海产品中致病性副溶血弧菌PCR快速检测体系建立及定量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
副溶血弧菌(Vibrio parahaemolyticus, Vp)是一种革兰氏阴性嗜盐菌,广泛分布于海洋、河口环境,尤其是近海鱼类、贝类等海产品中。人类食用未煮熟或被致病性副溶血弧菌污染的海产品可引起急性胃肠炎,出现腹泻、呕吐、腹部痉挛等症状甚至死亡。近年来副溶血弧菌引发的食物中毒事件在日本、中国、新西兰、印尼、美国等不同国家和地区屡有发生,且其在沿海甚至内陆海产品中的分离率渐呈增长趋势。
     目前的研究认为,副溶血弧菌的毒力因子主要有粘附因子、侵袭力、溶血性毒素、尿素酶、脂多糖、胞外酶、三型分泌系统及摄铁系统等,其中溶血性毒素是副溶血弧菌最重要的毒力因子。溶血性毒素主要包括耐热直接溶血毒素(thermostabile direct hemolysin, TDH)、耐热直接相关溶血毒素(TDH-related hemolysin, TRH)和不耐热溶血毒素(thermolabile hemolysin, TLH),分别由相关的tdh、trh和tlh基因编码。TDH和TRH与副溶血弧菌的致病能力关系密切。临床分离的副溶血弧菌中超过90%为tdh阳性菌株,而环境中分离的副溶血弧菌只有1%-2%是tdh阳性株。本研究分别应用传统PCR技术和实时荧光定量PCR技术对海产品中致病性副溶血弧菌活细胞进行了定性和定量检测研究,建立了一种快速、灵敏并能够有效定量检测海产品中病原性副溶血弧菌活细胞的新方法。本研究分为三个部分:
     第一部分:首先分别用TZ裂解液法、煮沸法、CTAB/NaCl法和TENS法对模板DNA的提取进行优化,然后以细菌16SrDNA片段为扩增内标对照(internal amplification control, IAC),副溶血弧菌不耐热溶血毒素(thermolabile hemolysin,TLH)基因tlh和相对耐热直接溶血毒素(thermostable related hemolysin,TRH)基因trh为检测基因,设计引物,并优化多重PCR体系。特异性及灵敏度实验显示,该多重PCR体系检测致病性副溶血弧菌表现出极好的特异性。纯培养条件下,扩增内标存在时tlh基因和致病基因trh的检测灵敏度分别为1.3×102CFU/ml和1.3×103 CFU/ml;人工污染牡蛎样品,不经富集培养,扩增内标存在时tlh基因和致病基因trh的检测灵敏度分别为2.6×103 CFU/ml和2.6×104CFU/ml;经过6h的富集培养,tlh基因和trh基因的检测限均能达到2.6×102CFU/ml。结果表明,该检测体系特异性强、灵敏度高,并且扩增内标的存在可排除PCR检测致病性副溶血弧菌可能导致的假阴性结果,可提高检测的速度和精准度。
     第二部分:将一种DNA染料EMA (Ethidium bromide monoazide)与传统的PCR技术相结合,建立了一种能有效检测纯培养条件下副溶血弧菌死活菌细胞的新方法(EMA-PCR).研究结果表明,当用1.4μg/ml或更高浓度的EMA渗透处理含有4×108CFU/ml的副溶血弧菌死细胞菌悬液后再经20分钟曝光处理,其PCR结果呈阴性,而不经EMA处理的对照组其PCR结果则呈阳性;当EMA的用量等于或者小于6μg/ml时,副溶血弧菌活细胞的PCR扩增不会受到抑制。经EMA处理,含有不同比例的副溶血弧菌死细胞和活细胞的混合液中活的副溶血弧菌能够通过PCR被选择性的定量,最小的检测水平为10CFU/PCR。而且,研究发现在10~2×105CFU/PCR范围内,DNA相对荧光强度与死活细胞混合液中活细胞的对数具有线性关系。
     第三部分:对实时荧光定量PCR体系进行了优化,并将荧光染料EMA与RT-PCR (real-time PCR)技术相结合,建立了一种能选择性定量检测牡蛎中trh阳性副溶血弧菌活菌细胞的新方法。研究结果表明,使EMA成功插入死细胞DNA并且光解溶液中游离EMA的最佳曝光时间为20 min;不抑制副溶血弧菌活细胞DNA扩增的最大EMA浓度为2.0μg/ml;完全抑制热致死细胞DNA扩增的最小EMA浓度为1.4μg/ml。纯培养条件下,在22-2.2x107CFU范围内细胞数的对数值与Ct值之间呈严格的负相关性,并且不添加EMA时的检测灵敏度略大于添加EMA时的检测灵敏度,分别为22 CFU和2.2×102CFU。人工污染牡蛎样品,利用RT-PCR和EMA RT-PCR以及平板计数分别进行副溶血弧菌定量检测,结果表明EMA RT-PCR更接近于平板计数的结果,单纯RT-PCR定量的结果偏大。冻融实验表明,在温度小于55℃的水浴中对冷冻海产品进行解冻时,冻融过程对副溶血弧菌活细胞几乎没有影响。人工污染牡蛎样品,不经过富集,在4.7×102-4.7x106CFU范围内细胞数的对数值与Ct值之间呈严格的负相关性,并且人工污染牡蛎样品的RT-PCR检测限为4.7x102CFU,即人工污染牡蛎样品的RT-PCR检测灵敏度为94个活细胞/克牡蛎样品;经过6h的富集培养,纯培养和人工污染牡蛎样品中致病性副溶血弧菌活细胞的检测限均能达到47 CFU,纯培养与牡蛎样品的Ct值之间没有显著差异,Ct值与细胞数的对数之间也不存在线性关系。并且,在新采集样品的过夜富集培养液中背景微生物菌群总菌数为8.2×108CFU/ml时, EMA RT-PCR检测致病性副溶血弧菌灵敏度为4.7xl02CFU/ml,即就是说,经过夜富集培养的牡蛎样品培养液中,只要致病性副溶血弧菌活菌数大于等于4.7×102CFU/ml,就能够通过EMA RT-PCR方法检测出来。最后,在采集的45份海产品样品中,不经富集培养,利用EMA RT-PCR方法仅有一份牡蛎样品呈阳性,污染程度为114 CFU/g牡蛎样品。
     本研究为海产品中trh阳性副溶血弧菌活菌细胞的定性和定量检测提供了既快捷又准确的新方法,同时也为其它样品中活细胞的检测提供了新的思路。
