Planta Med,1993,59:383-384.
    [87]Ohsugi M, Fan W, Hase K, et al. Active-oxygen scavenging activity of traditional nourishing-tonic herbal medicines and active constituents of Rhodiola sacra [J]. J Ethnopharm,1999,67:111-119.
    [88]Na(?)la Cannes do Nascimento, Variluska Fragoso, Dinara Jaqueline Moura, et al. Antioxidant and Antimutagenic Effects of the Crude Foliar Extract and the Alkaloid Brachycerine of Psychotria brachyceras [J]. Environmental and MolecularMutagenesis 2007, 48:728-734.
    [89]Yoshinori sato, Yuriko Takashima, Yasuko Okamoto, et al. Two New Norursane-Type Triterpenoids from Dipsacus Chinensis Collected in China [J]. The Chemical Society of Japan,2012,24 (5):372-373.
    [90]YW Leong, LJ harrison, AD powell, Phenanthrene and other aromatic constituents of Bulbophyllum vaginatum [J]. Phytochemistry,1999,50:1237-1241.
    [91]MAARIT KARONEN, MARI HAMALAINEN, RIINA NIEMINEN, et al. Phenolic Extractives from the Bark of Pinus sylvestris L. and Their Effects on Inflammatory Mediators Nitric Oxide and Prostaglandin E2. [J], J. Agric. Food Chem.,2004,52:7532-7540.
    [92]Amelia P. Guevara, Clara Y. Lim-Sylianco, Fabian M. Dayrit, et al. Acylglucosyl sterols from momordicda charantia[J]. Phytochemistry,1989,28 (6):1721-1724.
    [93]F. Cateni, J. Zilic, G. Falsone, et al. Preliminary biological assay on cerebroside mixture from Euphorbia nicaeensis All. Isolation and structure determination of five glucocerebrosides [J]. I1 Farmaco,2003,58:809-817.
    [94]Maarit Karonen, Mari Hamalainen, Riina Nieminen, et al. Phenolic Extractives from the Bark of Pinus sylvestris L. and Their Effects on Inflammatory Mediators Nitric Oxide and Prostaglandin E2 [J]. J. Afric. Food. Chem,2004,52:7532-7540.
    [95]Y. Nakasone, K. Takara, K. Wada, et al. Antioxidative Copounds Isolated from Kokuto, Non-centrifugal Cane Sugar [J]. Biosci Biotech Biochem,,1996,60 (10):1714-1716.
    [96]Tomoko Yagi, Masuo Morisaki, Tetsuo Kushiro, et al. Biosynthesis of 24β-alkyl-△25-Sterols in hairy roots of Ajuga Reptand VAR. Atropurpurea [J]. Phytochemistry,1996, 41 (4):1057-1064.
    [97]Hak Cheol Kwon, Young Duk Min, Kyung Ran Kim, et al. A new Acylglycosyl Sterol from Quisqualis Fructus [J]. Arch Pharm Res, Vol,2003,26 (4):275-278.
    [98]Ansgar Stratmann, Taifo Mahmud, Sungsook Lee, et al. The AcbC Protein from Actinoplanes Species Is a C7-cylitol Synthase Related to 3-Dehydroquinate Synthases and is Invoved in the Bisosynthesis of the α-Glucosidase inhibitor Acarbose[J]. Journal of Biological Chemistry,1999,274:10889-10896.
    [99]Peck Wah Khong, Keith G. Lewis. Acetyl Migration in Urs-12-ene-3a,24-diol [J]. Aust. J. Chem.,1975,28:201-206.
    [100]Teresa W.-M. Fan, Richard M. Higashi, Andrew N. Lane, et al. Combined use of 1H-NMR and GC-MS for metabolite monitoring and in vivo 1H-NMR assignments [J]. Biochimica et Biophysica Acta(BBA)-General Subjects,1986,882 (2):154-167.
    [101]Surajit Sinha, Bhubaneswar Mandal, Srinivasan Chandrasekaran.3-methoxy and 3, 5-dimethoxy benzoic acids with n-butyl lithium-potassium tert-butoxide (LIC-KOR): synthesis of 3,5-dimethoxy-4-methyl benzoic acid [J]. Tetrahedron Letters,2000,41 3157-3160.
    [102]Fang-Rong Chang, Ya-Chieh Chao, Che-Ming Teng, et al. Chemical Constituents from Cassytha filiformis II[J]. J. Natural Products,1998,61 (7):863-866.
    [102]Amelia P. Guevara, Clara Y. Lim-Sylianco, Fabian M. Dayrit, et al. Acylglucosyl sterols from Momordica charantia [J]. Phytochemistry,1989,28:1721-1724.
    [103]Takeshi Deyama, Takako Ikawa, Sansei Nishibe. The constituents of Eucommia ulmoides Oliv.II Isolation and structure of three new lignan glycosides[J]. Chem Pharm Bull., 1985,33:3651-3657.
