轮式移动机器人移动性能研究及样机设计开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮式移动机器人(WMR, Wheeled Mobile Robot)机械系统的研究涉及到运动学、动力学机构学等相关学科,是移动机器人精确控制的基础;既定设计用途的移动机器人总是建立在具体机械结构之上,其移动性能直接影响到机器人性能表现和功能发挥。本论文主要围绕轮式移动机器人移动性能进行研究,并设计开发了四轮差速转向构型和三轮前轮操舵驱动构型移动机器人样机。
     (1)利用移动机器人中常用车轮在轮面方向和轴线方向的速度受限方程,建立由多个车轮驱动和支撑的移动机器人速度堆积方程组;通过对堆积方程组的分析,归纳影响移动机器人移动能力的约束条件;从堆积方程组中提取的偏心转向轮速度方程证明了偏心转向轮作为自由轮时,其数量的增加并不会影响移动机器人的移动能力;从堆积方程组中提取的速度正解和逆解方程,表明了机器人运动状态量和车轮运动状态量之间的关系。
     (2)在对两种典型构型移动机器人运动学分析基础上,开发了两种构型的物理样机:差速转向构型样机XAUT. AGV100和操舵转向构型样机XAUT. AGV5000,主要针对转向原理、设计方案、驱动系统开发、控制和导航系统进行了研究。对于四轮差速转向构型,针对常用的自由轮缓冲系统提供了改进设计方法;在建立移动机器人动力学模型上,对移动机器人的驱动系统进行了开发;针对具体构型样机,导出了航位推算公式,获得了运动控制量算法。
     (3)一般路径曲线在过渡段连接点位置几何参数不连续,需要移动机器人驱动电机速度和转向电机位置实现跳变,受限于电机动力学性能,这种路径无法可靠地跟踪,从而影响了机器人的移动性能。论文第五章在笛卡尔坐标系中建立了一种连续曲率曲线,保证了机器人驱动电机和转向电机在这种路径连接位置处速度能够连续变化,从动力学方面保证了对电机的可控性。
     (4)移动机器人运行在实际路面上,车轮—路面接触因素决定的横滑因素对机器人的运动性能有很大影响。论文第六章对三轮式前轮操舵构型移动机器人的横滑特性进行了研究,在对移动机器人稳态圆运动建立动力学模型基础上,通过实验平台测量得到动力学模型求解所需的机器人运动参数,最后利用牛顿—拉夫森方法对动力学方程组进行了迭代求解,得到了实验样机在一定实验条件下的横滑刚度参数。论文提供的横滑刚度测量方法对移动机器人相关研究具有参考价值。
     (5)移动机器人运动中会受到横向冲击影响,如冲击力、横向风力、或者路面随机突起。论文在对移动机器人横滑特性研究基础上,针对三轮式前轮操舵构型移动机器人直线运动中的方向稳定性问题进行了研究,通过对机器人平面运动微分方程的求解和分析,得到了机器人直线运动的方向稳定性条件。根据该条件,对所开发样机XAUT. AGV5000的方向稳定性进行了校核,并通过实验进行了验证。
     论文中所讨论的运动学和动力学方法在所开发的样机设计中已得到体现,针对移动性能和路径跟随性能的研究和实验已通过所开发的样机得到验证,目前所开发的两个样机已分别投入到工程应用和科研教学中,为轮式移动机器人的应用和相关技术研究提供了可靠基础。
The mechanical system of wheeled mobile robot(WMR) involving kinematics and kinetics is the foundation to control robot accurately. The purposes of designed mobile robot mostly depend on specific mechanical construction, whose mobility affects the performance and functions of the robot directly. The mobility of mobile robot is investigated thoroughly in this dissertation, and the prototypes of WMR with differential driving and front wheel steered driving configrations are designed and developed. The main contents are carried out as follows.
     (1)Using velocity constraining equations along radial and axial directions, the velocity stacking equations of mobile robot with several wheels for driving and supporting are established. The affecting conditions are summarized according to the analysis of velocity stacking equations. Then the derived velocity equations of offset steering wheel come to a conclusion that the addition of offset steering wheel served as free wheel doesn't impact on the mobility of WMR. The inverse and forward solutions drawn from the velocity stacking equations present the relation between motion status value of WMR and that of wheels.