Vibrio parahaemolyticus is a Gram-negative halopilic bacterium distributed widely in the estuarine environment, especially in coastal fish, shellfish and seafood products. Pathogenic V. parahaemolyticus strains caused acute gastroenteritis, such as diarrhea, vomiting, abdominal cramps and so on, in humans after consumption of contaminated foods, most often involving unproperly cooked seafoods. In resent years, outbreaks of food poisoning caused by pathogenic V. parahaemolyticus have been reported in various geographic regions, including Japan, China, New Zealand, Indonesia and the USA. More recently, the occurrence of V. parahaemolyticus isolates from environments or seafoods not only in coastal areas but inland has shown an increasing tendency. The current research thinks that vibrio parahaemolyticus's virulence factors are adhesion factor, aggressie, hemolytic toxins, urease, lipopolysaccharide, exocellular enzymes, secrete systemⅢand perturbation iron system etc, which hemolytic toxin is the most important virulence factors. Hemolytic toxin mainly includes thermostabile direct hemolysin, TDH-related hemolysin and thermolabile hemolysin, which are encoded by relevant gene of tdh, trh and tlh respectively. TDH and TRH have close relationship with the disease-causing ability of vibrio parahaemolyticus. More than 90% strains separated in clinic are TDH positive, however, TDH positive V. parahaemolyticus separated in environment is only 1% to 2%.Ttraditional PCR and real-time PCR technology to make the qualitative and quantitative study of of pathogen viable cells of Vibrio parahaemolyticus in seafood was conducted, and a fast, sensitive new method which could effectively identify and quantitative detection pathogen viable cells was developed. This research including three parts as follows:
     The first part:Firstly, template DNA extraction was optimized respectively using TZ lysing solution, boil, CTAB/NaCl and TENS, and 16SrDNA fragment of bacteria as internal amplification control(IAC) primers were designed to detect the genes of thermolabile hemolysin (tlh) and thermostable related hemolysin (trh) in vibrio parahaemolyticus, and the assay was optimized. The experiment of specificity and sensitivity showed that this multiplex PCR assay had a good specificity, and for pure culture, the detection limit of tlh and trh was 1.3×102 CFU/ml and 1.3×103 CFU/ml respectively in the presence of IAC; for samples of artificially contaminated oysters, however, the detection sensitivity of tlh and trh was 2.6×103 CFU/ml and 2.6×104 CFU/ml respectively in the presence of IAC without enrichment, and after 6 h enrichment as little as 2.6×102 CFU/ml of tlh and trh could be detected by this multiplex PCR. Results showed that the detection system had a good specificity and sensitivity. The existence of IAC could successfully eliminate false-negative results during using PCR technique to detect pathogenic vibrio parahaemolyticus and could improve the detection speed and accuracy.