    [104]CJ Zheng, J Pu, H Zhang, et al. Sesquiterpenoids and norterpenoids from Vitex negundo [J]. Fitoterapis,2012,83:49-54.
    [105]W Peng, T Han, Y Wang, et al. chemical constituents of the aerial part of atractylodes macrocephala [J]. chemistry of natural compounds,2011,46 (6):959-960.
    [106]Hisahiro KAI, Masaki BABA, Toru OKUYAMA, Two New Megastigmanes from the Leaves of Cucumis sativus [J]. Chem. Pharm. Bull.2007,55 (1):133-136.
    [107]ZZ He, AJ Zhang, LH Ding, et al. Chemical composition of the green alga Codium Divaricatum Holmes [J]. Fitoterapis,2010,81:1125-1128.
    [108]ST Tan, Alistair L, Wilkins, Patrick T Holland, Isolation and X-Ray Crystal Structure of E)-4-(r-1', t-2', c-4'-trihydroxy-2',6',6'-trimethyl-cyclohexyl)but-3-en-2-one,a Constituent of New Zealand Thyme Honey [J]. Aust. J. Chem.,1989,42:1799-1804.
    [109]Jari Sinkkonnen, Maarit Karonen, Jaana Liimatainen, et al. Spectral Assignments and Reference Data [J]. Magn. Resom. Chem,2006,44:633-636.
    [110]Yoshio TAKEDA, Hideko SHIMIDZU, Kenta MIZUNO, et al, An Iridoid Glucoside Dimer and a Non-glycosidic Iridoid from the Leaves of Lasianthus wallichii [J]. Chem. Pharm. Bull,2002,50:1395-1397.
    [111]Tzong Huei LEE, Shoei Sheng LEE, Yuh Chi Kuo, et al. Monoterpene Glycosides and Triterpene Acids from Eriobotrya Deflexa [J]. J. Nat. Prod.2001,64:865-869.
    [112]Maite Rodriguez-Diaza, Carla Delportea, Carlos Cartagena, et al. Topical anti-inflammatory activity of quillaic acid from Quillaja saponaria Mol. and some derivatives [J]. Journal of Pharmacy and Pharmacology,2011,63:718-724.
    [113]Salvatore de Rosa, Carmine Iodice, Maya Mitova, et al. Triterpene saponins and iridoid glucosides from Galium rivale [J]. Phytochemistry,2000,54:751-756.
    [114]THUSHARA K. K. DIYABALANAGE, G. PERCY WANNIGAMA, ARUNA WEERASURIY, et al. URSENE CARBOXYLIC ACIDS OF UNCARIA ELLIPTICA [J]. Phytochemistry,1995,40:1311-1312..
    [115]Yumiko Yamano, Masayoshi Ito. Synthesis of Optically Active Vomifoliol and Roseoside Stereoisomers [J]. Chem. Pharm. Bull,2005,53 (5):541-546.
    [116]Dong Seok Cha, Tae Yong Shin, Jae Soon Eun, et al. Anti-metastatic Properties of the Leaves of Eriobotrya japonica [J]. Arch Pharm Res.,2011,34 (3):425-436.
    [117]YW Leong, LJ harrison, AD powell, Phenanthrene and other aromatic constituents of Bulbophyllum vaginatum [J]. Phytochemistry,1999,50:1237-1241.
    [118]Jyotirmoy Ghosh, Joydeep Das, Prasenjit Manna, et al. Arjunolic acid, a triterpenoid saponin, prevents acetaminophen (APAP)-induced liver and hepatocyte injury via the inhibition of APAP bioactivation and JNK-mediated mitochondrial protection [J]. Free Radical Biology & Medicine.2010,48:535-553.
    [119]S. Hammami, H. Ben Jannet, A. Bergaoui, et al, Isolation and Structure Elucidation of a Flavanone, a Flavanone Glycoside and Vomifoliol from Echiochilon Fruticosum Growing in Tunisia [J]. Molecules,2004,9:602-608.
    [120]Jeong EJ, Cho JH, Sung SH, et al. Inhibition of nitric oxide production in lipopolysaccharide-stimulated RAW264.7 macrophage cells by lignans isolated from Euonymus alatus leaves and twigs [J]. Bioorg Med Chem Lett,2011,21:2283-2286.
    [121]Li SH, Zhang HJ, Niu XM, et al. Chemical Constituents from Amentotaxus yunnanensis and Torreya yunnanensis [J]. J Nat Prod,2003,66(7):1002-1005.
    [122]Xie, LH, Akao T, Hamasaki K., et al. Biotransformation of Pinoresinol Diglucoside to Mammalian Lignans by Human Intestinal Microflora, and Isolation of Enterococcus faecalis Strain PDG-1 Responsible for the Transformation of (+)-Pinoresinol to (+)-Lariciresinol [J]. Chem Pharm Bull,2003,51(5):508-515.
    [123]Hanawa F, Shiro M, Hayashi Y. Heartwood constituents of Betula maximowicziana [J]. Phytochemistry,1997,45(3):589-595.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700