有机废弃物CO_2施肥发酵过程中基质理化性状变化及残渣培肥土壤的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对农业有机废弃物(秸秆和畜禽粪便)处理难、大棚土壤退化严重、生物有机肥货架期短和实际生产中有机肥用量不足等问题,采用实验室和生产相结合的方法,研究了有机废弃物CO2施肥发酵过程对堆肥中抗生素降解、堆肥温度、pH、C、N、微生物和病原菌的影响,并研究了土壤中添加堆肥对抗生素的吸附作用;研究了蜡状芽孢杆菌、枯草芽孢杆菌和EM菌对黄瓜和番茄枯萎病菌的抑制作用;在堆肥结束时,将有益微生物接种到发酵残渣中,施于大棚连作土壤,以番茄(Lycopersicum esculentum Mill)作为供试作物,探讨了残渣对连作土壤的改良和培肥作用及对番茄生长的促进作用,以进一步完善堆肥对大棚退化土壤的修复和培肥技术体系。主要研究结果如下:
     1.土壤和堆肥中四环素类抗生素(TCs)的提取和HPLC检测方法及其吸附和降解研究
     用1 mol·L-1 NaCl/0.5 mol·L-1草酸/乙醇(25/25/50,v/v/v)混合溶液可以有效提取土壤和堆肥样品中的土霉素(OTC)、四环素(TC)和金霉素(CTC)等3种四环素类抗生素,其回收率在76.0%-92.5%之间。利用高效液相色谱法(HPLC)对上述3种抗生素的测定条件和方法探索结果表明,采用Agilent Eclipse XDB-C8 (4.6×150 mm,5μm)色谱柱,流动相为0.01 mmo1·L-1草酸/乙腈/甲醇(79/10.5/10.5,v/v/v),流速1.0 mL·min-1,进样量5μL,紫外检测波长268 nm,以外标法定量,在20 min内就可将它们完全洗脱并达到基线分离;在0-10 mmg·L-1范围内,抗生素浓度与峰面积呈显著的线性关系,相关系数R~2均>0.999。
     吸附试验表明,壤土(Haplaquents)和红土(Kandiudox)和土壤/堆肥混合物对四环素、土霉素和金霉素的吸附均符合Freundlich模型,吸附量随抗生素浓度的增加而增加;3种抗生素在基质中的吸附能力依次为:CTC>TC>OTC;堆肥对抗生素的吸附能力显著高于土壤和土壤/堆肥混合物;红土的吸附能力高于壤土。抗生素在土壤中的吸附受土壤pH、有机碳含量和CEC含量影响。土壤中加入堆肥可以增加对抗生素的吸附,加入的堆肥越多,对抗生素的吸附越多。当加入到土壤中的堆肥使得土壤中有机碳的含量达到5%时,有机质对其吸附的影响占主导地位。四环素、土霉素和金霉素在不同电解质溶液中的吸附趋势为:0.01 mol·L-1 KCl≥0.01 mol·L-1 CaCl2。降解试验表明,抗生素在降解过程中出现可逆的异构化反应,其降解速率除受土壤性质影响外,还与四环素本身的结构和理化性质有关。
     2.有机废弃物CO2施肥发酵过程堆温、pH、C、N、微生物、病原菌和抗生素的变化
     连续记录结果表明,采用秸秆和畜禽粪便发酵进行大棚CO2施肥,其堆体升温非常迅速,在第5d时即达到最高值64.5°C。整个发酵过程堆温在50°C以上持续了12 d,55°C以上持续了7d;堆肥第35 d开始,粪大肠菌群值MPN在10~(-1)-10~(-2)五之间,均符合国家《粪便无害化卫生标准(GB7959-87)》规定的标准。
     发酵过程中,pH先迅速上升,在第14 d时达到最高,由初始值7.09上升到8.06;之后逐渐下降,在结束时又略有升高。NH4+-N浓度也呈先上升后迅速下降态势,最终稳定在0.45 g·kg-1;NO3~--N则由开始几乎为0升高到0.67g·kg-1;有机C含量和C/N比分别降至233 g·kg-1和18/1;堆肥结束时,基质的总C和总N分别损失了69.8%和38.0%。
     堆肥过程中,细菌数量呈现高-低-高趋势,放线菌和真菌则呈现先升高后降低并最终达到稳定的趋势。达到了粪便无害化卫生标准的要求。发芽指数试验表明发芽率达到98%,另外,堆肥可以迅速降低TCs的浓度。堆肥第7d时,OTC、TC和CTC分别减少了77.6%,77.5%和86.8%。CTC在第14 d,土OTC、TC在第42 d则可被全部降解。试验结果表明该发酵方法实现了有机废弃物的无害化、减量化和资源化。吸附试验结果显示土壤中加入堆肥可以显著提高对四环素类抗生素的吸附能力,降低其环境风险。
     3.蜡状芽孢杆菌、枯草芽孢杆菌和EM菌对枯萎病菌的抑制作用
     对峙试验结果表明蜡状芽孢杆菌、枯草芽孢杆菌和EM菌对黄瓜及番茄枯萎病菌具有明显的抑制效果。其中,蜡状芽孢杆菌对4种致病菌的抑制效果最好,抑制率为20%-50%。枯草芽孢杆菌和EM菌对致病菌的抑制率为6.7%-34.8%。孢子萌发试验结果表明,当拮抗菌和EM茵的稀释倍数≤20时,基本可以抑制枯萎病菌孢子的萌发,而浓度为10~8 cfu.mL-1的拮抗菌和EM茵则可以完全抑制枯萎病菌孢子的萌发。
     4.发酵残渣接种有益微生物对大棚连作土壤的修复和培肥作用
     试验选用棚龄为5年的水稻土和棚龄为10年的潮土为供试土壤,番茄为供试作物。结果表明,发酵残渣配施蜡状芽孢杆菌、枯草芽孢杆菌和/或EM菌均可以不同程度地促使退化土壤pH值增加,EC值降低,尤其是同时接种3种微生物的处理效果最明显,这对有效缓解土壤酸化和次生盐渍化起到一定的效果。两种土壤的N、P、K等速效养分和土壤有机质含量显著增加,这可以促进农作物对养分的吸收利用,有利于土壤培肥。同时,改善了土壤微生物区系,促进酶活性提高,对解决连作障碍问题起到一定的作用。盆栽条件下,在添加配施微生物菌剂的残渣之后,番茄植株的株高和鲜重的增加,表明残渣和微生物菌剂可以有效地促进番茄植株的生长和发育。
Composting of organic wastes (crop straw and animal manure) is a process of fermentation and microbial decomposition under the conditions of artificial regulation of water, C/N ratio, pH, and ventilation to produce organic fertilizer. It is the fundamental way to achieve the reduction, recycle and safe treatment of the organic wastes. Compost with maturity and stability characteristics can not only improve the soil physical and chemical properties, but also increase crop yields and the quality of agricultural products. This research investigated the effects of fermentation process of organic wastes for CO2 enrichment in greenhouse on the antibiotics degradation and the changes of temperature, pH, C, N, microbial population and pathogenic bacteria in the fermentation medium. After modifying the extraction method of tetracyclines (TCs) in soil and compost, as well as the detection method of TCs using HPLC, the degradation of TCs during composting and the sorption of TCs in soils with addition of compost were studied. The reaserches on the inhibition and mechanism of antagonistic bacteria on cucumber and tomato were also carried out by a series of experiments such as sitzkrieg testing of antagonistic bacteria to pathogenic bacteria, the effect of fermentation residues inoculated with antagonistic bacteria on improving soil fertility and promoting crop growth and so on. The main results obtained from experiments are as follows:
     1. Modification on the extraction method of TCs in soil and compost and determination method using HPLC
     The Oxytetracycline (OTC), Tetracycline (TC) and Chlortetracycline (CTC) in soil and compost could be extracted by a mixture solution of 1 mol·L-1 NaCl/0.5 mol·L-1 oxalic acid/ethanol (25/25/50, v/v/v), with the recoveries from 76.0% to 92.5%. The HPLC method was used to determine the three TCs at the same time. The results indicated that the three TCs could be completely separated in 20 min by a column of Agilent Eclipse XDB-C8 (4.6×150 mm,5μm). The mobile phase was 0.01 mol·L-1 oxalic acid-ACN-MeOH (79/10.5/10.5, v/v/v) at a flow rate of 1.0 mL·min-1. The injection volume of sample solution was 5 pL and the UV detector wavelength was at 268 nm. An external standard method was employed for the quantification. The linear correlation coefficients for three TCs under the concentration of 0-10 mg·L-1 were all larger than 0.999.