     The second part:A new and efficient method for detection the viable and dead cell of pure cultured of vibrio parahaemolyticus was developed by using a DNA dye of ethidium bromide monoazide (EMA) in combination with the traditional polymerase chain reaction (EMA-PCR). The results showed that, under the light exposure for 20 minutes to photolyse the EMA in cell suspension of 4×108 CFU/ml vibrio parahaemolyticus treated with EMA at the concentration of 1.4μg/ml, the PCR results were negative, but the control without treatment by using EMA, the PCR results were positive. The PCR for viable cell of vibrio parahaemolyticus was not inhibited with the maximum concentration of EMA at 6μg/ml. After EMA treatment, the number of viable vibrio parahaemolyticus cells in varying ratios of viable to dead cells could be selectively quantified by PCR. The minimum level of detection was 10 CFU per PCR reaction. A linear relationship was found between the relative fluorescent intensity of the DNA bands and the log of genomic targets derived from the viable cells in mixtures of viable and dead cells in the range of 10 to 2×105 CFU per PCR reaction.
     The third part:Firstly the real-time fluorescence quantitative PCR system is optimized, and then a new method for selectively quantitative detection of trh-positive viable cells of Vibrio parahaemolyticus in oysters was developed using ethidium bromide monoazide (EMA) in combination with real-time PCR (RT-PCR, real-time polymerase chain reaction). The results showed that the optimized light exposure time to achieve crosslinking to DNA by the EMA in dead cells and to photolyse the free EMA in solution was 20 min. The EMA concentration of 2.0μg/ml or less did not inhibit the RT-PCR amplification of DNA derived from viable cells of Vibrio parahaemolyticus. The minimum amount of EMA to completely inhibit the RT-PCR amplification of DNA derived from heat-killed cells was 1.4μg/ml. For pure culture, there was a strict inverse correlation between the log of the number of cells and the associated Ct values in the range of 22~2.2×107 CFU, and the detection sensitivity of without EMA(22 CFU) was slightly higher than that of adding EMA(2.2×102 CFU). Artificial contamination of oyster samples, using RT-PCR, EMA RT-PCR and plate counts separately to quantitative detection of Vibrio parahaemolyticus, the analysis comparison indicated that the results of EMA RT-PCR was closer to plate counts and the number derived from RT-PCR was statistically higher than the number obtained from EMA RT-PCR and the plate count. The experiment of freezing and thawing showed that when freezed Oyster samples were thawed at below 55℃the freeze-thaw process had little effect on viable cells of V parahaemolyticus. Artificial contamination of oyster samples and without enrichment, there was a strict inverse correlation between the log of the number of cells and the associated Ct values in the range of 4.7×102~4.7×106 CFU, and the detection limit of the real-time PCR assay was 4.7×102 CFU for artificial contamination of Oyster samples, suggesting that the sensitivity of RT-PCR was 94 CFU/g oyster sample for artificial contamination. After 6 h enrichment, V. parahaemolyticus in pure cultures or Oyster homogenates containing an initial inoculum of 47 CFU, could be detected, and there was no significant difference in Ct values between pure cultures and Oyster homogenates. No linear relationship between the Ct values and log bacterial concentration was observed. The sensitivity of the real-time PCR detection of V. parahaemolyticus in the presence of background flora was examined by combining various dilutions of V. parahaemolyticus with an overnight enrichment culture generated using an uninoculated oyster sample. The total aerobic plate count from the overnight enrichment culture was 8.2×108 CFU/ml. Even in the presence of background flora, real-time PCR was capable of detecting as few as 4.7×102 CFU/ml of V parahaemolyticus. The real-time PCR method was able to detect the V. parahaemolyticus of more than 4.7×102 CFU/ml even in the presence of the background flora. Finally, a total of fourty-five oyster samples were tested for the trh positive strains of viable V. parahaemolyticus by real-time PCR after EMA treatment. Test results showed that only one oyster samples was trh positive of V. parahaemolyticus without enrichment, approximately at a mean bacteria concentration 114 CFU/g.