     (2) Two types of physical prototypes, namely the XAUT.AGV100 of differential driving configuration and XAUT.AGV5000 of front wheel steered driving configration, are developed based on the kinematics analysis of two typical constructions of WMRs. The steering principle, design scheme, design method for the driving system, and the composition of the control and navigation system are mainly discussed. The improvement for conventional buffering system of free wheel is introduced for the differential driving configuration with four wheels. The driving system for the WMR is designed based on kinetics model. The dead reckoning equation and motion control algorithm are derived for the prototype.
     (3) The incontinuity of geometric parameters of conjunction point between linear path and curved path needs a sudden change in velocity of driving motors and angular position of steering motors, this make it impossible for robot to follows the path accurately owing to the limitation of dynamic characteristics of motors. Consequently, the performances of WMR are affected. So a path with continuous curvature is deduced in section 5 in order to guarantee successive variation in velocity of driving and steering motors at the conjunction of different type paths, and the feasibility to control motors is promising.
     (4) The contact factors between wheel and road surface have great influences over motion performances of WMR, when WMR moves on actual road. The sliding characteristics of front wheel steered driving configuration with three wheels WMR is studied in section 6. Resting on kinetics model with steady state circle motion, and the parameters of motion measured from experimental platform, the sliding stiffness parameters are obtained by iterative solution of the kinetics equations based on the Newton-Raphson numeric algorithm, which provides a reference to experimentally study on transverse sliding characteristics.
     (5) The WMR is vulnerable to be affected by lateral impact as side impact force, wind force and stochastic hump on the road. Based on the study on lateral sliding characteristics of WMR, the orientation stability in linear motions is studied aiming at front wheel steered driving configuration with three wheels WMR. The conditions for orientation stability in linear motions are achieved from analysis of planar motion differential equations, which are testified and experimentally evaluated successfully on the XAUT.AGV5000.
     The kinematics and kinetics discussed in the paper have been applied to the design and development of prototypes. The study on mobility and path tracing performances has been successfully demonstrated on the developed prototypes. At present, two prototypes have been successfully put into use in engineering applications and scientific teaching, which provides the solid basis for the application and associated technical study for WMRs.
引文
【1】宗光华等.机器人的创意设计与实践[M].北京:北京航空航天大学出版社,2004.2.
    【2】向静波.移动机器人的路径规划与控制研究[D].西安:西北工业大学硕士学位论文,2004.
    【3】王玉峰.自主移动机器人地图创建、探索及定位研究[D].大连:大连理工大学硕士学位论文,2004.
    【4】蒋新松.机器人学导论[M].沈阳:辽宁科学技术出版社,1994.
    【5】国家863计划智能机器人专家组.机器人博览[M].北京:中国科学技术出版社,2001.
    【6】 Bruce A, Nourbakhsh I, Simmons R. The Role of Expressiveness and Attention in Human-robot Interaction[C]. Proc. Of International Conference on Robotics and Automation. Washington, 2002:4128-4142.
    【7】 Thrun S, Bennewita M, Burgard W. A Second Generation Mobile Tour-guide Robot[C]. Proc. of the International Conference on Robotics and Automation,1999:1999-2005.
    【8】 Simmons R, Fernandez J. Lessons Learned from Xaiver[J]. IEEE Robotics & Automation Magazine,2000,7(2):33-39.
    【9】史恩秀.轮式移动机器人的运动控制及定位方法研究[D].西安:西安理工大学博士学位论文,2006.
    【10】杨兵,江宏寿,张洪.狙击手克星—反狙击机器人Packbot[J].国防,2007,11:77-78.
    【11】刘婧.美国iRobot公司推出新型军用机器人[J].轻兵器,2007,23:49.
    【12】 R.Colin, Johnson.下一代汽车将实现无须人工干预的自主驾驶[J].中国科技信息,2006,9:70-72.
    【13】徐国华,谭民.移动机器人的发展现状及其趋势[J].机器人技术及应用,2001,3:7-14.
    【14】龚振邦等.机器人机械设计[M].北京:电子工业出版社,1995.
    【15】谭民.先进机器人控制技术研究与发展[M].沈阳:辽宁科学技术出版社,2001.
    【16】张卫星,陈卫东,秦志强.一个多机器人制造系统的设计与实现[J].机器人,2003,25(5):385-389.