     The sorption experiment showed that the adsorption of OTC, TC and CTC to Haplaquents, Kandiudox, and/or mixtures of compost and soils fit Freundlich model well. The adsorption quantity increased with the increasing concentration of TCs. The adsorptivity of TCs in matrices was in sequence:CTC>TC>OTC. The adsorptivity of TCs in compost was significantly in soils and mixtures of compost and soils. The adsorptivity of Kandiudox was higher than that of Haplaquents. The adsorption of TCs in soils was affected by pH, content of organic carbon and content of CEC. Compost added into soils could enhance the sorption of TCs. The more compost was added, the higher sorption of TCs happened. When the OC content in the soil amended with compost reached 5%, the influence of OC and CEC on sorption became dominant. The trend of sorption of TCs in different electrolyte solutions was 0.01 mol·L-1 KCl≥0.01 mol·L-1 CaCl2. Degradation test showed that the reversible isomerization reaction occurred to TCs. The degradation rate was affected not only by characteristic of soil, but also by the structure and characteristic of tetracycline.
     2. The changes of temperature, pH, C, N, microbial population, pathogenic bacteria and antibiotics in the medium during CO2 enrichment by fermentation of organic wastes
     It was showed by the results of temperature continuous record that the temperature of fermentation medium increased very quickly. It reached the highest temperature of 64.5℃at the 5th day of fermentation. Finally, the temperature higher than 50℃was lasting for 12 d, hiher than 55℃for 7 d. The quantities of fecal coliform group were between 10-1-10-2 after 35 days'composting, which completely met the demand of hygienic standard for innocent treatment of feces (GB7959-87).
     At the beginning of compost, decomposition occurred to the organic waste due to the microbial activity. NH4+ and NH3 were produced, which resulted in the pH rising rapidly from 7.09 to 8.06 of the maximum at the 14th day. After that, pH decreased gradually, and it increased slightly again to 7.53 at the end of composting. The concentration of NH4+-N also increased first and then decreased rapidly, stable at 0.45 g·kg-1 at last. The concentration of NO3--N reached to 0.67 g·kg-1 finally and the content of organic carbon was 233 g·kg-1. The C/N ratio declined to 18. At the end of composting, the losses of total C and N were 69.8% and 38.0%, respectively.
     During composting, the trends of changes in bacteria, actinomycetes and fungi were slightly different. The number of bacteria presented in a trend of increase, then decrease and increase again, while the trends for actinomycetes and fungi were increase first, then decrease, and at last reached a plateau. Experiment of germination indices (GI) showed that the GI of fermentation residues reached 98%. In addition, the tetracyclines could be reduced rapidly by composting. CTC and both of OTC and TC could be completely degradated by the composting for 14 d and 42 d, respectively. These results indicated that composting for CO2 enrichment could achieved the aims of reduction, recycle and safe treatment for organic wastes. The results of sorption test demonstrated that soil by adding compost could significantly enhance the sorption ability of tetracyclines and reduce their environmental risks.
     3. Inhibitory effect of Bacillus cereus, Bacillus subtilis Cohn and effective microorganisms (EM) against Fusarium oxysporum f.sp.
     The sitzkrieg experiment results showed that the Fusarium oxysporum f.sp. was inhibited obviously by Bacillus cereus, Bacillus subtilis Cohn and EM. Bacillus cereus had the greatest inhibition effect against the four Fusarium oxysporum f.sp., with the inhibition ratio between 20%-50%. The ratio of Bacillus subtilis Cohn and EM against Fusarium oxysporum f.sp. was 6.7%-34.8%. The results of spore germination tests showed that the spore germination of Fusarium oxysporum could be effectively inhibited by the solution of antagonistic bacteria or EM with dilution rate less than 20 times, and completely suppressed by the antagonistic bacteria or EM with the concentration of 108 cfu·mL-1.
     4. Effects of the fermentation residues inoculated with antagonistic bacteria on the remediation and improvement of continuous cropping soil in greenhouse
     The results obtained from the experiments of tomato carried out on a grayey clayed paddy soil and fluvo-aquic soil with continuous cropping for 5 and 10 years, respectively, showed that the application of fermentation residues inoculated with Bacillus cereus, Bacillus subtilis Cohn and/or EM could significantly increase the pH and decrease the EC of the degradation soils, especially in the treatment inoculated simultaneously with three kinds of microbes, which would effectively alleviate soil acidification and secondary salinization. The content of available N, P, K and organic matter were also increased significantly, which could facilitate crops on nutrient absorption and utilization and be beneficial to soil fertility. Furthermore, the application of fermentation residues could also improved and promoted soil microflora and enzyme activity, which played a role in resolving the continuous cropping obstacle in greenhouse. Pot experiment showed that the plant height, fresh weight and dry weigh of tomato were increased, indicating a good effect of the fermentation residues inoculated with beneficial microorganism on promoting tomato growth and development.
引文
1. Alcock RE, Sweetman A, Jones KC. Assessment of organic contaminant fate in wastewater treatment plants I. Selected compounds and physiochemical properties [J]. Chemosphere, 1999,38:2247-2262.
    2. Animal Health Institute (AHI). Animal Health Institute News Release. AHI, Washington, DC, 2007.
    3. Arikan OA, Sikora LJ, Mulbry W, Khan SU, Foster GD. Composting rapidly reduces levels of extractable oxytetracycline in manure from therapeutically treated beef calves [J]. Bioresource Technology,2007,98 (1):169-176.
    4. Arikan OA, Mulbry W, Rice C. Management of antibiotic residues from agricultural sources: Use of composting to reduce chlortetracycline residues in beef manure from treated animals [J]. Journal of Hazardous Materials,2009,164(2-3):483-489.
    5. Askegaard M, Eriksen J, Johnson AE, Schjonning P, Elmholt S, Christensen BT. Sustainable management of potassium. Managing soil quality:challenges in modern agriculture. CAB International, Wallingford, UK,2004,85-101.
    6. Barrington S, Choiniere D, Trigui M, Knight W. Effect of carbon source on compost nitrogen and carbon losses [J]. Bioresource Technology,2002,83:189-194.
    7. Baysal O, Caliskan M, Yesilova O. An inhibitory effect of a new Bacillus subtilis strain (EU07) against Fusarium oxysporum f.sp. radicis-lycopersici [J]. Physiological and Molecular Plant Pathology,2008,73:25-32.
    8. Benito M, Masaguer A, Moliner A, Arrigo N, Palma RS. Chemical and microbiological parameters for the characterization of the stabilizing and maturing of pruning waste compost [J]. Biology and Fertility of Soils,2003,37:184-189.
    9. Bremner JM. Nitrogen-total. In:Sparks, D.L. (Ed.), Methods of Soil Analysis. Part 3-Chemical Methods. SSSA Inc., ASA Inc., Madison, WI, USA,1996, pp.1085-1122.
    10. Bernal MP, Alburquerque JA, Moral R. Composting of animal manures and chemical criteria for compost maturity [J]. Bioresource Technology,2009,100:5444-5453.
    11. Bernal MP, Navarro AF, Roig A, Cegarra J, Garcia D. Carbon and nitrogen transformation during composting of sweet sorghum bagasse [J]. Biology and Fertility of Soils,1996,22: 141-148.
