基于反转座子发展分子指纹及在水稻育种中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻杂种优势的利用是提高水稻产量的有效途径,但是目前由于选用的杂交亲本的遗传关系较近,育成的新品种的产量没有较大的突破。分子标记辅助育种可以更有效地利用资源的遗传多样性,在分子水平上更精确地进行选择,从而培育出更高产的杂交水稻品种。本研究利用基于反转座子的分子标记技术对三组水稻品种进行品种鉴定与杂种优势的预测。研究结果如下:
     1、籼稻和粳稻亚种间的DNA序列的差异性
     利用6对引物对12份供试水稻材料进行PCR扩增,共扩增出173个条带,97个是多态性带,多态性水平56.1%;其中籼稻的多态性为32.1%,高于粳稻的多态性(24.3%)。根据遗传距离进行聚类,可以清楚地把籼粳分为两大类,并且籼稻差异性高于粳稻。这说明利用基于反转座子发展的分子标记能够准确地鉴定籼粳稻亚种间及品种间的的遗传差异。
     2、水稻杂种优势的预测
     利用5对引物对8个水稻亲本(4个母本和4个父本)以及由它们组配的12个杂交种进行分子指纹图谱数据分析,结果说明基于反转座子发展的分子标记能很好地把这20份水稻材料区分开来。利用类平均聚类法(UPGMA)进行聚类分析,并对聚类后的遗传距离与产量相关的各农艺性状的关系进行分析,结果表明随着遗传距离的增大杂种优势越明显。各农艺性状的杂种表现和配合力方差分析表明,绝大多数性状的一般配合力方差大于特殊配合力方差,表明各性状在杂交组合的遗传效应中以加性基因效应为主;另外,超亲优势较高的组合中至少有一个亲本的一般配合力较高,说明亲本的遗传因素对子代表型有很大影响。遗传距离与各性状的回归相关关系表明,遗传距离与各性状之间大都呈正相关,但其决定系数并不高。
     3、偏籼偏粳稻的鉴定
     利用5对引物对53份偏籼偏粳水稻材料进行多态性分析,平均多态性56.5%,说明偏籼偏粳间存在较大的遗传多样性。聚类分析可将偏籼和偏粳分为明显的两大类,并且由相同亲本组配的杂交后代的亲缘关系更近,说明利用基于反转座子的分子指纹不仅可以区分出偏籼偏粳材料间的差异,而且可以显示出材料的遗传特征。
The utility of heterosis is an effieient way to improve yield in rice.At present, the current result of the selection of hybrid parents are the close kinship so the production of new varieties bred have no major breakthrough in yield.The molecular marker assisted breeding is an effieient way for making full use of genetic diversity,fine seletion at molecular level,which leads develop rice hybrids for rice production and peaple’s demands. In this study, species identification and prediction of heterosis about three groups of rice by retrotransposon-based molecular marker techniques. The results were as follows:
    
     1.Subspecies differences in DNA sequences between Indica and japonica
     A total of 173 bands were amplified by 6 primers in the PCR analysis with 12 indica and japonica, of which 97 are polymorphic, polymorphism level is 56.1%; Polymorphism of indica rice 32.1%, higher than the polymorphism of japonica rice(24.3%). Based on the genetic distance clustering can be clearly divided into two categories-Indica and Japonica,and the Indica polymorphism higher than the japonica rice. This shows that the use of retrotransposon-based molecular markers can accurately identify subspecies and varieties of genetic differences between the Indica and Japonica.
     2. Prediction of Heterosis in Rice
     The eight rice parents( in which four female parents and four paternal), as well as their 12 hybrids can be well distinguished from rice materials with 5 pairs of primers of molecular fingerprinting datas. Using UPGMA method gets the dendrogram which based on the genetic distance.Analyse the correlation analysis between genetic distance and yield of agronomic traits. Agronomic traits of hybrid performance and parental combining ability analysis showed that among the vast majority of traits general combining ability variance is greater than specific combining ability variance. Therefore,the genetic effects get first place to the additive genetic effects in hybrid combinations of each trait.In the combination of ultra-high-parent heterosis, one parent have a high general combining ability, at least. The genetic factors that explain relatively large impact on the sub-representative type. Simple linear regressio relationship between genetic distance and various agronomic traits show that most of them are positive correlation. However, the coefficient of determination is not high.