    【17]张晓萍,颜永年等.现代生产物流及仿真[M].北京:清华大学出版社,1998.
    【18]张荣辉.视觉引导区域交通智能车辆(CyberCar)导航控制器设计[D].长春:吉林大学硕士学位论文,2006.
    【19】张毅.移动机器人技术及其应用[M].北京:电子工业出版社,2007.
    【20】 Murphy R. Introduction to AI Robotics[M]. MIT Press,2002.
    【21】 Chose H, Nagatani K. Topological Simultaneous Location and Mapping:toward Exact Localization without Explicit Localization[J]. IEEE Trans. On Robotics and Automation, 2001,17(2):125-137.
    【22】 Lazano-Perez T. Automatic Planning of Transfer Movements[J]. IEEE Trans, on Sys, Man and
    Cyb,1981,11(10):681-689.
    【23】 Weber H. A Motion Planning and Execution System for Mobile Robots Driven by Stepping Motors[J]. Robotics and Autonomous Systems,2000,33(4):207-221.
    【24】艾海舟,张钹.基于拓扑的路径规划问题的图形算法[J].机器人,1990,12(5):20-24.
    【25】 Yoram K, Johann B. Potential Field Methods and Their Inherent Limitations for Mobile Robots Navigation[C]. Pro. of International Conference on Robotics and Automation. Sacramento, California,1991:1398-1404.
    【26】王仲民.移动机器人路径规划及轨迹跟踪问题研究[D].天津:河北工业大学博士学位论文,2006.
    【27】 Tsubuchi, T. Map Assisted Vision System of Mobile Robots for Reckoning in a Building Environment[C], IEEE International Conference on Robotics and Automation,1987:1978-1984.
    【28】刘旭.智能移动机器人路径规划及仿真[D].南京:南京理工大学硕士学位论文,2004.
    【29】高丽宏.移动机器人的路径规划和避障控制[D].大连:大连理工大学硕士学位论文,2002.
    【30】林义忠.自主轮式移动机器人信号检测与智能控制[D].西安:西安理工大学博士学位论文,2006.
    【31】贾艳华.非完整轮式移动机器人路径规划研究[D].北京:北京理工大学博士学位论文.2002.
    【32】冯文镛.物品自动运送机器人(ACR)原型系统控制体系结构[D].杭州:浙江大学博士学位论文.2001.
    【33】白井良明.机器人工程[M].北京:科学出版社,OHM社,2001.2
    【34】 Gcampion, GBastin& B.D.Andrea-Novel. Structural Properties and Classification of Kinematic and Dynamic Models of wheeled Mobile Robots[J]. IEEE Trans. On Robotics and Automation, 1996,12(1):125-137.
    【35】 Masayoshi w. Design and Control of a Variable Footprint Mechanism for holonomic Omni-directional Vehicles and its Application to Wheelchairs[J]. IEEE Trans, on Robotics and Automation,1999,15(6):978-988.
    【36】 Yutaka Kanayama. Two Dimensional Transformations and Its Application to Vehicle Motion Control and Analysis[C], IEEE International Conference on Robotics and Automation, 1993,3:13-18.
    【37】 Yutaka Kanayama. Two Dimensional Wheeled Vehicle Kinematics[C], IEEE International Conference on Robotics and Automation,1994,4:3079-3084.
    【38】许松清,吴海彬,杨兴裕.两轮驱动移动机器人的运动学研究[J].电子机械工程,2005,21(6):31-34.
    【39】付庄,刘成良.轮式移动机器人WMR的运动分析[J].机器人,2001,23(7):598-600.
    【40】赵新华,曹作良.可移动机器人的运动学模型与控制理论[J].机器人,1994,16(4):215-218.
    【41】Angeles J.机器人机械系统原理,理论、方法和算法[M].北京:机械工业出版社,2004.
    【42】 Huang Yumei, Shanguan Wangyi, etc. Design and Research of Cushioning Mechanism of Wheeled Mobile Robot[C]. Pro. of 6th International Symposium on Test and Measurement, Dalian, China, 2005:7367-7370.
    【43】沈猛.轮式移动机器人导航控制与路径规划研究[D].西安:西北工业大学大学博士学位论文,2006.
    【44】崔康吉,孙宁等.AGV精确定位技术的研究[J].计算机集成制造系统,1995(4):39-41.