    12. Bernal MP, Paredes C, Sanchez-Monedero MA, Cegarra J. Maturity and stability parameters of composts prepared with a wide range of organic wastes [J]. Bioresource Technology,1998, 63:91-99.
    13. Bernard E, Larkin RP, Erich M, Alyokhin A, Gross S, Tavantzis S. A systems approach for enhancing soil quality and plant health under organic and conventional conditions:Effects on Soil Microbial Communities. Northeast Potato Technology Forum Proceedings,2009,13.
    14. Bishop PL, Godfrey C. Nitrogen transformations during sludge composting [J]. Biocycle, 1983,24(5):34-39.
    15. Blackwell PA, Kay P, Ashauer R, Boxall ABA. Effects of agricultural conditions on the leaching behaviour of veterinary antibiotics in soils [J]. Chemosphere,2009,75 (1):13-19.
    16. Blackwell PA, Lutzh(?)ft HCH, Ma HP, Halling-Scrensen B, Boxall ABA, Kay P. Ultrasonic extraction of veterinary antibiotics from soils and pig slurry with SPE clean-up and LC-UV and fluorescence detection [J]. Talanta,2004,64:1058-1064.
    17. Blum U, Shafer SR, Lehman ME. Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils:concepts vs. an experimental model [J]. Critical reviews in plant sciences,1999,18(5):673-693.
    18. Brake, JD. A Practical Guide for Composting Poultry Litter, MAFES Bulletin,1992,981.
    19. Budavari S. The Merck index, an encyclopedia of chemicals, drugs, and biologicals [M]. Merck and Co, Inc:Rahway, NJ.1989.
    20. Caravaca F, Garcia C, Hernandez MT, Roldan A. Aggregate stability changes after organic amendment and mycorrhizal inoculation in the afforestation of a semiarid site with Pinus halepensis [J]. Applied soil ecology,2002,19(3):199-208.
    21. Chandel S, Allan EJ, Woodward S. Biological control of Fusarium oxysporum f.sp. lycopersici on tomato by Brevibacillus brevis [J]. Journal of Phytopathology,2009,1-9. 10.1111/j.1439-0434.2009.01635.x.
    22. Chang EH, Chung RS, Tsai YH. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population [J]. Soil science and plant nutrition,2007, 53:132-140.
    23. Chatterton S, Punja Z K. Interactions Between Clonostachys rosea f. catenulata, Fusarium oxysporum and Cucumber Roots Leading to Biological Control of Fusarium Root and Stem Rot [J]. Recent Developments in Management of Plant Diseases. Springer Netherlands.2009, 93-106.
    24. Cooney DG, Emerson R. Thermophilic Fungi. W.H.Freeman, USA.1964.
    25. Cunha Queda AC, Vallini G, Agnolucci M, Coelho CA, Campos L, de Sousa RB. Microbiological and chemical characterization of composts at different levels of maturity, with evaluation of phytotoxicity and enzymatic activities. In:Insam, H., Riddech, N., Krammer, S. (Eds.), Microbiology of Composting. Springer Verlag, Heidelberg,2002, 345-355.
    26. Darwish T, Atallah T, El Moujabber M, Khatib N.Salinity evolution and crop response to secondary soil salinity in two agro-climatic zones in Lebanon [J]. Agricultural Water Management,2005,78(1-2):152-164.
    27. de Bertoldi M. Production and utilization of suppressive compost:environmental, food and health benefits. In:Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg,2010,153-170.
    28. de Cal A, Pascual S, Larena I, Melgarejo P. Biological control of Fusarium oxysporum f.sp. Lycopersici [J]. Plant Pathology,1995,44:909-917.
    29. DeLaune PB, Moore PA, Jr., Daniel TC, Lemunyon JL. Effect of Chemical and Microbial Amendments on Ammonia Volatilization from Composting Poultry Litter [J]. Journal of Environmental Quality,2004,33(2):728-734.
    30. Diaz-Marcote I, Polo A. MSW compost for the restoration of degraded soil. In World Congress on Waste Management. Proc. of the 25th Anniversary of the International Solid Waste Association.15th-20th October,1995, ISWA, Vienna (CD Rom).
    31. Dick WA, Gregorich EG.Developing and maintaining soil organic matter levels. In: Schjonning P, Elmholt S, Christensen BT (eds) Managing soil quality:challenges in modern agriculture. CAB International, Wallingford, UK,2004,103-120.
    32. Dodor DE, Tabatabai MA. Effect of cropping systems on phosphatases in soils [J]. Journal of Plant Nutrition and Soil Science,2003,166:7-13.
    33. Doi AM, Stoskopf MK. The kinetics of oxytetracycline degradation in deionized water under varying temperature, pH, light, substrate, and organic matter [J]. Journal of Aquatic Animal Health,2000,12 (3):246-253.
    34. Dolliver H, Gupta S, Noll S. Antibiotic degradation during manure composting [J]. Journal of Environmental Quality,2008,37:1245-1253.
    35. Eghball B, Power JF, Gilley JE, Doran JW, USDA, ARS. Nutrient, carbon, and mass loss during composting of beef cattle feedlot manure [J]. Journal of environmental quality,1997, 26(1):189-193.
    36. Eghball B. Composting Manure and other Organic Residue. Cooperative Extension Publication (NebGuide), Institute of Agriculture and Natural Resources, University of Nebraska, Lincoln, USA,2001.
    37. Ekinci K, Keener HM,Elwell DL. Composting Short Paper Fiber with Broiler Litter and Additives Part Ⅰ:Effects of Initial pH and Carbon/Nitrogen Ratio on Ammonia Emission [J]. Compost Science & Utilization,2000,8(2):160-172.
    38. Elmund GK, Morrison SM, Grant DW, Nevins MP. Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste [J]. Bulletin of Environmental Contamination and Toxicology,1971,6 (2):129-132.
    39. Erickson M, Liao J, Ma L, Jiang X, Doyle MP. Pathogen inactivation in cow manure compost [J]. Compost Science & Utilization,2009,17(4):229-236.
    40. Esawy W, Mahmoud I, Paul R, Nouraya AC, Mohamed E. Rice straw composting and its effect on soil properties [J]. Compost Science & Utilization,2009,17(3):146-150.
    41. Fang M, Wong JWC, Ma KK, Wong MH. Co-composting of sewage sludge and coal ash: nutrient transformation [J]. Bioresource Technology,1999,67:19-24.
    42. Figueroa RA, Leonard A, Mackay AA. Modeling Tetracycline Antibiotic Sorption to Clays [J]. Environmental Science & Technology,2004,38:476-483.
    43. Fritz JW, Zuo Y. Simultaneous determination of tetracycline, oxytetracycline, and 4-epitetracycline in milk by high-performance liquid chromatography [J]. Food Chemistry, 2007,105:1297-1301.
    44. Fuchs JG.Interactions between beneficial and harmful micro-organisms:from the composting process to compost application. In:Insam H, Franke-Whittle IH, Goberna M (eds), Microbes at work. From wastes to resources. Springerr-Verlag Berlin, Heidelberg,2010,213-230.
    45. Garcia C, Hernandez T, Costa F, Ayuso M. Evaluation of the maturity of municipal waste compost using simple chemical parameters [J]. Communications in Soil Science and Plant Analysis,1992,23:1501-1512.
    46. Garcia-Gil JC, Plaza C, Soler-Rovira P, Polo A. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass [J]. Soil Biology & Biochemistry,2000,32:1907-1913.
    47. Garcia-Gomez A, Bernal MP, Cegarra J, Roig A. Plant response to the latent phytotoxicity in agroindustrial wastes in different stages of the composting process. In:Proceedings of the International Conference ORBIT 2001 on Biological Processing of Waste:A Product-oriented Perspective, Sevilla, Spain,2001,321-325.