     3. Identification of partial indica-japonica rice side
     The average polymorphism is 56.5% for 53 kinds of partial indica-japonica rice side with 5 pairs of primers show that there is a great genetic diversity between the partial indica and japonica side. Cluster analysis showed that partial indica and japonica is divided into two categories obviously. And by the same parents of the hybrids in this group with closer genetic relationship. These results suggest that the use of retrotransposon-based molecular fingerprints can distinguish not only the partial indica-japonica materials’differences and can show the genetic characteristics of these rice materials.
引文
Banks J A, Masson P, Fedoroff N. Molecular mechanisms in the developmental regulation of the maize Suppressor-mutator transposable element. Genes Development, 1988, 2: 1364-1380
    Balcells L, Swinburne J, Coupland G. Transposons as tools for the isolation of plant genes. Trends in Biotechnology, 1991, 9(11): 31-37
    Bauman L F. Evidence of non-allelic gene interaction in determining yield, ear height, and Kernel row number in corn.. American Society of Agronomy, 1959, 51: 531-534
    Berenji J, Sikora V. Utilization of hybrid vigor in broomcorn, Sorghum bicolor L. Moench. Plant Genetics and Breeding, 2002, 301(2): 89-94
    Berger E. Heterosis and the maintenance of enzyme polymorphism. The American Naturalist, 1976, 110(975): 823-839
    Bohn M, Utz H F, Melchinger A E. Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Science, 1999, 39(1): 228-237
    Cao G Q, Zhu J, He C X, Gao Y M, Wu P. QTL Analysis for epistatic effects and QTL×environment interaction effects on final height of rice (Oryza sativa L). Journal of Zhe jiang University, 2001, 27(1): 55-61
    Casa A M, Brouwer C, Nagel A, Wang L J, Zhang Q, Kresovich S, Wessler S R.. The MITE family heartbreaker (Hbr):molecular markers in maize. Proceeding of the National Academy of Science USA, 2000, 97(18): 10083-10089
    Castro G M, Gardner C O, Lonnquist J H. Cumulative gene effects and the nature of heterosis in maize crosses. Crop Science, 1968, 8: 97-101
    Cerevra M T, Cabezas J C, Sancha J C, Martínez de Toda F, Martínez-Zapater J M. Application of AFLPs to the characterization of grapvine Vitis vinifera L.genetic resources. A case study with accessions from Rioja(Spain). Theoretical Applied Genetics, 1998, 97(1-2): 51-59
    Chandler V L, Walbot V. DNA modification of a maize transposable element correlates with loss of activity. Proceedings of the National Academy of Sciences USA, 1986, 83: 1767-1771
    Chun K T, Goebl M G. The identification of transposon-tagged mutations in essential genes that affect cellmorphology in saccharomyces cerevisiae.Genetics, 1996, 142: 39-50
    Craig N L, Craigie R, Gellert M, Lambowitz A. Molecular evolution of DNA transposons. Mobile DNA II, American Society of Microbiology Press, 2002, Washington, DC Elis T H N, Poyser S J, Knox M R, Vershinin A V, Ambrose M J. Polymorphism of insertion sites of Tyl-copia class retrotransposons and its use for linkage and diversity analysis in pea . Molecular and General Genetics, 1998, 260: 9-19
    Flavell A J, Pearce S R, Kumar A. Plant transposable elements and the genome. Current Opinion in Genetics﹠Development, 1994, 4(6): 838-844
    Flavell A J, Knox M R, Pearce S R. Retrotransposon-based insertion polymorphisms (RBIP) for high through put marker analysis. The Plant Journal, 1998, 16(5): 643-650
    Flavell A J, Bolshakov V N, Booth A,Jing R, Russell J, Noel Ellis T H, Isaac P. A microarray-based high throughput molecular marker genotyping method: the tagged microarray marker(TAM) approach.. Nucleic Acids Research, 2003, 31(19): 109-113
    Flavell A J, Knox M R, Pearce S R, Noel Ellis T H. Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. The Plant Journal , 1998, 16: 643-650
    Gao L Z, McCarthy E M, Ganko E W, McDonald J F. Evolutionary history of Oryzia sativa LTR retrotranspos- ons:A preliminary survey of the rice genome sequences. BMC Genomics, 2004, 5: 1-18
    Gierl A, Seader H. Plant-trotransposon elements and gene tagging. Plant Molecular Biology, 1992, 19: 39-49