    【45】刘兆琦.测试技术与传感器[M].西安:西北工业大学出版社,1993.
    【46】 Giralt G, Chatila R and Yaisset M. An Integrated Navigation and Motion Control System for Autonomous Multi-sensory Mobile Robots. In Robotic research[M]. Eds. Brady M and Paul R, MIT Press,1984.
    【47】 Diaz R F, Jimonez G, Sevillanl J L, A Generalization of Path Following for Mobile Robots[C]. Proc.1999 IEEE Int. Conf. Robot and Automat,1999:7-12.
    【48】 Canudas de Wit C, Siciliano B, Bastin G. Theory of Robot Control [M]. London:Springer-Verlag,1998.
    【49】金钰,胡祐德.伺服系统设计指导[M].北京:北京理工大学出版社,2000.
    【50】王宇娜.两轮电动车系统设计[D].上海:上海交通大学硕士学位论文,2008.
    【51】 DELTA TAU公司.PMAC用户手册(1.0版).北京元茂兴有限公司(译),1999.
    【52】P+F公司.UB500-18GM75-U-V15与UB2000-30GM-E5-V15超声波传感器说明书.
    【53】中国电子集团第26研究所.CS61B-3压电陀螺仪说明书.
    【54】马云峰.陀螺仪漂移测试与补偿系统的研制[J].系统工程与电子技术,2001,23(2):67-70.
    【55】童峰,许天增.一种移动机器人超声波导航系统[J].机器人,2002,24(1):55-61.
    【56】黄玉美,上官望义等.一种自动导航牵引车[P].中国专利:ZL 200610104667.1,2008:12-17
    【57】时术华.牵连运动为平面运动时点的加速度合成定理[J].山东师大学报,2000,15(3):267-269.
    【58】楼智美.刚体平面平行运动瞬时加速度中心的确定方法[J].力学与实践,2004,26(5):79-81.
    【59】谷东兵,宋正勋,胡豁生等.移动机器人的局部路径规划与控制[J].兵工学报,2000,21(1):53-56
    【60】 Kanayama Y, Miyake N. Trajectory Generation for Mobile Robots[C]. Proc.3rd Int. Symp. Robotic Research, Gouvieus, France,1985:333-340.
    【61】 Nelson W. Continuous-Curvature Paths for Autonomous Vehicles[C]. Proc. IEEE Int. Conf. Robotics and Automation, Scottsdale, AZ,1989:1260-1264.
    【62】 Pinchard O, Liegeois A, Pougnet F. Generalized Polar Polynomials for Vehicle Path Generation with Dynamic Constraints[C]. Proc. IEEE Int. Conf. Robotics and Automation, Minneapolis, Minnesota,1996:915-920.
    【63】 Tzu-Chen Liang, Jing-sin Liu. Practical and Flexible Path Planning for Car-like Mobile Robot
    using Maximal-curvature cubic spiral[J]. Robotics and Autonomous Systems,2005,52:312-335.
    【64】 Yutaka Kanayama, Bruce I. Smooth Local Path Planning for Autonomous Vehicles[J]. The International Journal of Robotics Research.2007,16(3):1265-1270.
    【65】 Li Z., D.S. Meek. Smoothing an Arc Spline[J]. Computers and Graphics,2005,29:576-587.
    【66】 Yossawee W. A Semi-optimal Path Generation Scheme for a Frame Articulated Steering-type Vehicle[J]Advanced Robotics.2006,20(8):867-896.
    【67】 Yossawee W. Path Generation for Articulated Steering Type Vehicle Using Symmetrical Clothoid[C]. Proc. IEEE Int. Conf. Industrial Technology,2002,1:187-192.
    【68】 Path Generation for Autonomous Locomotion of Articulated Steering Wheel Loader[J].Compuer-Aided Civil and Infrastructure Engineering.2001,16:159-168.
    【69】韩兵,陈军.拖拉机行驶路径的多项式设计[J].农机化研究,2006,10:98-106.
    【70】马喜峰,张雷.基于对称极多项式曲线的移动机器人平滑路径生成[J].机器人,2005,27(5):450-454.
    【71】刘春阳,金学奇,程文刚.基于Bezier曲线模型的移动机器人路径规划算法[J].华北电力大学学报,2006,33(4):43-46.
