正交波形MIMO雷达信号设计及处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多输入多输出(MIMO)雷达概念先后由麻省理工学院林肯实验室、贝尔实验室和新泽西技术研究所等单位提出,近年来得到了广泛研究,成为雷达领域理论和实验研究的热点。
     通常MIMO雷达的各个发射天线(或子阵、或阵元)分别发送相互正交的信号,在空间形成低增益宽波束;各个接收天线(或子阵,或阵元)独立地接收信号然后通过信号处理实现信号的合成和积累,称为正交波形MIMO雷达(以下简称正交MIMO雷达)。
     正交MIMO雷达在目标检测性能、角度测量能力、动态范围和主瓣低截获概率特性等方面优于传统雷达。正交MIMO雷达的波形直接影响雷达的最终性能,只有具有良好特性的波形才能充分发挥MIMO雷达的探测潜力,因此正交波形设计成为正交MIMO雷达系统的重要研究课题。近年来已有一些对正交MIMO雷达波形设计的研究,但现有研究结果在使用中受到不同程度的限制。
     本文针对正交MIMO雷达波形设计及相关的信号处理进行了深入研究,主要工作和贡献如下:
     1、正交多频信号设计及处理。研究了通用的正交多频信号形式,列举了几种可能的类型,指出常规OFDM-LFM和正交多相编码均为其特例。提出了针对多频信号的多普勒模糊分辨技术、多普勒积累方法和高分辨多普勒处理算法,并对它们的性能进行了理论或仿真分析。引入多载波相位编码(MCPC)信号及其调幅形式到MIMO雷达中,并给出了一种快速的脉压方法。
     2、正交噪声信号设计。提出了改善雷达探测性能的噪声信号产生和优化方法。特别地,引入了谱成形技术优化旁瓣和提出了一种控制信号峰值因子的非线性映射,通过调节映射函数的参数能够得到不同的峰值因子。同时又借助于噪声信号本质上具有的良好互相关特性,设计结果的相关性能较现有的MIMO雷达信号如正交离散频率编码信号(DFCW)、正交多相编码信号等得到显著提高。
     3、正交混沌信号设计。研究了混沌系统参数和初值与雷达探测性能的关系。给出了系统参数优化准则和初值选择的方法,改变模拟信号带宽的两种方法并对滤波处理进行了研究。在具体设计时,首先选择适合雷达基本探测要求的混沌系统及其参数产生信号胚,根据探测要求设计信号带宽,然后通过信号处理优化方法,产生适合正交MIMO雷达探测的信号集。
     4、步进时间间隔脉冲串(STIPT)波形设计及其信号处理。提出了一种特殊的时间编码信号及其对应的信号处理算法(MCA)。给出了相干MCA处理和双极性非相干MCA处理两种实现结构。相干MCA利用FFT实现快速处理,能够同时无模糊地进行目标距离和多普勒测量;双极性非相干MCA处理运算简单,能够用于不需要多普勒信息、常规非相干雷达或简易雷达系统中。
     5、基于STIPT信号的正交编码波形设计。提出了三种正交STIPT编码方法,即正交频分编码、正交参差间隔编码和正交随机间隔编码。针对参差间隔编码方法,给出了设计的基本原则并提供了一个设计示例,能够得到理想的距离旁瓣特性。针对正交随机间隔编码模式,提供了一个仿真实验,结果表明通过该方法能够设计较大数量具有优良特性的正交波形,自相关峰值旁瓣电平和互相关峰值电平优于-30dB。
     上面研究的正交MIMO雷达波形设计及其相关的信号处理方法可直接或经过少量修改应用于双基地、多基地雷达系统中。部分波形的单信号版本,如优化的噪声信号、混沌信号和STIPT信号等,可作为常规雷达的信号,以改进现有雷达的探测性能。
The term of multiple-input multiple-output (MIMO) radar has recently been introduced by MIT Lincoln Laboratory, Bell Laboratory and New Jersey Institute of Technology. MIMO radar has been extensively studied in recent years and has become a hot topic of theoretical researches and experiments in the field of radar.
     In the MIMO radar, all transmitting elements generally send different signals, form a low-gain wide-beam in spatial domain; and all receive elements receive echoes independently and then perform synthetic processing and integration. MIMO radar operated with orthogonal waveforms is called orthogonal waveform MIMO radar.