     This study provides both rapid and accurate new method for selectively qualitative and quantitative detection of trh-positive viable cells of Vibrio parahaemolyticus in seafoods, and also provides new ideals for detecting viable cells of other samples.
引文
[1]蔡刚,综述,李闻捷等.2003.实时定量PCR应用中的问题及优化方案[J].国外医学临床生物化学与检验学分册,24(6):330-332.
    [2]蔡谭溪,蒋鲁岩,黄克和.2006.副溶血弧菌基因分型和检测的研究进展[J].中国预防兽医学报,28(2):235-237.
    [3]蔡谭溪,蒋鲁岩,黄克和.2005.副溶血弧菌的分子生物学研究进展[J].中国人兽共患病杂志,21(10):914-916.
    [4]陈瑞英,鲁建章,苏意诚等.2007.食品中副溶血性弧菌的危害分析、检测与预防控制[J].食品科学,28(1):341-346.
    [5]董雪,王秋雨,金莉莉等.2008.副溶血弧菌分子分型和检测研究进展[J].中国卫生检验杂志,18(2):379-381.
    [6]杜秋香,孙俊红,王小伟.2008.正交设计在实时定量PCR检测条件优化中的应用[J].中国法医学杂志,23(2):111-114.
    [7]方伟,综述,杨杏芬等.2008.副溶血弧菌分形研究进展[J].中华疾病控制杂志,12(5):468-472.
    [8]冯建军,金志娟,刘西莉等.2008.一种DNA染料结合聚合酶链反应检测鉴别植物病原细菌死活细胞[J].高等学校化学学报,29(5):944-948.
    [9]葛菲菲,徐锋,沈莉萍等.2008.副溶血弧菌PCR检测方法的建立[J].中国预防兽医学报,30(3):229-232.
    [10]何晓华,史贤明.2010.扩增内标及其在食源性致病菌PCR检测中的应用[J].微生物学报,50(2):141-147.
    [11]何晓华,余水静,陈万义等.2010.添加有扩增内标的副溶血弧菌PCR检测方法[J].微生物学报,50(3):387-394.
    [12]黄金林,潘志明,颜卫等.2006.沙门菌、产单核细胞李斯特菌多重PCR检测方法的建立及应用[J].中国人兽共患病学报,22(12):1121-1123.
    [13]黄晓蓉,吕海沧,郑晶等.2006.副溶血弧菌的PCR检测[J].食品科学,27(10):445-446.
    [14]姬华,韩海红,王洪新等.2009.副溶血弧菌预测模型与风险评估的研究进展[J].食品工业科技,30(5):346-350.
    [15]金周浩.2008.副溶血弧菌的分子检测与基因型研究[D].杭州:浙江工商大学.
    [16]金周浩,宋达锋,顾青.2008.副溶血弧菌毒力基因的检测研究[J].中国食品学报,8(3):143-146.
    [17]金周浩,宋达锋,顾青.2008.副溶血弧菌致病因子与耐热直接溶血毒素的研究进展[J].水产科学,27(6):320-324.
    [18]李晓虹,闫东丽.2007.利用多重PCR检测食品中副溶血性弧菌的方法研究[J].中国卫生检验 杂志,17(11):1975-1977.
    [19]李晓岩,刘启才,彭燕等.2007.腺病毒气溶胶的实时定量PCR检测和绿色荧光蛋白活细胞检测[J].环境科学学报,27(5):785-789.
    [20]李一松,王明娜,吕琦等.2008.SYBR GreenⅠ荧光定量PCR检测乳中携带sea基因金黄色葡萄球菌的研究[J].食品科学,29(7):235-239.
    [21]李志峰,戴迎春.2003.副溶血弧菌的溶血毒素研究现状[J].解放军预防医学杂志,21(1):73-75.
    [22]李志峰,聂军,陈义忠等.2004.一种快速检测副溶血弧菌的PCR方法[J].解放军预防医学杂志,22(6):443-444.
    [23]刘斌,史贤明.2006.扩增内标在沙门氏菌PCR检测方法中的应用[J].微生物学通报,33(2):156-161.
    [24]刘李,段永祥,许欣.2010.副溶血性弧菌分子分型技术研究进展[J].现代预防医学,37(4):750-752.
    [25]刘晓侠,林建平,岑沛霖.2007.微生物基因组DNA提取方法的比较与改进[J].嘉兴学院学报,19(3):48-50.