    Grandbastien M A. Activation of plant retrotransposons under stress conditions. Plants Science, 1998, 3 (5): 181- 187
    Hass B L, Pires J C, Porter R, Phillips R L, Jackson S A. Comparative genetics at the gene and chromosome levels between rice(Oryza sativa)and wildrice(Zizania palustris). Theoretical and Appllied Genetics, 2003, 107: 773-782
    He Y Q, Sun M, Zhu Y G, Zhang L D. Copia-like retrotransposon in Amaranthus. Acta Genetica Sinica, 2002, 29(5): 461-466
    Hill M, Witsebboer H, Zabeau M, Kesseli P.V R., Michelmore R. PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp. Theoretical Applied Genetics, 1996, 93 (8): 1202-1210
    Hirohiko H. Retrotransposons of rice: their regulation and use for genome analysis. Plant Molecular Biology, 1997, 35: 231-240
    Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M. Retrotransposons of rice involved in mutations induced by tissue culture . Proceeding of the National Academy of Science USA, 1996, 93(15): 7783-7788
    Hirochika H, Okamoto H, Kakutani T. Silencing of retrotransposons in Arabidopsis and reactivation by the ddm1 mutation. The Plant Cell, 2000, 12: 357-368
    Jeddeloh J A, Bender J, Richards E J. The DNA methylation locus DDM1 is required for maintenance of gene silencing in Arabidopsis. Genes Development, 1998, 12: 1714-1725
    Jeddeloh J A, Richards E J. mCCG methylation in angiosperms. Plant Journal, 1996, 9(5): 579-586
    Frankel R(edt), Organization A R, Cent V, Israel B D. Heterosis.reappraisal of theory and practice. Springer-Verlag. New York, 1983
    Johns M A, Mottinger J, Freeling M. A low copy number copia-like transposon in maize. The EMBO Journal, 1985, 4(5): 1093–1102
    Kakutani T, Munakata K, Richards E J, Hirochika H. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana. Genetics, 1999, 151: 831-838
    Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting technique. Theoretical and Appllied Genetics, 1999, 98: 704-711
    Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman A H. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proceedings of the National Academy of Sciences, USA, 2000, 97(12): 6603-6607
    Kumar A, Bennetzen J L. Plant retrotransposons. Annual Review of Genetics, 1999, 33: 479-532.
    Li Ping, Chao Fu, Zhou Kaida, Chen Ying, Li Renduan, Zhu Lihuang. RFLP mapping of major and minor genes for important agronomic characters in rice. Science in China, 1996, 39(4): 440-448
    Li Z. SRM. Pinson, Park W D, Paterson A H, Stanset J W. Epistasis for the yield components in rice (oryzia sativa L.).Genetics, 1997, 145: 453-465
    Li Z K, Pinson S R M, Park D W, Paterson A H, Stansel J W. Epistasis for three grain yield components in rice (Oryzia sativa L.). Genetics Society of America, 1997, 145: 453-465
    Lin J J, Kuo J, Ma J, Ma J, Saunders J A, Beard S H, MacDonald M H, Kenworthy W, Ude G N, Matthews B F. Identification of molecular markers in soybean comparing RFLP, RAPD and AFLP DNA mapping techniques. Plant Molecular Biology Reporter, 1996, 14(2): 156-169
    Liu B, Wendel J F. Non-Mendelian phenomena in allopolyploid genome evolution.Current Genomics, 2002, 3(6): 589-605
    Majer D, Mithen R, Lewis B C, Lewis B G, Oliver R P. The use of AFLP fingerprinting for the detection of genetic variation in fungi. Mycological Research, 1996, 100(9): 1107-1111
    Manninen O, Kalendar R, Robinson J, Schulman A H. Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Molecular and Genet Genom , 2000, 264(3): 325-334
    Martienessen R A, Colot V. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science, 2001, 293(5532): 1070-1074
    McClintock B, Harriet B C. Chromosome organization and genic expression. Cold Spring Harbor Symposia Quantitative Biology, 1951, 16: 13-47
    Marillonnet S, Wessler S R. Retrotransposon insertion into the maize waxy gene results in tissure-specific RNA processing. Plant Cell, 1997, 9(6): 967-978
    McClintock B. The origin and behavior of mutable loci in maize. Proceedings of the National Academy of Sciences, USA, 1950, 36(6): 344– 355.