     Orthogonal waveform MIMO radar has some advantages on target detection, angle measurement capability and low probability of intercept (LPI) compared with the traditional radar. The performance of orthogonal MIMO radars is partly decided by characteristics of waveforms. Hence, orthogonal waveform design becomes a significant research subject and only excellent waveforms can exploit the potential of MIMO radars. In recent years, some orthogonal waveforms for MIMO radars have been derived. These results, whereas to some extent, have some limits on performance.
     In this dissertation, orthogonal waveforms and corresponding signal processing techniques for MIMO radar are explored. The main contributions are summarized as follows.
     1 Orthogonal multi-frequency signals design and processing. A general orthogonal multi-frequency signal form is researched, several possible types are listed. Conventional OFDM-LFM and orthogonal polyphase coding are its special cases. Doppler ambiguous resolusion, Doppler integration and high resolution Doppler processing approaches and their performance analyses are presented for multi-frequency signal. In addition, multi-carrier phase coded-amplitude modulation signal is suggested for MIMO radar and corresponding fast pulse compression approach is also presented.
     2 Orthogonal noise waveforms design. Some generation and optimization methods for noise are presented. In particular, spectrum shaping-based sidelobe mitigation and nonlinear bending function mapping-based crest factor reduction techniques are proposed. Due to the noise nature, optimized noise is suitable for orthogonal waveforms generation. The design results are much better than orthogonal discrete frequency coding waveform and orthogonal polyphase coding.
     3 Orthogonal chaotic signals design. The relations between chaotic signal and radar performance are analyzed by the help of the sensitivity to initial conditions and system parameters. Specially, parameters'optimation, selection of initial values and design of band width, and pre-filtering are researched. Chaotic radar signals are generated through designing parameters of chaos system for good signal embryos and band width of signals, and utilizing a set of optimizing algorithms.
     4 Stepped time intervals pulse train (STIPT) waveform design and corresponding processing. The range sidelobes are eliminated through modified correlation algorithm (MCA). Coherent MCA and Manchester code-based non-coherent MCA architectures are presented. Coherent MCA performs fast processing by using FFT and can obtain unambiguous range and Doppler measurements. The non-coherent MCA can be used in simple or conventional noncoherent radar systems.
     5 Orthogonal STIPT-based waveforms design. Three orthogonal STIPT-based coding methods, frequency divided STIPT coding, stagger interval STIPT coding and random interval STIPT coding, are proposed for orthogonal MIMO radar waveform generation. The design principle and an example are presented to obtain a perfect range sidelobe performance from stagger interval STIPT coding. A simulation is presented to achieve a large number of orthogonal waveforms from random interval STIPT coding. Both the peak of autocorrelation sidelobe level and the peak of cross-correlation level of these resulted waveforms are superior to -30dB.
     The above proposed orthogonal waveforms can be used in MIMO radar systems; also can be used to bistatic, multistatic or netted radar systems straightly or through minor modifications. The single waveform versions of some orthogonal signals can be used in the conventional monostatic radar to improve the radar performance.