    【72】曹成才,姚进,王强.基于几何法的移动机器人路径规划[J].计算机应用研究,2005,12:82-87.
    【73】柳长安,李国栋,刘春阳.差动驱动式移动机器人的运动规划[J].哈尔滨工业大学学报,2003,35(9):1095-1097.
    【74】 Gallina P. A Technique to Analytically Formulate and to Solve the 2-dimensional Constrained Trajectory Planning Problem for a Mobile Robot[J].Journal of Intelligent and Robotics Systems.2000,27:237-262.
    【75】 Thierry F, Alexis S. From Reeds and Shepp's to Continuous-Curvature Paths[J]. IEEE Trans, on Robotics,2004,20(6):1025-1035.
    【76】 Laumond, J.P., Jacobs, P. and Taxi, M. A Motion Planner for Non-holonomic Robots. IEEE Transactions On Robotics And Automation,1994,10:577-593.
    【77】 Jacobs P, Canny J. Planning Smooth Paths for Mobile Robots[C]. Proc. IEEE Int. Conf. Robotics and Automation,1989:2-7.
    【78】 Yutaka Kanayama. Vehicle Path Specification by a Sequence of Straight Lines[J]. IEEE Journal of Robotics And Automation,1988,4(3):265-276.
    【79】朱从民,黄玉美,史恩秀.基于五次Hermite插值的移动机器人路径规划方法研究[J].西安理工大学学报,2009,25(1):45-48.
    【80】上官望义,黄玉美,要小朋等.操舵构型移动机器人局部路径规划与跟踪[J].中国机械工程,2007,18(15):1795-1800.
    【81】上官望义,黄玉美,朱从民,等.前轮操舵驱动移动机器人前后轮横滑刚度测量[J].中国机械
    工程,2007,18(1):30-34.
    【82】李世华,田玉平.移动小车的轨迹跟踪控制[J].控制与决策,2000,9(5):626-628.
    【83】余卓平,赵治国,陈慧.主动前轮转向对车辆操纵稳定性能的影响[J].中国机械工程,2005,16(7):652-657.
    【84】代汝泉.汽车运行性能[M].北京:国防工业出版社,2003.
    【85】张洪欣.汽车系统动力学[M].上海:同济大学出版社,1996.
    【86】小林明.汽车力学[M].北京:机械工业出版社,1982.
    【87】何锋,杨宁.汽车动力学[M].贵阳:贵州科技出版社,2003.
    【88】卓斌.速率陀螺仪采样数据的分析研究[J].PLC&FA,2005,12:125-127.
    【89】张旭东,陆明泉.离散随机信号处理[M].北京:清华大学出版社,2005.
    【90】李庆扬.数值分析[M].北京:清华大学出版社,2008.
    【91】 Mathews J. H., etc.数值方法(MATLAB版)[M].北京:电子工业出版社,2005.
    【92】陈立平等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005.
    【93】谢东仁,王伟,李爱军.一种改进的牛顿-拉夫森算法[J].计算机仿真,2008,25(11):335-338.
    【94】 He Bo. Precise Navigation for a 4WS Mobile Robot [J]. Journal of Zhejiang University SCIENCE A,2006,7(2):185-193.
    【95】 Chao Kainian. Measurements of Path and other Parameters in Motor Vehicle Dynamics Tests and Their Errors [J]. Vehicle System Dynamics,1996,25(6):321-342.
    【96】 Javid S, Eghtesad M, Khayatian A, et al. Experimental Study of Dynamic Based Feedback Linearization for Trajectory Tracking of a Four-Wheel Autonomous Ground Vehicle [J]. Autonomous Robots,2005,19(1):27-40.
    【97】威鲁麦特.车辆动力学[M].北京:北京理工大学出版社,1998.
    【98】任殿波.自动化公路系统车辆纵横向控制[D].成都:西南交通大学博士学位论文,2008.
    【99】管西强等.三轴汽车前后轮转向时的侧向动力学控制[J].机械科学与技术,2002,21(1):69-71.
    【100】程军.车辆动力学控制的模拟[J].汽车工程,1999,21(4):199-205.
    【101】余志生.汽车理论[M].北京:机械工业出版社,1998.
    【102】常胜.四轮转向汽车列车横向稳定性研究[D].长春:吉林大学硕士学位论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700