    48. Garrison MV, Richard TL, Tiquia SM, Honeyman MS. Nutrient losses from unlined bedded swine hoop structure and an associated windrow composting site. Paper 01-2238. ASAE Annual International Meeting, Sacramento, CA,30 July-1 August,2001.
    49. Gaskins HR, Collier CT, Anderson DB. Antibiotics as growth promotants:Mode of action [J]. Animal Biotechnology,2002,13:29-42.
    50. Gavalchin J, Katz SE. The persistence of fecal-borne antibiotics in soil [J]. Association of Official Analytical Chemists,1994,77:481-485.
    51. Ghosh D,Deb A,Bera S, Sengupta R, Patra KK. Measurement of natural radioactivity in chemical fertilizer and agricultural soil:evidence of high alpha activity [J]. Environmental Geochemistry and Health,2008,30:79-86.
    52. Gil-Sotres F, Trasar-Cepeda C, Leiros MC, Seoane S. Different approaches to evaluating soil quality using biochemical properties [J]. Soil Biology & Biochemistry.2005,37:877-887.
    53. Giuaquiani PL, Gigliotti G, Businelli D. Long-term effects of heavy metal from composted municipal waste on some enzymes activities in a cultivated soil [J]. Biology and Fertility of Soils,1994,17,257-262.
    54. Golueke CG. Composting. A Study of the Process and its Principles. Rodale Press, Emmaus, 1975.
    55. Gonzalez RF, Cooperband LR. Compost Effects on Soil Chemical Properties and Field Nursery Production [J]. Journal of Environmental Horticulture,2003,21(1):38-44.
    56. Gonzalez-Vila FJ, Gonzalez-Perez JA, Akdi K, Gomis MD, Perez-Barrera F, Verdejo T. Assessing the efficiency of urban waste biocomposting by analytical pyrolysis (Py-GC/MS) [J]. Bioresource Technology,2009,100(3):1304-1309.
    57. Goyal S, Dhul SK, Kapoor KK. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity [J]. Bioresource Technology, 2005,96:1584-1591.
    58. Grigatti M, Ciavatta C, Gessa C. Evolution of organic matter from sewage sludge and garden trimming during composting [J]. Bioresource Technology,2004,91:163-169.
    59. Haga K. Development of composting technology in animal waste treatment-review [J]. Asian-Australian Journal of Animal Science,1999,12 (4):604-606.
    60. Hamscher G, Sczesny S, Hoper H, Nau H. Determination of Persistent Tetracycline Residues in Soil Fertilized with Liquid Manure by High-Performance Liquid Chromatography with Electrospray Ionization Tandem Mass Spectrometry [J]. Analytical Chemistry,2002,74 (7): 1509-1518.
    61. Hansen LH, Aarestrup F, Sorensen SJ. Quantification of bioavailable chlortetracycline in pig feces using a bacterial whole cell biosensor [J]. Veterinary Microbiology,2002,87 (1): 51-57.
    62. Hansen RC, Keener HM, Hoitink HAJ. Poultry manure composting. An exploratory study. Trans. ASAE,1989,32,2151-2158.
    63. Hao X, Chang C, Larney FJ. Carbon, nitrogen balances and greenhouse gas emission during cattle feedlot manure composting [J]. Journal of Environmental Quality,2004,33:37-44.
    64. Hargreaves JC, Adl MS, Warman PR.A review of the use of composted municipal solid waste in agriculture [J]. Agriculture, Ecosystems & Environment,2008,123:1-14.
    65. Hart TD, De Leji FAAM, Kinsey G, Kelley J, Lynch JM. Strategies for the isolation of cellulolytic fungi for composting of wheat straw [J]. World Journal of Microbiology & Bio-technology,2002,18(5):471-480.
    66. Hartlieb N, Ertunc T, Schaeffer A, Klein W. Mineralization metabolism and formation of non-extractable residues of 14C-labelled organic contaminants during pilot-scale composting of municipal biowaste [J]. Environmental Pollution,2003,126(1):83-91.
    67. Hartung AC, Stephens CT. Effects of allelopathic substances produced by asparagus on the incidence and severity of Fusarium crown rot [J]. Journal of Chemical Ecology,1983,9: 1163-1174.
    68. Haug RT. The Practical Handbook of Compost Engineering. Lewis Publishers, Boca Raton, USA,1993.
    69. Hepperly P, Lotter D, Ulsh CZ, Seidel R, Reider C. Compost, manure and synthetic fertilizer influences crop yields, soil properties, nitrate leaching and crop nutrient content [J]. Compost Science & Utilization,2009,17(2):117-126.
    70. Higa T. Effective Microorganisms:A Biotechnology for Mankind. In J.F. Parr, S.B.Hornick, and C.E. Whitman (ed.) Proceedings of the First International Conference on Kyusei Nature Farming. U.S. Department of Agriculture, Washington, D.C., USA.1991,8-14.
    71. Hirai MF, Chanyasa KV, Kubota H. A standard measurement for compost maturity [J]. Biocycle,1983,24:54-56.
    72. Hu TJ, Zeng GM, Huang DL, Yua HY, Jiang XY, Dai F, Huang GH. Use of potassium dihydrogen phosphate and sawdust as adsorbents of ammoniacal nitrogen in aerobic composting process [J]. Journal of Hazardous Materials,2007,141(3):736-744.
    73. Hua L, Wu W, Liu Y, McBride MB, Chen Y. Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment [J]. Environmental Science and Pollution Research,2009,16:1-9.
    74. Huang GF, Fang M, Wu QT, Zhou LX, Liao XD, Wong JWC. Co-composting of pig manure with leaves [J]. Environmental Technology,2001,22:1203-1212.
    75. Iannotti DA, Pang T, Toth BL, Elwell DL, Keener HM, Hoitink HAJ. A quantitative respirometric method for monitoring compost stability [J]. Compost Science Utilization, 1993,1:52-65.
    76. Itavaara M, Venelampi O, Vikman M, Kapanen A. Compost maturity-problems associated with testing. In:Insam, H., Riddech, N., Klammer, S. (Eds.), Microbiology of Composting. Springer Verlag, Heidelberg,2002:373-382.
    77. Jeong YK, Kim JS. A new method for conservation of nitrogen in aerobic composting process. Bioresource Technology.2001,79:129-133.
    78. Jjemba PK. The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land:a review [J]. Agriculture Ecosystems & Environment,2002,93 (1-3):267-278.
    79. Jones AD, Bruland GL, Agrawal SG, Vasudevan D. Factors influencing the sorption of oxytetracycline to soils [J]. Veterinary Medicine,2004,24,761-770.
    80. Kakimoto T, Funamizu N. Factors affecting the degradation of amoxicillin in composting toilet [J]. Chemosphere,2007,66:2219-2224.
    81. Kaown D, Hyun YJ, Bae GO, Lee KK. Factors Affecting the Spatial Pattern of Nitrate Contamination in Shallow Groundwater [J]. J Environ Qual,2007,36:1479-1487.
    82. Keener HM, Dick WA, Hoitink HAJ. Composting and beneficial utilization of composted by-product materials. In:Dick, W.A. (Ed.), Land Application of Agricultural, Industrial, and Municipal By-Products. Soil Science Society of America, Inc., Madison,2000,315-341.
    83. Khan NH, Roets E, Hoogmartens J, Vanderhaeghe H. Quantitative analysis of chlortetracycline and related substances by high performance liquid chromatography [J]. Journal of Pharmaceutical and Biomedical Analysis,1989,7(3):339-353.
    84. Kim MK, Roh KA, Lee NJ, Koh MH, Seo MC, Chung JB. Assessment of Soil and Water Quality of Greenhouse in Korea. ASA-CSSA-SSSA International Meeting, Tuesday, November 14,2006,199-6.
    85. Kirchmann H, Witter E. Ammonia volatilization during aerobic and anaerobic manure decomposition [J]. Plant and Soil,1989,115,35-41.
    86. Kithome M, Paul JW, Bomke AA. Reducing nitrogen losses during simulatedcomposting of poultry manure using adsorbents or chemical amendments [J]. Journal of Environmental Quality,1999,28:194-201.