引文
[1]Hertz H R. Electric waves:being researches on the propagation of electric action with finite velocity through space (translated by David Evans Jones). New York:Cornell University Library, 1893
    [2]Guerlac H. Radar in World War Ⅱ. New York:American Institute of Physics, Tomash Publishers, 1987
    [3]Swords S S. Technical history of the beginnings of RADAR. London:Peter Peregrinus Ltd.,1986
    [4]Brown L. A Radar History of World War II:Technical and Military Imperatives. Bristol:Institute of Physics Publishing,1999
    [5]Hulsmeyer C. Hertzian-Wave Projecting and Receiving Apparatus Adapted to Indicate or Give Warning of the Presence of a Metallic Body, such as a Ship or a train, in the Line of Projection of such Waves. UK patent 13170.1904
    [6]Mahafza B R, Elsherbeni A Z. MATLAB simulations for radar systems design. Boca Raton, FL: CRC Press/Chapman & Hall,2004
    [7]Skolnik M I. Introduction to radar systems. New York:McGraw-Hill,2001
    [8]Barton D K. Radar system analysis and modeling. Boston:Artech House,2005
    [9]Curry G R. Radar system performance modeling. Boston:Artech House,2005
    [10]Skolnik M I. Radar handbook. New York:McGraw-Hill,2008
    [11]Pace P E. Detecting and classifying low probability of intercept radar. Boston:Artech House,2004
    [12]陈祝明.软件无线电技术基础.北京:高等教育出版社,2007
    [13]张明友.数字阵列雷达和软件化雷达.北京:电子工业出版社,2008
    [14]保铮.雷达信号的长时间积累.第七届全国雷达会议,南京,1999
    [15]张光义,赵玉洁.相控阵雷达技术.北京:电子工业出版社,2006
    [16]严敦善,赵玉洁.中国雷达五十年.现代雷达,1999,21(5):1-5
    [17]Skolnik M I. Fifty years of radar. Proc. the IEEE,1985,73(2):182-197
    [18]Holpp W. The Century of Radar.2009
    [19]SKolnik M I.雷达系统导论.北京:电子工业出版社,2006
    [20]Alamouti S M. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications,1998,16(8):1451-1458
    [21]Foschini G J. Layered space-time architecture for wireless communications in a fading environment when using multiple antennas. Bell Labs Technology Journal,1996,1(2):41-59
    [22]Gesbert D, Bolcskei H, Gore D A and et al. Outdoor MIMO wireless channels:models and performance prediction. IEEE Transactions on Communications,2002,50(12):1926-1934
    [23]Loyka S, Kouki A. On MIMO channel capacity, correlations, and keyholes:analysis of degenerate channels. IEEE Transactions on Communications,2002,50(12):1886-1888
    [24]Tarokh V, Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communication:performance criterion and code construction. IEEE Transactions on Information Theory,1998,44(2):744-765
    [25]Alter J J, White R M, Kretschmer F F and et al. Ubiquitous radar:an implementation concept. In Proc. IEEE Radar Conference,2004, vol.1:65-70
    [26]Skolnik M I. Improvements for air-surveillance radar. In Proc. IEEE Radar Conference,1999, vol.1:18-21
    [27]Luce A. Experimental results on SIAR digital beamforming radar. In Proc. the IEEE International Radar Conference,1992, vol.1:505-510
    [28]Dorey J, Garnier G, Auvray G. RIAS, Synthetic Impulse and Antenna Radar. In Proc. International Conference on Radar,1999, vol.1:556-562
    [29]保铮,张庆文.一种新型的米波雷达—综合脉冲与孔径雷达.现代雷达,1995,17(1):1-13
    [30]张庆文,保铮.综合脉冲与孔径雷达时空三维匹配滤波及性能分析.电子科学学刊,1994,16(5):481-489
    [31]陈伯孝,张守宏.相位编码信号在稀布阵综合脉冲与孔径雷达中的应用.西安电子科技大学学报,1997,24(3):335-341
    [32]陈伯孝,张守宏.基于稀布阵综合脉冲孔径雷达的长时间相干积累方法.电子科学学刊,1998,20(4):573-576
    [33]陈伯孝,张守宏.稀布阵综合脉冲孔径雷达时域与频域脉冲.综合方法.现代雷达,1998,20(1):12-17
    [34]陈伯孝,张守宏.降低稀布阵综合脉冲孔径雷达距离旁瓣的方法研究.西安电子科技大学学报,1997,24(雷达信号处理专辑):103-108
    [35]张庆文,保铮,张玉洪.稀布阵综合脉冲和孔径雷达的接收信号处理.现代雷达,1992,14(5):32-42
    [36]吴剑旗,阮信畅.稀布阵综合脉冲与孔径雷达主要性能分析.现代电子,1994,48(3):1-6