    McClintock B. The fusion of broken ends of chromosomes following nuclear fusion. Proceedings of the National Academy of Sciences, USA, 1942, 28: 458-463
    Miller J T, Dong F, Jackson S A, Song J, Jiang J M. Retrotransposon related DNA sequences in the centromeres of grass chromosomes. Genetics, 1998, 150: 1615-1623
    Pearce S R, Stuart-Rogers C, Knox M R, Kumar A, Noel Ellis T H, Flavell A J. Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. Plant Journal, 1999, 19(6): 711-717
    Rumbaugh M D, Lonnquist J H. Inbreeding depression of diallel crosses of selected lines of corn. American Society of Agronomy, 1959, 51: 407-412
    Rea S, Eisenhaber F, O'Carroll D, Strahl B D, Sun Z W, Schmid M, Opravil S, Mechtler K, Ponting C P, Allis C D, Jenuwein T. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature, 2000, 406(6796): 593-599
    Roseman R R, Johnson E A, Rodesch C K, Bjerke M, Nagoshi R N, Geyer P K. A P element containing supprressor of hairy-wing binding regions has novel properties for mutagenesis in Drosophial melanogaster. Genetics, 1995, 141: 106-174
    Shim S I, Jorgensen R B. Genetic structure in cultivated and wild carrots (Daucus carota L.) revealed by AFLP analysis. Theoretical Applied Genetics, 2000, 101(1-2): 227-233
    Shull G H, Harbor C S. The composition of a field of maize. Committee on forage crops, 1908, 4: 296-301
    Sun X L, Cai H W, Wang X K. Diversity and nonrandom association of rice is ozyme genes. Acta Genetica Sinica, 1996, 23(4): 276-285
    Steimer A, Amedeo P, Afsar K, Fransz P, Scheid O M, Paszkowski J. Endogenous targets of transcriptional gene silencing in Arabidopsis. Plant Cell, 2000, 12: 1165–1178
    Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132 (3): 823-839
    Takeda S, Sugimoto K, Otsuki H, Hirochika H. Transcriptional activation of the tobacco retrotransposon Ttol by wounding and methy jasmonate. Plant Molecular Biology, 1998, 36(3): 365-376
    Talbert L E, Chandler V L. Characterization of a highly conserved sequence related to Mutator transposable elements in maize. Molecular Biology Evolution, 1988, 5(5): 519-529
    Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M. AFLP:a new technique for DNA fingerprint. Nucleic Acids Research, 1995, 23(21): 4407-4417
    Wang X K, Cai H W, Sun C Q, Wang Z S, Pang H H. The preliminary study on the primitive type of Oryza rufipogon Griff. In China and its Hsien-Keng differentiation, Zhongguo Shuidao Kexue (Chinese Journal Rice Science),1994, 8(4):205-210
    Waugh R, Mc-Lean K, Flavell A J, Pearce S R, Kumar A, Thomas B B T, Powell W. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms(SSAP). Molecular and General Genetics, 1997, 253: 687-694
    Whalen J H, Grigliatti T A. Molecular characterization of a retrotransposon in Drosophila melanogaster, nomad, and its relationship to other retrovirus-like mobile elements. Molecular and General Genetics, 1998, 260: 401-409
    Xiao J, Li J, Yuan L, Tanksley S D. Dominance is the major genetic basis of heterosis in rice as released by QTL Analysis using molecular markers. Genetics, 1995, 140: 745-754
    Yusa K, Takeda J, Horie K. Enhancement of sleeping beauty transposition by CpG methylation: possible role of heterochromatin formation. Molecular Cell Biology, 2004, 24: 4004-4018
    Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q F, Saghai Maroof M A. Important of epistasisas thegenetie basis of heterosinan eliteriee hybrid. Proceedings of the National Academy of Science USA, 1997, 94 (17): 9226-9231
    蔡健,兰伟. AFLP标记与水稻杂种产量及产量杂种优势的预测.中国农学通报, 2005, 21(4): 39-43
    程侃声著.亚洲稻籼粳亚种的鉴别.云南科技出版社, 1993
    杜晓云,张青林,罗正荣.逆转座子分子标记及其在果树上的应用.果树学报, 2009, 26(6): 865-870
    段中岗,郑枫,梁承邺.不同亲和性水稻材料的同工酶遗传多样性分析.热带亚热带植物学报, 2006, 14(5): 366-373
    葛莘.高级植物分子生物学.北京:科学出版社, 2004
    黄建安,李家贤,黄意欢,罗军武,龚志华,刘仲华.茶树AFLP分子连锁图谱的构建.茶叶科学, 2005, 25(1): 7-15
    李红斌,王宏. AFLP标记技术在青菜品种鉴定上的应用.杭州农业科学, 2008, 1: 20-21
    李良壁,张正东,谭克辉,周佩珍,周嘉运.植物叶绿体互补作用的研究.杂交双亲叶绿体的互补作用.遗传学报, 1978, 5(3): 196-203.
    李荣改,王玉珍,孟祥祯,王振圻,孟令启,冯瑞光,宁文书.水稻广亲和品种农艺性状的配合力分析.华北农学报, 1995, 10(2): 18-23
    李子先,刘国平.籼粳复交中偏籼偏粳的细胞遗传学分析.遗传学报, 1990, 12(5): 7-9
    刘建丰,罗越华.两系法品种间和亚种间杂种优势的比较研究.杂交水稻, 1996, 2: 18-21
    刘仲齐,饶世达.四川盆地小麦杂种优势群研究.西南农业学报, 1997, 10(1): 9-13.
    彭锁堂,庄杰云,颜启传,郑康乐.我国主要杂交水稻组合及其亲本SSR标记和纯度鉴定.中国水稻科学, 2003, 17(1):1-5
    宋健.在国际水稻大会开幕式上的致辞.国际水稻大会, 2002, 14(4): 199-202