    87. Knapp BA, Ros M, Insam H. Do Composts Affect the Soil Microbial Community? In:Insam H, Franke-Whittle IH, Goberna M (eds), Microbes at work. From wastes to resources. Springer, Heidelberg,2010,271-291.
    88. Kuhne M, Ihnen D, Moller G, Agthe O. Stability of tetracycline in water and liquid manure [J]. Journal of Veterinary Medicine Series A,2000,47 (6):379-384.
    89. Kumar K, Singh AK, Chander Y, Gupta SC. Antibiotic use in agriculture and its impact on the terrestrial environment, Adv. Agron.2005,87:1-54.
    90. Kumar K, Thompson A, Singh AK, Chander Y, Gupta SC. Enzyme-Linked Immunosorbent Assay for Ultratrace Determination of Antibiotics in Aqueous Samples [J]. Journal of Environmental Quality,2004,33:250-256.
    91. Kuroda K, Hanajima D, Fukumoto Y, Suzuki K, Kawamotos, Shima J, Haga K. Isolation of Thermophilic Ammonium-tolerant Bacterium and Its Application to Reduce Ammonia Emission during Composting of Animal Wastes [J]. Bioscience, Biotechnology, and Biochemistry,2004,68(2):286-292.
    92. Lal R. Soil quality and agricultural sustainability. In Soil Quality and Agricultural Sustainability. Ed. R Lal, Ann Arbor Press, Chelsea.1998,3-12.
    93. Laos F, Mazzarino MJ, Walter I, Roselli L, Satti P, Moyano S. Composting of fish offal and biosolids in northwestern Patagonig [J]. Bioresource Technology,2002,81:179-186.
    94. Larney FJ, Buckley KE, Hao X, McCaughey WP. Fresh, stockpiled, and composted beef cattle feedlot manure:Nutrient levels and mass balance estimates in Alberta and Manitoba [J]. Journal of Environmental Quality,2006,35:1844-1854.
    95. Li B, Wang CQ, Jiang LQ, Li HX, Yang J, Yang BC. Effect of chemical amendments on NH3 emissions and compost maturity during co-composting of pig manure and straw [J]. Journal of Agro-Environment Science,2008,27(4):1653-1661.
    96. Liguoro MD, Cibin V, Capolongo F, Halling-Sorensen B, MontesissaC. Use of oxytetracycline and tylosin in intensive calf farming:evaluation of transfer to manure and soil [J]. Chemosphere,2003,52:203-212.
    97. Liu Y, Hua J, Jiang Y, Li Q, Wen D. Nematode communities in greenhouse soil of different ages from Shenyang suburb [J]. Helminthologia,2006,43(1):51-55.
    98. Madejon E, Burgos P, Lopez R, Cabrera F. Agricultural use of three organic residues: effect on orange production and on properties of a soil of the'Comarca Costa de Huelva' (SW Spain) [J]. Nutrient cycling in agroecosystems,2003,65(3):281-288.
    99. Mahimairaja S, Bolan NS, Hedley MJ, Macgregor AN. Losses and transformation of nitrogen during composting of poultry manure with different amendments:An incubation experiment [J]. Bioresource Technology,1994,47(3):265-273.
    100. Maia PP, Silva EC, Rath S, Reyes FGR. Residue content of oxytetracycline applied on tomatoes grown in open field and greenhouse [J]. Food control,2009,20:11-16.
    101. Mari I, Ehaliotis C, Kotsou M, Chatzipavlidis I, Georgakakis D. Use of sulfur to control pH in composts derived from olive processing by-products [J]. Compost Science Utilization, 2005,13:281-287.
    102. Marmo L.EU strategies and policies on soil and waste management to offset greenhouse gas emissions [J]. Waste Manag,2008,28:685-689.
    103. Martins O, Dewes T. Loss of nitrogenous compounds during composting of animal wastes [J]. Bioresource Technology,1992,42:103-111.
    104. Melero S, Madejon E, Herencia JF, Ruiz JC. Effect of Implementing Organic Farming on Chemical and Biochemical Properties of an Irrigated Loam Soil [J]. Agronomy Journal,2008, 100(1):136-144.
    105. Michel FC Jr, Pecchia JA, Rigot J, Keener HM. Mass and nutrient losses during the composting of dairy manure amended with sawdust or straw [J]. Compost Science Utilization, 2004,12:323-334.
    106. Michel FC, Forney LJ, Huang AJF, Drew S, Czu Prenski M, Lindeberg JD, Reddy CA. Effects of turning frequency, leaves to grass mix ratio and windrow vs pile configuration on the composting of yard trimmings [J]. Compost Science & Utilization,1996,4:26-43.
    107. Miller FC. Composting as a process based on the control of ecologically selective factors. In: Metting, F.B., Jr. (Ed.), Soil Microbial Ecology, Applications in Agricultural and Environmental Management. Marcel Dekker, Inc., New York,1992,515-544.
    108. Minz D, Green SJ, Ofek M, Hadar Y. Compost microbial population and interactions with plants. In:Insam H, Franke-Whittle IH, Goberna M (eds), Microbes at work. Springer-Verlag Berlin Heidelberg,2010,231-251.
    109. Morisaki N, Phae CG, Nakasaki K, Shoda M, Kubota H. Nitrogen transformation during thermophilic composting [J]. Journal of Fermentation and Bioengineering,1989,67(1): 57-61.
    110. Munimbazi C, Bullerman LB. Isolation and partial characterization of antifungal metabolites of Bacillus pumilus [J]. Journal of Applied Microbiology,1998,84:959-968.
    111. NAHMS (National Animal Health Monitoring System), Antibiotic usage in premarket swine. Centers for Epidemiology and Animal Health,1996, USDA:APHIS:VS, Attn.
    112. OECD. OECD Guidelines for the Testing of Chemicals/Section 1:Physical-Chemical properties. Test No.106:Adsorption/Desorption using a batch equilibrium method. Published by OECD Publishing,2000.
    113. Ogunwande GA, Osunade JA, Adekalu KO, Ogunjimi LAO. Nitrogen loss in chicken litter compost as affected by carbon to nitrogen ratio and turning frequency [J]. Bioresource Technology,2008,99:7495-7503.
    114. Ouhdouch Y, Barakate M, Finance C. Actinomycetes of Moroccan habitats:Isolation and screening for antifungal activities [J]. European Journal of Soil Biology,2001,37(2):69-74.
    115. Ouwerkerk D, Klieve AV. Bacterial diversity within feedlot manure [J]. Anuerobe,2001, 7(2):59-66.
    116. Palmisano AC, Barlaz MA. Microbiology of solid waste, CRC Press, New York,1996:224.
    117. Paredes C, Bernal MP, Cegarra J, Roig A, Navarro AF. Nitrogen transformation during the composting of different organic wastes. In:Van Cleemput, O., Vermoesen, G., Hofman, A. (Eds.), Progress in Nitrogen Cycling Studies. Kluwer Academic Publishers, Dordrecht,1996, 121-125.
    118. Parkinson R, Gibbs P, Burchett S, Misselbrook T. Effect of turning regime and seasonal weather conditions on nitrogen and phosphorus losses during aerobic composting of cattle manure [J]. Bioresource Technology,2004,91:171-178.
    119. Peirce LC, Miller HG. Asparagus emergence in Fusarium-treated and sterile media following exposure of seeds or radicles to one or more cinnamic acids [J]. Journal of American Society for Horticultural Science,1993,118:23-28.
    120. Pils JRV, Laird AA. Sorption of Tetracycline and Chlortetracycline on K-and Ca-Saturated soil clays, humic substances, and clay-humic complexes [J]. Environmental Science & Technology,2007,41:1928-1933.
    121. Ramaswamy J, Prasher SO, Pate RM, Hussain SA, Barrington SF. The effect of composting on the degradation of a veterinary pharmaceutical [J]. Bioresource Technology,2010,101: 2294-2299.