    [37]何子述,韩春林,刘波.MIMO雷达概念及其技术特点分析.电子学报,2005(B12):2441-2445
    [38]Rabideau D J, Parker P. Ubiquitous MIMO multifunction digital array radar. In Proc. the Thirty-Seventh Asilomar Conference on Signals, Systems & Computers,2003,vol.2:1057-1064
    [39]Fishler E, Haimovich A, Blum R and et al. MIMO radar:an idea whose time has come. In Proc. IEEE Radar Conference,2004, vol.1:71-78
    [40]Brookner E. Phased-array Radars:Past, Astounding Breakthroughs and Future Trends. Microwave Journal,2008,51(1):1-30
    [41]Li J, Stoica P. MIMO Radar with Colocated Antennas. IEEE Signal Processing Magazine, 2007,24(5):106-114
    [42]Haimovich A M, Blum R S, Cimini L J. MIMO radar with widely separated antennas. IEEE Signal Processing Magazine,2008,25(1):116-129
    [43]Rabideau D J, Parker P. Ubiquitous MIMO Multifunction Digital Array Radar and the Role of Time-Energy Management in Radar. MIT Lincoln Laboratory Project Report,2004
    [44]Li J, Xu L, Stoica P and et al. Range Compression and Waveform Optimization for MIMO Radar: A Crammer Rao Bound Based Study. IEEE Transactions on Signal Processing, 2008,56(1):218-232
    [45]Xu L, Li J, Stoica P and et al. Waveform Optimization for MIMO Radar:A Cramer-Rao Bound Based Study. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 2007, vol.2:917-920
    [46]Li J, Stoica P, Xu L and et al. On Parameter Identifiability of MIMO Radar. IEEE Signal Processing Letters,2007,14(12):968-971
    [47]Stoica P, Li J, Xie Y. On Probing Signal Design For MIMO Radar. IEEE Transactions on Signal Processing,2007,55(8):4151-4161
    [48]Fuhrmann D R, Antonio G S. Transmit beamforming for MIMO radar systems using signal cross-correlation. IEEE Transactions on Aerospace and Electronic Systems,2008,44(1):171-186
    [49]Xu L, Li J, Stoica P. Radar imaging via adaptive MIMO techniques. In Proc.14th European Signal Processing,2006
    [50]Xu L, Li J, Stoica P. Adaptive Techniques for MIMO Radar. In Proc. IEEE Workshop Sensor Array and Multichannel Signal Processing,2006, vol.1:258-262
    [51]Tabrikian J. Barankin Bounds for Target Localization by MIMO Radars. In Proc. IEEE Workshop Sensor Array and Multichannel Signal Processing,2006, vol.1:278-281
    [52]Li J. MIMO Radar --Diversity Means Superiority. In Proc.14th Annu. Workshop Adaptive Sensor Array Processing,2006
    [53]Forsythe K W, Bliss D W. Waveform Correlation and Optimization Issues for MIMO Radar. In Proc. the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers,2005, vol.1:1306-1310
    [54]Tabrikian J, Bekkerman Ⅰ. Transmission diversity smoothing for multitarget localization. In Proc. IEEE Internationa] Conference on Acoustics, Speech and Signal Processing,2005,0 vol.4:1041-1044
    [55]Robey F C, Coutts S, Weikle D and et al. MIMO radar theory and experimental results. In Proc. Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004, vol.1:300-304
    [56]Forsythe K W, Bliss D W. Fawcett G S. Multiple-input multiple-output (MIMO) radar: performance issues. In Proc. the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers,2004, vol.1:310-315
    [57]Bekkerman I, Tabrikian J. Spatially coded signal model for active arrays. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing,2004, vol.2:209-212
    [58]Bliss D W, Forsythe K W. Multiple-input multiple-output (MIMO) radar and imaging:degrees of freedom and resolution. In Proc. the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers,2003, vol.1:54-59
    [59]Fishler E, Haimovich A, Blum R S and et al. Spatial diversity in radars-models and detection performance. IEEE Transactions on Signal Processing,2006,54(3):823-838