    [26]刘珊玲,彭芝兰,王和等.2000.三磷酸腺苷生物荧光液闪测定法检测活细胞计数[J].华西医大学报,31(2):260-261.
    [27]鲁玉侠,郭祈远,石磊等.2009. EMA-LAMP方法快速检测死/活的食源性沙门氏菌[J].食品科学,30(22):324-327.
    [28]马保臣,秦卓明,蔡玉梅等.2006.多重PCR检测奶牛乳腺炎金黄色葡萄球菌、无乳链球菌、停乳链球菌和酵母菌方法的建立与应用[J].畜牧兽医学报,37(11):1202-1208.
    [29]宋立超,樊景凤,刘述锡等.2005.病原性海洋弧菌快速检测方法的研究进展[J].海洋环境科学,24(1):65-69.
    [30]宋莉,叶珏,王林等.2010.均匀设计发在实时定量PCR检测条件优化中的应用研究[J].中国分子心脏病学杂志,11(3):167-170.
    [31]孙宏迪,杜昕颖,汪舟佳等.2010.副溶血弧菌实时荧光定量PCR快速检测方法的建立[J].解放军医学杂志,35(8):969-972.
    [32]孙飞龙,邱志刚,金敏等.2009.铜绿假单胞菌荧光实时定量PCR标准品的构建[J].生物技术通报,10:181185.
    [33]唐文志,周玉球,张永良等.2006.单管多重PCR快速检测STD病原菌[J].现代检验医学杂志,21(2):26-28.
    [34]王国玲,栾玉明,刘达雄等.2010.副溶血弧菌检测方法的研究进展[J].中国卫生检验杂志,20(6):1574-1576.
    [35]王华丽,史贤明,杨官品.2006.海产品中副溶血弧菌PCR检测方法的建立与评价[J].农业生 物技术学报,14(4):627-628.
    [36]王建红,王东方,陈洪永等.2008.水产品种副溶血弧菌的检验及方法探讨[J].中国卫生检验杂志,18(2):360-361.
    [37]王淑娜,VONGXAY K,沈飚等.2009.副溶血弧菌海产品分离株tdh基因及其临近区域结构分析[J].微生物学报,49(12):1576-1583.
    [38]王艳,赵爱兰,叶长芸.2009.荧光定量PCR技术用于模拟临床标本单增李斯特菌检测的研究[J].中国人兽共患学报,25(6):511-514.
    [39]魏兆军,廖爱美,贾如等.2006.食品污染微生物基因组DNA提取的简易方法[J].食品科学,27(12):410-413.
    [40]翁文川,焦红,王方金等.2005.食品中副溶血弧菌荧光定量PCR方法快速检测[J].中国公共卫生,21(11):1359-1365.
    [41]徐芊,孙晓红,赵勇等.2007.副溶血弧菌LAMP检测方法的建立[J].中国生物工程杂志,27(12):66-72.
    [42]闫冰,姜毓君,曲妍妍等.2008.实时RT-PCR检测存活于乳中的单核细胞增多性李斯特菌[J].食品科学,29(2):292-296.
    [43]杨梅,蒋立新,邓凯杰等.2010.副溶血性弧菌的污染状况和分子检测方法研究进展[J].职业与健康,26(3):333-335.
    [44]杨芳,李秀娟,徐保红.2010.副溶血弧菌分子致病机制研究进展[J].中华疾病控制杂志,14(6):562-565.
    [45]杨振泉,焦新安.2008.副溶血弧菌毒力因子及其致病机理研究进展[J].中国人兽共患病学报,24(1):1070-1073.
    [46]杨芳,李秀娟,徐保红.2010.副溶血弧菌的快速鉴定检测方法研究进展[J].河北医药,32(7):862-865.
    [47]杨文鸽,孙翠玲,潘云娣等.2006.水产品中致病微生物的快速检测方法[J].中国食品学报,6(1):402-406.
    [48]杨少华,柴同杰.2006.利用多重PCR检测兔肠致病性和魏氏梭菌的毒力基因[J].中国预防兽医学报,28(2):228-231.
    [49]叶岩松,万翠香,熊凯华.2009.微生物活细胞快速检测的新技术研究[J].中国为生态学杂志,21(4):359-361.
    [50]俞盈,吴蓓蓓,方维焕.2009.副溶血弧菌的Ⅲ型分泌系统[J].微生物学报,49(7):848-852.