    122. Riddech M, Klammer S, Insam H. Characterization of microbial communities during composting of organic wastes. In:Insam, H., Riddech, N., Klammer, S. (Eds.), Microbiology of Composting. Springer Verlag, Heidelberg,2002,43-52.
    123. Roca-Perez L, Martinez C, Marcilla P, Boluda R.Composting rice straw with sewage sludge and compost effects on the soil-plant system [J]. Chemosphere,2009,75:781-787.
    124. Ros M, Garcia C, Hernandez T. Soil microbial activity after restoration of a semiarid soil by organic amendments [J]. Soil Biology & Biochemistry,2003,35:463-469.
    125. Ros M, Klammer S, Knapp BA, Aichberger K, Insam H. Long term effects of soil compost amendment on functional and structural diversity and microbial activity [J]. Soil Use and Management,2006a,22:209-218.
    126. Ros M, Pascual JA, Garcia C, Hernandez MT, Insam H. Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts [J]. Soil Biology & Biochemistry,2006b,38:3443-3452.
    127. Ryckeboer J, Mergaert J, Vaes K, Klammer S, De Clercq D, Coosemans J, Insam H, Swings J. A survey of bacteria and fungi occurring during composting and self-heating processes [J]. Annals of Microbiology,2003a,53 (4):349-410.
    128. Ryckeboer J, Mergaert J, Coosemans J, Deprins K, Swings J. Microbiological aspects of biowaste during composting in a monitored compost bin [J]. Journal of Applied Microbiology,2003b,94:127-137.
    129. Sarmah AK, Meyer MT, Boxall ABA. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere,2006,65:725-759.
    130. Sassman SA, Lee LS. Sorption of three tetracyclines by several soils:assessing the role of pH and cation exchange [J]. Environmental Science & Technology,2005,39 (19):7452-7459.
    131. Savard MM, Somers G, Smirnoff A, Paradis D, Bochove E, Liao S. Nitrate isotopes unveil distinct seasonal N-sources and the critical role of crop residues in groundwater contamination [J]. Journal of Hydrology,2010,381(1-2):134-141.
    132. Scott DF, Dashkevicz MP. Subtherapeutic levels of antibiotics in poultry feeds and their effects on weight gain, feed efficiency, and bacterial Chblyltaurine hydrolase activity [J]. Applied and Environmental Microbiology,1987,53:331-336.
    133. Shi W, Norton JM, Miller BE, Pace MG. Effects of aeration and moisture during windrow composting on the nitrogen fertilizer values of dairy waste composts [J]. Applied Soil Ecology,1999,11(1):17-28.
    134. Sithole BB, Guy RD. Models for tetracycline in aquatic environments I Interaction with Bentonite Clay Systems [J]. Water Air and Soil Pollution,1987,32:303-314.
    135. Stamatiadis S, Werner M, Buchanan M. Field assessment of soil quality as affected by compost and fertilizer application in a broccoli field (San Benito County, Califormia) [J]. Applied soil ecology,1999,12:217-225.
    136. Steger K, Sjogren AM, Jarvis A, Jansson JK, Sundh I. Development of compost maturity and Actinobacteria populations during full-scale composting of organic household waste [J]. Journal of Applied Microbiology,2007,103:487-498.
    137. Stentiford EI.Composting control:principles and practice. In:de Bertoldi, M., Sequi, P., Lemmes, B., Papi, T. (Eds.), The Science of Composting, Part 1. Blackie, Glasgow,1996: 56-59.
    138. Stephens CR, Brunings KJ, Woodward RB. Acidity Constants of the Tetracycline Antibiotics. Journal of the American Chemical Society,1956,78(16):4155-4158.
    139. Sukhbir G, Srinand S, Frederick CM. Persistence of Listeria and Salmonella during swine manure treatment [J]. Compost science & utilization,2007,15(1):53-62.
    140. Takijima. The measures for preventing continuous cropping obstacles [J]. Soil Fertilizer, 1983,2:170-178.
    141. Tan H, Cao Y, Tang T, Qian K, Chen WL, Li J. Biodegradation and chiral stability of fipronil in aerobic and flooded paddy soils [J]. Science of the Total Environment,2008,407 (1):428-437.
    142. Tang JC, Kanamori T, Inoue Y, Yasuta T, Yoshida S, Katayama A. Changes in the microbial community structure during thermophilic composting of manure as detected by the quinone profile method [J]. Process Biochemistry,2004,39:1999-2006.
    143. Tiquia SM. Further composting of pig-manure disposed from the Pig-on-litter (POL) system in Hong Kong. Ph D. Thesis. The University of Hong Kong. Pokfulam Road, Hong Kong. 1996.
    144. Tiquia SM, Richard TL, Honeyman MS. Carbon, nutrient, and mass loss during composting [J]. Nutrient Cycling in Agroecosystems,2002,62:15-24.
    145. Tiquia SM, Richard TL, Honeyman MS. Effect of windrow turning and seasonal temperatures on composting of hog manure from hoop structures [J]. Environmental Technology,2000,21:1037-1046.
    146. Tiquia SM, Tam NFY. Elimination of phytotoxitcity during co-composting of spent pig manure, sawdust litter and sludge [J]. Bioresource Technology,1998,65:43-49.
    147. Tiquia SM, Tam NFY. Fate of nitrogen during composting of chicken litter [J]. Environmental Pollution,2000,110(3):535-541.
    148. Tiquia SM. Microbial transformation of nitrogen during composting. In:Insam, H., Riddech, N., Klammer, S. (Eds.), Microbiology of Composting and Other Biodegradation Processes. Springer-Verlag, Berlin, Heidelberg,2002,237-245.
    149. Tuomela M, Vikman M, Hatakka A, Itavaara M. Biodegradation of lignin in a compost environment:a review [J]. Bioresource Technology,2000,72 (2):169-183.
    150. Validov S, Kamilova F, Qi S, Stephan D, Wang JJ, Makarova N, Lugtenberg B. Selection of bacteria able to control Fusarium oxysporum f. sp. radicis-lycopersici in stonewool substrate [J]. Journal of Applied Microbiology,2007,102:461-47.
    151. Visek WJ. The mode of growth promotion by antibiotics [J]. Journal of Animal Science, 1978,46:1447-1469.
    152. Von Klopotek. Uber das Vorkommen und Verhalten von Schimmelpilzen bei der Kompostierung Stadtischer Abfallstoffe [J]. Antonie van Leeuwenhoek,1962,28(1): 141-160.
    153. Wang P, Changa CM, Watson ME, Dick WA, Chen Y, Hoitink HAJ. Maturity indices for composted dairy and pig manures [J]. Soil Biology and Biochemistry,2004,36(5):767-776.
    154. Wang Q, Yates SR. Laboratory study of oxytetracycline degradation kinetics in animal manure and soil [J]. Journal of Agricultural and Food Chemistry,2008,56:1683-1688.
    155. Wang YJ, Jia DA, Sun RJ, Zhu HW, Zhou DM. Adsorption and cosorption of tetracycline and copper (Ⅱ) on Montmorillonite as affected by solution pH [J]. Environmental Science & Technology,2008,42:3254-3259.
    156. Wichuk KM, McCartney D. A review of the effectiveness of current time-temperature regulations on pathogen inactivation during composting [J]. Environmental Engineering Science,2007,6(5):573-586.
    157. Winckler C, Grafe A. Use of veterinary drugs in intensive animal production Evidence for persistence of tetracycline in pig slurry [J]. Journal of Soils and Sediments,2001,2:66-70.
    158. Wu LK, Ma LQ. Relationship between compost stability and extractable organic carbon [J]. Journal of Environmental Quality,2002,31:1323-1328.
    159. Yang JF, Ying GG, Zhou LJ, Liu S, Zhao JL. Dissipation of oxytetracycline in soils under different redox conditions [J]. Environmental Pollution,2009,157:2704-2709.