    [60]Lehmann N H, Fishler E, Haimovich A M and et al. Evaluation of Transmit Diversity in MIMO-Radar Direction Finding. IEEE Transactions on Signal Processing,2007,55(5):2215-2225
    [61]Lehmann N H, Haimovich A M, Blum R S and et al. High Resolution Capabilities of MIMO Radar. In Proc. the Fortieth Asilomar Conference on Signals, Systems and Computers,2006, vol.1:25-30
    [62]Chen C Y, Vaidyanathan P P. A subspace method for MIMO radar space-time adaptive processing. In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing,2007, vol.2:925-928
    [63]Chen C Y, Vaidyanathan P P. MIMO radar space-time adaptive processing using prolate spheroidal wave functions. IEEE Transactions on Signal Processing,2008,56(2):623-635
    [64]Chen C Y, Vaidyanathan P P. Properties of the MIMO radar ambiguity function. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing,2008, vol.1:2309-2312
    [65]Blum R S. Distributed detection for diversity reception of fading signals in noise. IEEE Transactions on Information Theory,1999,48(1):158-164
    [66]Johnsen T, Olsen K E, Johnsrud S and et al. Simultaneous use of multiple pseudo random noise codes in multistatic CW radar. In Proc. IEEE Radar Conference,2004, vol.1:266-270
    [67]Lehmann N. Some Contributions on MIMO Radar:[Ph.D. Dissertation]. NJ:New Jersey Institute of Technology,2006
    [68]Mozzone L, Bongi S, Filocca F. Diversity in multistatic active sonar. In Proc. IEEE Riding the Crest into the 21st Century,1999, vol.2:1058-1063
    [69]Blum R S, Kassam S A, Poor H V. Distributed detection with multiple sensors Ⅱ:Advanced topics. Proc.the IEEE,1997,85(1):64-79
    [70]Seliga T A, Coyne F J. Multistatic radar as a means of dealing with the detection of multipath false targets by airport surface detection equipment radars. In Proc. IEEE Radar Conference,2003, vol.1:329-336
    [71]Viswanathan R, Varshney P K. Distributed detection with multiple sensors I:Fundamentals. Proc.the IEEE,1997,85(1):54-63
    [72]张宇,王建新.MIMO雷达发射波束成形技术研究.南京理工大学学报:自然科学版,2008(3):356-359
    [73]曾建奎,何子述.基于隐马尔可夫模型的MIMO雷达目标检测.电子测量与仪器学报,2008,22(4):17-20
    [74]杨明磊,陈伯孝,张守宏.微波综合脉冲孔径雷达方向图综合研究.西安电子科技大学学报,2007,34(5):738-742
    [75]杨明磊,张守宏,陈伯孝等.多载频MIMO雷达的一种新的信号处理方法.电子与信息学报,2009,23(1):147-151
    [76]杨明磊,陈伯孝,张守宏等.多载频FMCW在MIMO雷达中的应用研究.电子学报,2008,36(12):2351-2356
    [77]徐海洲,吴曼青.MIMO雷达信号模型.现代电子技术,2007,30(23):28-29,32
    [78]夏威,何子述.APES算法在MIMO雷达参数估计中的稳健性研究.电子学报,2008,36(9):1804-1809
    [79]吴向东,赵永波,张守宏等.一种MIMO雷达低角跟踪环境下的波达方向估计新方法.西安电子科技大学学报,2008,35(5):793-798
    [80]王建明,吴道庆.MIMO雷达抗干扰性能分析.航天电子对抗,2006,22(5):48-50
    [81]王敦勇,袁俊泉,马晓岩.基于遗传算法的MIMO雷达离散频率编码波形设计.空军雷达学院学报,2007,21(2):105-107
    [82]万红,李申堂,冯向荣等.基于FM广播的MIMO无源雷达性能分析.现代雷达,2008,30(3):30-36
    [83]屈金佑,游志刚,张剑云.基于多相码的MIMO雷达模糊函数.电路与系统学报,2008,13(5):136-140,84
    [84]曲毅,廖桂生,朱圣棋等.MIMO雷达的目标运动方向及速度估计.西安电子科技大学学报,2008,35(5):781-784
    [85]刘韵佛,刘峥,谢荣.一种基于拟牛顿法的MIMO雷达发射方向图综合方法.电波科学学报,2008,23(6):1188-1193
    [86]刘波,何子述.基于遗传算法的正交多相码设计.电子测量与仪器学报,2008,22(2):62-66
    [87]李征,刘南,陶欢MIMO雷达对分布式目标测向研究.火控雷达技术,2008,20(3):18-21,35
    [88]蒋铁珍MIMO雷达波束综合研究.中国电子科学研究院学报,2008,3(3):317-320
    [89]江胜利,刘中,邓海.基于MIMO雷达的相干分布式目标参数估计Cramer-Rao下界.电子学报,2009,37(1):101-107
    [90]戴喜增,许稼,彭应宁等.MIMO-VSAR及其一种优化的阵列配置.电子学报,2008,36(12):2394-2399
    [91]戴喜增,彭应宁,汤俊.MIMO雷达检测性能.清华大学学报(自然科学版),2007,47(1):88-91
    [92]Tang J, Li N, Wu Y and et al. On Detection Performance of MIMO Radar: A Relative Entropy-Based Study. IEEE Signal Processing Letters,2009,16(3):184-187
    [93]Duofang C, Baixiao C, Guodong Q. Angle estimation using ESPRIT in MIMO radar. Electronics Letters,2008,44(12):770,771