    宋小丽,柴伟国,董德坤,曹家树,吕晓菡. 12个亲缘关系密切的辣椒品种的AFLP鉴定.杭州农业科技2008, 3: 12-14
    孙其信,倪中福,陈希勇,刘志勇,黄铁城.冬小麦部分基因杂合性与杂种优势表达.中国农业大学学报, 1997, 2(1): 64-116
    谭长乐,张洪熙,戴正元,赵步洪,徐卯林,刘晓斌,周桂香.优质籼稻扬稻6号库、源、流特性研究.中国农业科学, 2003, 36(1): 26-30
    唐梅,何光华,裴炎,杨光伟.中籼杂交稻遗传多样性的RAPD分析.西南农业学报, 2002, 15 (3): 7-9
    唐梅.籼型杂交水稻杂种优势群的RAPD和AFLP分析.乐山师范学院学报, 2005, 5: 59-61
    唐定中,李维明,吴为人,卢浩然.利用RFLP、AFLP标记构建水稻分子连锁图.高技术通讯, 1999, 3: 48-52
    汤述翥,朱满山,张亚东,严长杰,顾铭洪.三系法水稻亚种间杂种优势利用途径的研究.扬州大学学报(农业与生命科学版), 2002, 23(2): 36-40
    王胜军,陆作楣.我国常用杂交籼稻亲本杂种优势群的初步研究.南京农业大学学报, 2007, 30 (1): 14-18
    吴敏生,戴景瑞.扩增片段长度多态性AFLP一种新的分子标记技术.植物学通报, 1998, 15(4): 68-74
    肖扬,李黎,刘伟,边银丙.香菇反转录转座子间扩增多态性(IRAP)PCR反应体系的研究.中国农学通报, 2009, 25(7): 47-51
    涂诗航,张水金,董瑞霞,杨东,谢鸿光,郑家团.籼型三系杂交水稻亲本主要农艺性状配合力及遗传力析.福建农林大学学报, 2008, 3: 184-187
    徐吉臣,朱立煌,陈英,陆朝福.用单倍体群体构建水稻的分子连锁图.遗传学报, 1994, 21(3): 205-214
    徐云碧,申宗坦,陈英,朱立煌.利用最大似然法进行水稻产量性状基因的分子作图.遗传学报, 1995, 22(1): 46-52
    晏嫦妤,李家贤,黄建安,赵超艺,黄华林,唐颢,罗军武.利用AFLP技术鉴定凤凰单丛古茶树种质资源.基因组学与应用生物学, 2009, 28(1): 89-93
    杨褔愉,史宝生,刑蓄如,赵连元,龚胤听,任蕤.用匀浆互补法测试杂种优势的研究.科学通报, 1978, 23(12): 752-753
    杨久,卢义宣,李自超.云南两系杂交稻优势生态型研究.中国农业大学学报, 2006, 11(4): 1-6
    易懋升,张桂权.水稻粳型亲籼系的分子标记辅助育种.分子植物育种, 2003, 1(4): 569-571
    阮成江,钦佩,韩睿明,何祯祥. AFLP分子标记在鉴定海滨锦葵杂交后代上的应用.南京林业大学学报(自然科学版), 2005, 29(1): 20-24
    袁隆平.杂交水稻育种的战略.两系法杂交水稻研究论文集,北京:农业出版社, 1992
    袁隆平.杂交水稻超高产育种.杂交水稻, 1997, 3: 3-6
    张春庆,贾继增.利用AFLP技术鉴定玉米自交系及杂交种.山东农业大学学报(自然科学版), 2003, 34(3): 427-430
    张礼霞,王林友,张利华,何祖华,金庆生,王建军.用Rim2超级家族分子指纹鉴别杂交水稻及预测杂种优势.作物学报, 2007,33 (1):77-83
    张受刚,许旭明.粳型亲籼恢复系的选育与利用.福建稻麦科技, 2006, 24(1): 3-5
    赵庆勇,朱镇,张亚东,赵凌,陈涛,张巧凤,王才林. SSR标记遗传距离与粳稻杂种优势的相关性分析.中国水稻科学, 2009, 23(2): 141-147
    周开达,黎汉云,李仁端,罗光鉴.杂交水稻主要性状配合力、遗传力的初步研究.作物学报, 1982, 03期
    朱军,季道藩,许馥华.作物品种间杂种优势遗传分析的新方法.遗传学报, 1993, 20(3): 262-271
    朱鹏,刘文芳,肖翊华.杂交水稻苗期叶绿体希尔反应活性研究.武汉植物学研究, 1987, 5(3): 252-257.
    朱鹏,孙国梦,肖翊华,刘文华. MDH和GDH活性与水稻杂种优势预测.武汉大学学报(自然科学版), 1991, (4): 89-94
    张小平,陈强,李登煜, Lindstrom K.用AFLP技术研究花生根瘤菌的遗传多样性.微生物学报, 1999, 39(6): 483-488
    朱英国,张为国.杂交水稻苗期同工酶与杂种优势关系的研究.作物学报, 1987, 13(2): 89-96
    朱作峰,孙传清,姜廷波,付强,王象坤.水稻品种SSR与RFLP及其与杂种优势的关系比较研究.遗传学报, 2001, 28 (8): 738-745
    邹江石,吕川根,姚克敏,胡凝.两系杂交稻两优培九生物学特性及主要配套技术.中国农业科技导报, 2008, 10(2): 43-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700