    160. Yu JQ, Matsui Y. Phytotoxic substances in root exudates of cucumber (Cucumis sativus L) [J]. Journal of Chemical Ecology,1994,20(1):21-31.
    161. Yu JQ. Autotoxic Potential of Cucurbit Crops:Phenomenon, Chemicals, Mechanisms and Means to Overcome [J]. Journal of Crop Production,2001,4(2):335-348.
    162. Zhu N. Effect of low initial C/N ratio on aerobic composting of swine manure with rice straw [J]. Bioresource Technology,2007,98:9-13.
    163. Zuber P, Nakano MM, Marahiel MA. Peptide antibiotics. In:Sonenshein AL, Hoch JA, Losick R, editors. Bacillus subtilis and other gram-positive bacteria:biochemistry, physiology, and molecular genetics. Washington, DC:Amer. Soci. Microbiol.1993,897-916.
    164. Zucconi F, de Bertoldi M. Compost specifications for the production and characterization of compost from municipal solid waste. In:de Bertoldi M, Ferranti MP, Hermite PL and Zucconi F eds. Compost:Production, Quality and Use, Essex [M]. Elsevier Applied Science, 1987,30-50.
    165. Zucconi F, Monaco A, Forte M, de Bertoldi M. Phytotoxins during the stabilization of organic matter. In:Gasser, J.K.R. (Ed.), Composting of Agricultural and Other Wastes. Elsevier Applied Science Publishers, Barking,1985,73-85.
    166. Zucconi F, Pera A, Forte M, de Bertoldi M. Evaluating toxicity in immature compost [J]. Biocycle,1981,22:54-57.
    167.鲍艳宇,周启星,颜丽,关连珠.畜禽粪便堆肥过程中各种氮化合物的动态变化及腐熟度评价指标[J].应用生态学报,2008,2:374-380.
    168.北京农业大学植保系植物生态病理教研室编译.植物根际生态学与根病生物防治进展.北京/中国人民大学出版社,1991,140-143.
    169.曹稳根,高贵珍,方雪梅,钱玉梅,张兴桃,段红.新型户用下吸式秸秆气化炉的研究与应用[J].安徽农业科学,2008,36(30):13328-13329.
    170.陈百明,陈安宁,张正峰,杜红亮.秸秆气化商业化发展的驱动与制约因素分析[J].自然资源学报,2007,22(1):62-69.
    171.陈永生.设施垄作栽培的特点及对机械化作业的需求.农业部南京农业机械化研究所,2009,http://www.jsnj.gov.cn/html/njhlt/1662.html.
    172.陈玉亮,呼世斌,张守文,王显蕾,赵宇蕾.麦秆分步糖化发酵产乙醇的初步研究[J].西北农业学报,2009,18(2):149-153.
    173.戴小枫,赵秉强.我国农产品安全生产技术发展的现状与优先领域[J].中国科技论坛,2002,2:21-24.
    174.单洪涛,吴跃明,刘建新.秸秆饲料化技术的研究进展[J].中国饲料,2007(4):34-36.
    175.丁国强,郁樊敏,张瑞明.上海市蔬菜土壤连作障碍问题及原因对策分析[J].中国蔬菜,2009(15):17-20.
    176.杜连凤,张维理,李志宏,武淑霞,龙怀玉,张认连.长江三角洲地区不同种植类型对土壤质量的影响.农业环境科学学报,2006,25(1):95-99.
    177.杜静,林咸永,章永松.农业废弃物分解产生CO2的影响因素研究[J].应用生态学报,2004,15(3):501-505.
    178.都韶婷,杜静,章永松,林咸永,于承艳.纤维素降解菌对农业有机废弃物发酵进行CO2施肥的作用[J].植物营养与肥料学报,2007,13(4):625-630.
    179.樊琳,都韶婷,黄利东,陈一定,章永松.农业有机废弃物发酵CO2施肥对大棚番茄产量及品质的影响[J].浙江大学学报(农业与生命科学版),2009,35(6):626-632.
    180.高峰,曹林奎,陈国军,施科豪.生物有机肥在糯玉米生产上的应用研究[J].上海交通大学学报(农业科学版),2003,21(3):237-241.
    181.高建程,于金莲,孟庆翔,石登荣,任丽萍.堆肥中微生物及分子生物学技术的应用研究进展[J].农业环境科学学报,2007,26(增刊):624-627.
    182.高丽红.保护地土壤次生盐渍化对主要蔬菜生长发育的影响[J].南京农业大学学报,1998,12(3):69-71.
    183.高砚芳,段增强,郇恒福.宜兴市温室土壤理化性质的调查和分析[J].土壤,2007,39(6):968-972.
    184.葛红莲,胡春红.日光温室连作黄瓜根际微生物区系的变化[J].安徽农业科学,2009,37(1):248-249.
    185.郭文忠,刘声锋,李丁仁,赵顺山.设施蔬菜土壤次生盐渍化发生机理的研究现状与展望[J].土壤,2004,36(1):25-29.
    186.胡繁荣.设施蔬菜连作障碍原因与调控措施探讨[J].金华职业技术学院学报,2005,5(2):18-22.
    187.胡冠九,王冰,孙成.高效液相色谱法测定环境水样中5种四环素类抗生素残留[J].环境化学,2007,26(1):106-107.
    188.胡明勇,刘强,陈雄鹰,彭树初.两种钙化合物在猪粪一稻草堆肥中除臭及保氮效果研究[J].湖南农业科学,2009,7:51-54.
    189.黄奔立,朱华,朱凤,刘兴艳.大棚莴苣腐烂病发生原因及防治[J].江苏农业科学,2004(4):50-54.
    190.黄国锋,钟流举,张振钿,吴启堂.猪粪堆肥化处理过程中的氮素转变及腐熟度研究[J].应用生态学报,2002,13(11):1459-1462.
    191.黄晓亚,常永义,崔欣,朱建兰,郭霞,李瑞华.拮抗菌P1、P5对葡萄灰霉病菌的抑制作用及其抗真菌谱的测定[J].植物保护,2009,35(4):134-137.
    192.黄懿梅,苟春林,来航线,梁军峰.两种添加剂对猪粪玉米秸秆堆肥氮素转化和堆肥质量的影响[J].干旱地区农业研究,2005,23(6):112-118.
    193.黄永锋.兽药抗生素安全使用常识.2009.http://www.szxmsy.cn/E_ReadNews.asp?NewsID=708.
    194.江传杰,王岩,张玉霞.畜禽养殖业环境污染问题研究[J].河南畜牧兽医,2005,26(1):28-31.
    195.匡光伟,孙志良,陈小军,邓昉,尹德明.四环素类抗菌药物在鸡粪中的降解研究[J].农业环境科学学报,2007,26(5):1784-1788.
    196.李刚,张乃明,毛昆明,史静,佘丽娜.大棚土壤盐分累积特征与调控措施研究[J].农业工程学报,2004,20(3):44-47.
    197.李吉进,郝晋珉,邹国元,张有山,王美菊.畜禽粪便高温堆肥生物化学变化特征研究[J].土壤通报,2005,36(2):234-236.
    198.黎起秦,陈永宁,林纬,彭好文,蒙姣荣,韦绍兴.西瓜枯萎病生防细菌的筛选[J].广西农业生物科学,2000,19(2):81-84.
    199.李淑芹,胡玖坤.畜禽粪便污染及治理技术[J].可再生能源,2003,(1):21-23.
    200.林代炎,姚宝全,翁伯琦,林琰.15N示踪法研究复混生物肥对水稻肥效及其对茬后土壤速效养分的影响[J].核农学报,2005,19(5):379-381.
    201.吕卫光,余延园,诸海涛,沈其荣,张春兰.黄瓜连作对土壤理化性状及生物活性的影响研究[J].中国生态农业学报,2006,14(2):119-121.
    202.吕旭东.浙江省农业废弃物的能源利用初探[J].能源研究与利用,2005,(4):11-13.