    [94]Jinli C, Hong G, Weimin S. Angle estimation using ESPRIT without pairing in MIMO radar. Electronics Letters,2008,44(24):1422-1423
    [95]Bekkerman I, Tabrikian J. Target Detection and Localization Using MIMO Radars and Sonars. IEEE Transactions on Signal Processing,2006,54(10):3873-3883
    [96]Donnet B J, Longstaff I D. MIMO Radar, Techniques and Opportunities. In Proc.3rd European Radar Conference 2006, vol.1:112-115
    [97]Sammartino P F, Baker C J, Rangaswamy M. Mimo Radar, Theory and Experiments. In Proc.2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2007,vol.1:101-104
    [98]Wang W. Applications of MIMO Technique for Aerospace Remote Sensing. In Proc. IEEE Aerospace Conference,2007, vol.1:1-10
    [99]Dai X Z, Xu J, Peng Y N. High Resolution Frequency MIMO Radar. In Proc. IEEE Radar Conference,2007, vol.1:693-698
    [100]De Maio A, Lops M. Design Principles of MIMO Radar Detectors. IEEE Transactions on Aerospace and Electronic Systems,2007,43(3):886-898
    [101]De Maio A, Lops M, Venturino L. Diversity-Integration Tradeoffs in MIMO Detection. IEEE Transactions on Signal Processing,2008,56(10):5051-5061
    [102]Lesturgie M. Improvement of high-frequency surface waves radar performances by use of multiple-input multiple-output configurations. IET Radar, Sonar & Navigation,2009,3(1):49-61
    [103]Petillot Y, Du C, Thompson J S. Predicted Detection Performance of MIMO Radar. IEEE Signal Processing Letters,2008,15:83-86
    [104]Xu L, Li J, Stoica P. Target detection and parameter estimation for MIMO radar systems. IEEE Transactions on Aerospace and Electronic Systems,2008,44(3):927-939
    [105]Abramovich Y I, Frazer G J. Bounds on the Volume and Height Distributions for the MIMO Radar Ambiguity Function. IEEE Signal Processing Letters,2008,15:505-508
    [106]San Antonio G, Fuhrmann D R, Robey F C. MIMO Radar Ambiguity Functions. IEEE Journal of Selected Topics in Signal Processing,,2007,1(1):167-177
    [107]张直中.雷达信号的选择与处理.北京:国防工业出版社,1979
    [108]Levanon N, Mozeson E. Radar signals. Hoboken, NJ:Wiley,2004
    [109]Cook C E, Bernfeld M. Radar signals; an introduction to theory and application. New York: Academic Press,1967
    [110]刘波.MIMO数字阵雷达系统及其正交波形产生研究:[博士学位论文].成都:电子科技大学,2008
    [111]Friedlander B. On the Relationship Between MIMO and SIMO Radars. IEEE Transactions on Signal Processing,2009,57(1):394-398
    [112]Bergin J, McNeil S, Fomundam L and et al. MIMO Phased-Array for SMTI Radar. In Proc. IEEE Aerospace Conference,2008:1-7
    [113]Frazer G J, Abramovich Y I, Johnson B A. Spatially Waveform Diverse Radar:Perspectives for High Frequency OTHR. In Proc. IEEE Radar Conference,2007, vol.1:385-390
    [114]Frazer G J, Johnson B A, Abramovich Y I. Orthogonal waveform support in MIMO HF OTH radars. In Proc. International Waveform Diversity and Design Conference,2007, vol.1:423-427
    [115]Liu B, He Z S, He Q. Optimization of Orthogonal Discrete Frequency-Coding Waveform Based on Modified Genetic Algorithm for MIMO Radar. In Proc. International Conference on Communications, Circuits and Systems,2007, vol.1:966-970
    [116]Khan H A, Edwards D J. Doppler problems in orthogonal MIMO radars. In Proc. IEEE Conference on Radar,2006, vol.1:1-4
    [117]Donnet B J, Longstaff I D. Combining MIMO Radar with OFDM Communications. In Proc.3rd European Radar Conference,2006, vol.1:37-40
    [118]Deng H. Polyphase code design for orthogonal netted radar systems. IEEE Transactions on Signal Processing,2004,52(11):3126-3135
    [119]Deng H. Discrete frequency-coding waveform design for netted radar systems. IEEE Signal Processing Letters,2004,11(2):179-182