    [51]张蔚,孟冬梅,潘劲草等.2004.杭州地区临床和环境分离副溶血弧菌菌株携带毒力基因的特征[J].中华预防医学杂志,6(5):77-81.
    [52]赵青,章红兵,应延凤.2010.副溶血弧菌海产品分离株及临床分离株的多位点序列分型[J].中国兽医学报,30(1):55-59.
    [53]钟金栋,花群义,肖荣海等.2006.多重PCR同时检测口蹄疫病毒、猪水疱病病毒和水疱性口炎病毒[J].动物医学进展,27(7):55-58.
    [54]钟凯.2005.副溶血弧菌快速检测的研究进展[J].中国预防医学杂志,6(1):75-78.
    [55]朱雪兰,陈艳,刘秀梅等.2007.副溶血性弧菌溶血素基因及其检测的研究进展[J].国外医学卫生学分册,34(4):233-237.
    [56]祝儒刚,吕淑霞,刘月萍等.2010.基于DNA染料EMA的PCR技术检测鉴别副溶血性弧菌死活细胞[J].食品与发酵工业,36(7):144-149.
    [57]祝儒刚,吕淑霞,刘月萍等.2011.基于DNA染料EMA的RT-PCR技术定量检测海产品中病原性副溶血弧菌活细胞[J].食品科学(待排版),
    [58]Abolmaaty A, VU C, Oliver J, et al.2000. Development of a new lysis solution for releasing genomic DNA from bacterial cells for DNA amplification by polymerase chain reaction [J]. Microbios,101:181-189.
    [59]Anuj T, V. Saravanan, Iddya K, et al.2009. Detection of Vibrio parahaemolyticus in tropical shellfish by SYBR green real-time PCR and evaluation of three enrichment media [J]. International journal of food microbiology,129(6):124-130.
    [60]Bentsink, L, Leone, G, van Beckhoven, J, et al.2002. Amplification of RNA by NASBA allows direct detection of viable cells of Ralstonia solanacearum in potato [J]. J. Appl. Microbiol,93 (4), 647-655.
    [61]Blackstone G M, Nordstrom J L, Vickery M C L, et al.2003. Detection of pathogenic Vibrio parahaemolyticus in oyster enrichments by real time PCR[J]. Journal of Microbiological Methods, 53:149-155.
    [62]Cawthorn D M, Witthuhn R C.2007. Selective PCR detection of viable Enterobacter sakazakii cells utilizing propidium monoazide or ethidium bromide monoazide [J]. Journal of Applied Microbiology,105:1178-1185.
    [63]Chen J, Zhang L, Paoli G C, et al.2010. A real-time PCR method for the detection of Salmonella enterica from food using a target sequence identified by comparative genomic analysis [J]. International Journal of Food Microbiology,137:168-174.
    [64]Deb B C, Sinha R, De S P, et al.1975. Studies on Vibrio parahaemolyticus infection in Calcutta as compared to cholera infection[J]. Progressive Diagnostic Research in Tropical Diseases,19: 400-405.
    [65]DePaola A, Hopkins L H, Peeler J T, et al.1990. Incidence of Vibrio parahaemolyticus in U.S. coastal waters and oysters [J]. Applied and Environmental Microbiology,56:2299-2302.
    [66]D'Urso O F, Poltronieri P, Marsigliante S, et al.2009. A filtration-based real-time PCR method for the quantitative detection of viable Salmonella enterica and Listeria monocytogenes in food samples [J]. Food Microbiology,26:311-316.
    [67]Enrica O, Giulia A, Giorgio B, et al.2009. A new platform for Real-Time PCR detection of Salmonella spp., Listeria monocytogenes and Escherichia coli O157 in milk [J]. Food Microbiology,26:615-622.
    [68]Gu W M, Levin R E.2007. Quantification of viable Plesiomonas shigelloides in a Mixture of viable and Dead Cells Using Ethidium Bromide Monoazide and Conventional PCR [J]. Food Biotechnology,21(2):145-149.
    [69]Hein I, Flekna G, Krassnig M, et al.2006. Real-time PCR for the detection of Salmonella spp. in food:An alternative approach to a conventional PCR system suggested by the FOOD-PCR project [J]. Journal of Microbiological Methods,66:538-547.
    [70]Hixon C, White W, Yielding J.1975. Selective covalent binding of an ethidium analog to mitochondrial DNAwith production of petite mutants in yeast by photoaffinity labeling [J]. J. Mol. Biol,92 (2):319-329.