    203.逯非,王效科,韩冰,欧阳志云,郑华.稻田秸秆还田:土壤固碳与甲烷增排[J].应用生态学报,2010,21(1):99-108.
    204.鲁如坤.土壤农业化学分析方法北京:中国农业科技出版社,2000.
    205.马光庭.生态有机肥与农业可持续发展.2004,12(3):191-193.
    206.牛明芬,赵明梅,何随成,徐丽,马恩.微生物菌剂对有机废弃物堆肥发酵的影响[J].沈阳建筑大学学报,2008,24(3):468-471.
    207.彭有才,刘挺,赵俊杰,孙曙光,高峻,吴福如,刘国顺,叶协锋.连作对土壤性状影响的研究进展[J].江西农业学报,2009,21(9):100-103.
    208.闰强,王安建,王高尚,于汶加.全球生物质能资源评价[J].中国农学通报,2009,25(18):466-470.
    209.申卫收,林先贵,张华勇,尹睿,段增强,施卫明.不同栽培条件下蔬菜塑料大棚土壤尖孢镰刀菌数量的变化[J].土壤学报,2008,45(1):137-142.
    210.石志琦,胡梁斌,于淑池,徐朗莱,范永坚.细菌P-FS08的鉴定及其对几种植物病原真菌的拮抗作用[J].南京农业大学学报,2005,28(3):48-52.
    211.孙永明,李国学,张夫道,施晨璐,孙振钧.中国农业废弃物资源化现状与发展战略.农业工程学报,2005,21(8):169-173.
    212.田慎重,宁堂原,王瑜,李洪杰,仲惟磊,李增嘉.不同耕作方式和秸秆还田对麦田土壤有机碳含量的影响[J].应用生态学报,2010,21(2):373-378.
    213.童蕴慧,郭桂平,徐敬友,纪兆林,陈夕军.拮抗细菌对番茄植株抗灰霉病的诱导[J].中国生物防治,2004,20(3):187-189.
    214.王敦球,曾全方,左华,潘盛,赵敏.竹醋酸在猪粪堆肥中的保氮作用[J].桂林工学院学报,2006,26(1):37-40.
    215.王方浩,马文奇,窦争霞,马林,刘小利,许俊香,张福锁.中国畜禽粪便产生量估算及环境效应[J].中国环境科学2006,26(5):614-617.
    216.王汉荣,王连平,茹水江,方丽,任海英,谢以泽,冯忠民.浙江省设施蔬菜连作障碍成因初探[J].浙江农业科学,2008,1:82-84.
    217.王立刚,李维炯,邱建军,马永良,王迎春.生物有机肥对作物生长、土壤肥力及产量的效应研究[J].土壤肥料,2004,5:12-16.
    218.王敏,卢斌,方桂生,常春.叶霉病上升为大棚番茄的主要病害[J].上海蔬菜,2007(1):46-47.
    219.吴利民,陆宁海,高扬帆,田雪亮,郎剑锋,徐瑞富.哈茨木霉TR-12对多主棒孢霉菌的拮抗作用[J].湖北农业科学,2006,45(6):749-750.
    220.熊汉琴,王朝辉,宰松梅.种植年限对蔬菜大棚土壤肥力的影响[J].水土保持研究,2007,14(3):137-139.
    221.许昌明.秸秆发电需慎行.安徽科技,2009(5):22-24.
    222.徐冬梅,刘广深,李青等.高效液相色谱法同时测定动物组织中3种抗生素残留量[J].中国公共卫生,2002,18(2):233-234.
    223.阳文锐,李维炯,陈展.EM堆肥对土壤生物影响的研究[J].中国生态农业学报,2007,15(6):88-91.
    224.杨国义,夏钟文,李芳柏,万洪富,钟继洪,张天彬,高原雪,黄国锋.不同通风方式对猪粪高温堆肥氮素和碳素变化的影响[J].农业环境科学学报,2003,22(4):463-467.
    225.于广武,许艳丽,刘晓冰,王光华.大豆连作障碍机制研究初报[J].大豆科学,1993,12(3):237-243.
    226.喻景权,杜晓舜.蔬菜设施栽培可持续发展中的连作障碍问题[J].沈阳农业大学学报,2000-02,31(1):124-126.
    227.再吐尼古丽·库尔班,叶凯,涂振东,冯国郡,傅力.甜高粱秸秆固态发酵提取粗乙醇初步研究[J].新疆农业科学,2009,46(3):674-677.
    228.张发宝,徐培智,唐拴虎,陈建生,谢开治,黄旭.畜禽粪堆肥与化肥对叶类蔬菜产量与品质的影响[J].中国农学通报,2008,24(9):283-286.
    229.张浩,罗义,周启星.四环素类抗生素生态毒性研究进展[J].农业环境科学学报,2008,27(2):407-413.
    230.张建栋,王梦亮,刘滇生.PLFA方法对堆肥化过程中微生物群落结构变化的影响[J].安徽农业科学,2006,34(3):534-535.
    231.张利群,彭建旗,李宝军.玉米秸秆制取低浓度酒精循环经济产业化[J].农产品加工业,2008(12):41-43.
    232.张璐,丁延芹,杜秉海,魏珉,王秀峰.黄瓜枯萎病病原拮抗细菌DS-1菌株鉴定及其生防效果研究[J].园艺学报,2010,37(4):575-580.
    233.张强,陆军,侯霖,金花,朴敬慧.玉米秸秆酒精中废弃物木质素的综合利用[J].酿酒科技,2005(2):77-79.
    234.张树清,张夫道,刘秀梅,王玉军,张建峰.高温堆肥对畜禽粪便中抗生素降解和重金属钝化的作用[J].中国农业科学,2006,39(2):337-343.
    235.张卫杰,关海滨,姜建国,李晓霞,闫桂焕,孙荣峰,许敏,孙立.我国秸秆发电技术的应用及前景[J].农机化研究,2009,31(5):10-13.
    236.张树清,张夫道,刘秀梅,王玉军,张建峰.高温堆肥对畜禽粪便中抗生素降解和重金属钝化的作用[J].中国农业科学,2006,39(2):337-343.
    237.张英鹏,林咸永,章永松,郑绍建,周根娣.杭州市郊菜园土壤的养分状况及其障碍因子研究[J].浙江大学学报(农业与生命科学版),2003,29(3):244-250.
    238.赵劫,毕阳,葛永红,曹建康,杨冬梅,陈秀蓉.枯草芽孢杆菌BI、B2液对“黄河蜜”瓜采后黑斑病和粉霉病的抑制效果[J].甘肃农业大学学报,2003,3(1):68-72.
    239.赵秀芬,房增国,韩猛.设施蔬菜连作障碍的原因剖析及对策研究[J].安徽农学通报,2007,13(7):117-118.
    240.郑军辉,叶素芬,喻景权.蔬菜作物连作障碍产生原因及生物防治[J].中国蔬菜,2004(3):56-58.
    241.郑瑞生,肖本木.堆肥化过程中氮素转化和NH3挥发研究[J].泉州师范学院学报,2007,25(2):122-125.
    242.中国土壤学会.土壤农业化学分析方法.中国农业科技出版社,1999.
    243.中华人民共和国卫生部.GB7959-87粪便无害化卫生标准[S].北京/中国标准出版社,1987.
    244.钟华平,岳燕珍,樊江.中国作物秸秆资源及其利用[J].资源科学,2003,25(4):62-67.
    245.周崇莲.杉木连栽与土壤中毒.土壤微生物研究.沈阳/沈阳出版社.1993,340-345.
    246.祝学礼,徐文龙.我国固体废弃物污染与无害化处理技术[J].卫生研究,,2002,31(4):331-33.
    247.邹长明,张多妹,张晓红,汤永玲,孙善军,邹海明.蚌埠地区设施土壤酸化与檐子盐渍化状况测定与评价[J].安徽农学通报,2006,12(9):54-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700