    [120]Friedlander B. Waveform Design for MIMO Radars. IEEE Transactions on Aerospace and Electronic Systems,2007,43(3):1227-1238
    [121]Costas J P. A study of a class of detection waveforms having nearly ideal range-Doppler ambiguity properties. Proc. the IEEE,1984,72(1):996-1099
    [122]Zhang Y, Wang J. Improved design of DFCW for MIMO radar. Electronics Letters, 2009,45(5):285-286
    [123]Gray D A. Multichannel Noise Radar. In Proc. International Radar Symposium,2006, vol.1:24-26
    [124]Gray D A, Fry R. MIMO noise radar; element and beam space comparisons. In Proc. International Waveform Diversity and Design Conference 2007, vol.1:344-347
    [125]Willsey M. Quasi-orthogonal wideband radar waveforms based on chaotic systems:[Master Thesis]. Massachusetts:Massachusetts Institute of Technology,2006
    [126]Yang Y, Blum R S. MIMO radar waveform design based on mutual information and minimum mean-square error estimation. IEEE Transactions on Aerospace and Electronic Systems, 2007,43(1):330-343
    [127]Yang Y, Blum R S. Minimax robust MIMO radar waveform design. IEEE Journal of Selected Topics in Signal Processing,2007,1(1):147-55
    [128]Siebert W. A radar detection philosophy. IRE Transactions on Information Theory, 1956,2(3):204-221
    [129]Friese M. Multitone signals with low crest factor. IEEE Transactions on Communications, 1997,45(10):1338-1344
    [130]Solomou M, Evans C, Rees D. Crest factor minimization in the frequency domain. IEEE Transactions on Instrumentation and Measurement,2002,51(4):859-865
    [131]Woodward P M. Probability and information theory, with applications to radar. New York: Pergamon Press,1953
    [132]Weiss L G. Wavelets and wideband correlation processing. IEEE Signal Processing Magazine, 1994,11(1):13-32
    [133]Liu B, He Z, Zeng J and et al. Polyphase Orthogonal Code Design for MIMO Radar Systems. In Proc. International Conference on Radar,2006, vol.1:78-81
    [134]Jankiraman M, Wessels B J, Van Genderen P. Pandora multifrequency FMCW/SFCW radar. In Proc. IEEE International Radar Conference,2000, vol.1:750-757
    [135]Levanon N. Multifrequency complementary phase-coded radar signal. IEE Proceedings Radar, Sonar and Navigation,2000,147(6):276-284
    [136]Levanon N. Train of diverse multifrequency radar pulses. In Proc. IEEE Radar Conference,2001, vol.1:93-98
    [137]Levanon N, Mozeson E. Multicarrier radar signal-pulse train and CW. IEEE Transactions on Aerospace and Electronic Systems,2002,38(2):707-720
    [138]Li M C. A high precision Doppler radar based on optical fibre delay loops. IEEE Transactions On Antennas And Propagation,2004,52(12):319-3328
    [139]Lank G W, Reed I S, Pollon G E. A Semicoherent Detection and Doppler Estimation Statistic. IEEE Transactions on Aerospace and Electronic Systems,1973,9(2):151-165
    [140]Crochiere R, Rabiner L. Multirate digital signal processing. New York:Prentice-Hall,1983
    [141]Oppenheim A V, Schafer R W, R B J. Discrete-time signal processing. New York:Pretice-Hall Inc, 1999
    [142]Capon J. High resolution frequency-wavenumber spectrum analysis. Proc. the IEEE, 1969,57(8):1408-1418
    [143]Dick C, Harris F, Pajic M and et al. Real-time QRD-based beamforming on an FPGA platform. In Proc. Fortieth Asilomar conference on signals, systems and computers,2006, vol.1:1200-1204
    [144]Costa J C, Ngo D. Jackson R and et al. Extracting 1/f noise coefficients for BJT's. IEEE Transactions on Electron Devices,1994,41(11):1992-1999
    [145]Handel P H. Fundamental quantum 1/f noise in semiconductor devices. IEEE Transactions on Electron Devices,1994,41(11):2023-2033