    [71]Hoorfar J, Malorny B, Abdulmawjood A, et al.2004. Practical considerations in design of internal amplification controls for diagnostic PCR assays [J]. Journal of clinical microbiology,42(5): 1863-1868.
    [72]Joseph S W, Colwell R R, Kaper J B.1982. Vibrio parahaemolyticus and related halophilic vibrios [J]. Critical Reviews in Microbiology,10:77-124.
    [73]Kaneko T, Colwell R R.1973. Ecology of Vibrio parahaemolyticus in Chesapeake Bay [J]. Journal of Bacteriology,113:24-32.
    [74]Kamio A, Hara-Kudo Y, Miyasaka J, et al.2008. Efficiency of real-time polymerase chain reaction assay to detect Vibrio vulnificus in seawater [J]. Int. J. Hyg. Environ. Health,211: 518-523.
    [75]Lee J L, Levin R E.2009. Discrimination of viable and dead Vibrio vulnificus after refrigerated and frozen storage using EMA, sodium deoxycholate and real-time PCR [J]. Journal of Microbiological Methods,79:184-188.
    [76]Lee J L, Levin R E.2007. Quantification of total viable bacteria on fish fillets by using ethidium bromide monoazide real-time polymerase chain reaction [J]. International Journal of Food Microbiology,118:312-317.
    [77]Lee J M, Levin R E.2006. Use of ethidium bromide monoazide for quantification of viable and dead mixed bacterial flora from fish fillets by polymerase chain reaction [J]. Journal of Microbiological Methods,67:456-462.
    [78]Luan X Y, Chen J X, Liu Y, et al.2008. Rapid Quantitative Detection of Vibrio parahaemolyticus in Seafood by MPN-PCR[J]. Curr Microbiol,57:218-221.
    [79]Malorny B, Hoorfar J, Bunge C, et al.2003. Multicenter validation of the analytical accuracy of Salmonella PCR:towards an international standard [J]. Applied and environmental microbiology, 69(1):290-296.
    [80]Malorny B, Bunge C, Helmuth R.2007. A real-time PCR for the detection of Salmonella Enteritidis in poultry meat and consumption eggs [J]. Journal of Microbiological Methods,70: 245-251.
    [81]McBain A, Bartolo R, Catrenich C, et al.2003. Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms [J]. Appl. Environ. Microbiol,69 (1): 177-185.
    [82]McKillip J, Jaykus L, Drake M.1999. Nucleic acid persistence in heat-killed Escherichia coli O15:H7 from contaminated skim milk [J]. J. Food Prot,62 (8):839-844.
    [83]Murphy N M, Mclauchlin J, Ohai C, et al.2007. Construction and evaluation of microbiological positive process internal control for PCR-based examination of food samples for Listeria monocytogenes and Salmonella enterica [J]. International journal of food microbiology,120(6): 110-119.
    [84]Myers M L, Panicker G, Bej A K.2003. PCR Detection of a Newly Emerged Pandemic Vibrio parahaemolyticus O3:K6 Pathogen in Pure Cultures and Seeded Waters from the Gulf of Mexico [J]. Applied and Environental Microbiology,69:2194-2200.
    [85]Nam H M, Srinivasan B, Gillespie B E, et al.2005. Application of SYBR green real-time PCR assay for specific detection of Salmonella spp. in dair farm environmental samples [J]. International Journal of Food Microbiology,102:161-171.
    [86]Nhung P H, Ohkusu K, Miyasaka J, et al.2007. Rapid and specific identification of 5 human pathogenic Vibrio species by multiplex polymerase chain reaction targeted to dnaJ gene [J]. Diagnostic Microbiology and Infection Disease,59:271-275.
    [87]Nishibuchi M, Kape J B.1995. Thermostable direct hemolysin gene of Vibrio parahaemolyticus:a virulence gene acquired by a marine bacterium [J]. Infection and Immunity,63:2093-2099.
    [88]Nogva H, Dromtorp S, Nissen H, et al.2003. Ethidium monoazide for DNA-based differentiation of viable and bacteria by 5'-nuclease PCR [J]. Biotechniques,34:804-813.
    [89]Nordstrom J L, Vickery M C L, Blackstone G M, et al.2007. Development of a Multiplex Real-Time PCR Assay with an Internal Amplification Control for the Detection of Total and Pathogenic Vibrio parahaemolyticus Bacteria in Oysters [J]. Applied and Environmental Microbiology,73(18):5840-5847.