    [146]Hooge F N.1/f noise sources. IEEE Transactions on Electron Devices,1994,41(11):1926-1935
    [147]Horton B M. Noise-Modulated Distance Measuring Systems. Proc. the IRE,1959,47(5):821-828
    [148]McGillem C D, Cooper G T, Waltaman W B. An experimental random signal radar. In Proc. National Electronics Conference,1967, vol.1:409-411
    [149]Axelsson S R J. Noise Radar for Range/Doppler Processing and Digital Beamforming Using Low-Bit ADC. IEEE Transactions on Geoscience and Remote Sensing,2003,41(12):27O3-2720
    [150]Narayanan R M, Dawood M. Doppler Estimation Using a Coherent Ultrawide-Band Random Radar. IEEE Transactions on Antennas and Propagation,2000,48(6):868-878
    [151]Theron I P, Walton E K, Gunawan S and et al. Ultrawide-band Noise Radar in the VHF/UHF band. IEEE Transactions on Antennas and Propagation,1999,47(6):1080-1084
    [152]Lukin K A, Tarchi D, Leva D and et al. Short range imaging applications noise radar technology. In Proc.3rd European Conference on Synthetic Aperture Radar,2000, vol.1:361-364
    [153]Liu G, Gu H, Su W. Development of random signal radars. IEEE Transactions on Aerospace and Electronic Systems,1999,35(3):770-777
    [154]Narayanan R M, Xu X, Henning J A. Radar penetration imaging using ultra-wideband (UWB) random noise waveforms. IEE Proceedings Radar, Sonar and Navigation,2004,151(3):143-148
    [155]Narayanan R M, Xu Y, Hoffmeyer P D and et al. Design, performance, and applications of a coherent ultrawideband random noise radar. Optical Engineering,1998,37(6):1855-1869
    [156]Xu Y, Ram M. Narayanan, Xiaojian Xu and et al. Polarimetric processing of coherent random noise radar data for buried object detection. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(3):467-478
    [157]Lukin K A. Capability of noise radar technology for design of airport surveillance sensors. In Proc. .International Conference Airport Surveillance Sensors,2001, vol.1:23-32
    [158]Marsaglia G, Tsang W W. A Fast, Easily Implemented Method for Sampling from Decreasing or Symmetric Unimodal Density Functions. SIAM Journal of Scientific and Statistical Computing, 1984,5(2):349-359
    [159]Oppenheim A V, Schafer R W. Discrete-Time Signal Processing (2nd ed). NJ:Prentice-Hall Inc., 1999
    [160]Mitra S K. Digital Signal Processing:A computer-Based Approach (2nd ed). NY:McGraw-Hill Companies Inc.,2001
    [161]Kaiser J, Schafer R. On the use of the 10-sinh window for spectrum analysis. IEEE Transactions on Acoustics, Speech and Signal Processing,1980,28(1):105-107
    [162]Fordahl-FOQGroup. High Frequency Miniature Surface Mount PXO DFN S1-MLECPI.2009
    [163]Gleick J著,张淑誉译,郝柏林校.混沌:开创新科学.上海:上海译文出版社,1990
    [164]甘建超.混沌信号处理在雷达和通信对抗中的应用:[博士学位论文].成都,2004
    [165]Bauer A. Chaotic signals for CW-ranging systems. A baseband system model for distance and bearing estimation. In Proc. IEEE International Symposium on Circuits and Systems,1998, vol.3:275-278
    [166]张勇,陈天麒.时空混沌二相调制雷达与干扰一体化信号.现代雷达,2006,28(12):15-18,23
    [167]宋耀良,金文.基于双卷吸引子的混沌二相码序列及其模糊特性.南京理工大学学报:自然科学版,2000,24(1):37-41
    [168]沈颖,刘国岁.混沌相位调制雷达信号的模糊函数.电子科学学刊,2000,22(1):55-60
    [169]李辉,宋耀良,杨余旺.宽带混沌信号在汽车防撞雷达中的应用.现代雷达,2006,28(11):54-57
    [170]陈滨,周正欧,刘光祜等.混沌噪声源在噪声雷达的应用.现代雷达,2008,30(5):24-28
    [171]Pike E R, A. L L. Chaos, Noise and Fractals. FL:CRC Press,1987:1-2
    [172]Kaiser J F. Nonrecursive Digital Filter Design Using the I0- sinh Window Function. In Proc. IEEE Symp. Circuits and Systems,1974 vol.1:20-23
    [173]Rihaczek A W. Radar resolution properties of pulse trains. Proc. the IEEE,1964,52(2):153-164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700