    [90]Novak J, Juneja V.2001. Detection of heat-injury in Listeria monocytogenes scott [J]. A. J. Food Prot,64(11):1343-1379.
    [91]O'Brien M, Boton W.1995. Comparison of cell viability probes compatible with fixation and permeabilization for combined surface and intracellular staining in flow cytometry [J]. Cytometry, 19 (3):243-255.
    [92]Pan Y, Jr B F.2007. Enumeration of viable Listeria monocytogenes cells by Real-time PCR with propidium monoazide and ethidium monoazide in the presence of dead cells [J]. Applied and environmental microbiology,73(24):8028-8031.
    [93]Raghunath P, Karunasagar I, Karunasagar I.2009. Improved isolation and detection of pathogenic Vibrio parahaemolyticus from seafood using a new enrichment broth [J]. International Journal of Food Microbiology,129:200-203.
    [94]Riedy M, Muirhead K, Jensen C, et al.1991. Use of a photolabeling technique to identify nonviable cells in fixed homologous or heterologous cell populations [J]. Cytometry,12 (2): 133-139.
    [95]Robert-Pillot A, Copin S, Gay M, et al.2010. Total and pathogenic Vibrio parahaemolyticus in shrimp:Fast and reliable quantification by real-time PCR [J]. International Journal of Food Microbiology,143:190-197.
    [96]Rodriguez-Lazaro D, D'Agostino M, Herrewegh A, et al.2005. Real-time PCR-based methods for detection of Mycobacterium avium subsp. paratuberculosis in water and milk [J]. International Journal of Food Microbiology,101:93-104.
    [97]Rosec J P, Simon M, Causse V, et al.2009. Detection of total and pathogenic Vibrio parahaemolyticus in shellfish:Comparison of PCR protocols using pR72H or toxR targets with a culture method[J]. International Journal of Food Microbiology,129:136-145.
    [98]Rudi K, Naterstad K, Dremtorp S M, et al.2005. Detection of viable and dead Listeria monocytogenes on gouda-like cheeses by real-time PCR [J]. Letters in Applied Microbiology,40: 301-306.
    [99]Rudi K, Moen B, Dromtorp S, et al.2005. Use of Ethidium Monoazide and PCR in combination for quantification of viable and dead cells in complex samples [J]. Appl. Environ. Microbiol,71: 1018-1024.
    [100]Rudi K, Nogva H, Moen B, et al.2002. Development and application of new nucleic acid-based technologies for microbial community analyses in foods[J]. Int. J. Food Microbiol,78 (12):171-180.
    [101]Shirai H, Ito H, Hirayama T, et al.1990. Molecular epidemiologic evidence for association of thermostable direct hemolysin (TDH) and TDH-related hemolysin of Vibrio parahaemolyticus with gastroenteritis[J]. Infection and Immunity,58:3568-3573.
    [102]Soejima T, Lida K, Qin T, Taniai H, et al.2007. Photoactivated ethidium monoazide directly cleaves bacterial DNA and is applied to PCR for discrimination of live and dead bacteria [J]. Microbiol. Immunol.,51 (8):763-775.
    [103]Tyagi A, Saravanan V, Karunasagar I, et al.2009. Detection of Vibrio parahaemolyticus in tropical shellfish by SYBR green real-time PCR and evaluation of three enrichment media[J]. International Journal of Food Microbiology,129:124-130.
    [104]Wang S, Levin R.2006. Discrimination of viable Vibrio vulnificus cells from dead cells in real-time PCR [J]. J. Microbiol. Meth.,64:1-8.
    [105]Wei J, Zhou X M, Xing D, et al.2010. Rapid and sensitive detection of Vibrio parahaemolyticus in sea foods by electro-chemiluminescence polymerase chain reaction method [J]. Food Chemistry, 123:852-858.
    [106]Van Beckhoven J, Stead D, van der Worf J.2002. Detection of Clavibacter michiganensis subsp. Sepedoncus by amphinet RNA, a new technology based on real-time monitoring of NASBA amplicons with a molecular beacon [J]. J. Appl. Microbiol.93 (5):890-899.
    [107]Yukiko H K,Tokuhiro N, HIROSHI N, et al.2001. Improved method for detection of vibrio parahaemolyticus in seafood [J]. Applied and environmental microbiology,67(12):5819-5823.
    [108]Zhang, X H, Austin B.2005. Haemolysins in Vibrio species[J]. Journal of Applied Microbiology, 98:1011-1019.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700