遗传算法及其在复合材料层合板设计中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遗传算法是近年来飞速发展的一种通用性强,稳定性好,具有全局收敛性的优化方法。本文的主要目的是研究遗传算法的优化机理并将遗传算法应用到复合材料层合板的优化设计中,致力于发展一种无需依赖梯度信息和初始条件的新型的复合材料层合板优化设计方法。
     本文在基本遗传算法的基础上首先研究了浮点编码遗传算法在数值优化中的应用,通过引进“移民策略”和自适应算子相结合的方法,改进了基本遗传算法在后期进化缓慢的问题,极大地减少了早熟性收敛的现象。其次,本文根据层合板优化设计的具体问题提出了一种符号编码方式,虽然优化参数的基因编码表达方式并不能改变优化问题的本质,但是不同的编码表达方式对于遗传算法搜索的效率和最终的优化结果有着重要的影响,因此优化参数的基因编码表达是遗传算法应用于工程问题中非常关键的一步。本文中的编码方式的思想简单直观,使用方便,易于进行遗传算法的交叉、变异操作,取得了令人满意的效果。
     本文阐述了层合板强度分析的方法,通过和遗传算法相结合提出了一种不依赖于初始条件和梯度信息的新型的优化设计方法。同时针对强度优化的具体问题构造合适的适应度函数,并且通过采用“局部退化算子”和“自适应算子”相结合的方法较好地解决了基本遗传算法中常见的早熟性收敛问题。
     泊松比是反映物体体积变化的性能参数,大部分材料的泊松比为正值且集中在0.3附近。本文通过对层合板泊松比和铺层角度关系的研究后指出,经过设计的层合板不仅可以具有超过1.0以上的正泊松比,还可以有负的泊松比,这种现象对于普通材料无法想象的。层合板这种特殊的性能在很多方面都可以有广泛的应用。应用遗传算法对层合板的泊松比进行优化设计的结果进一步证明了层合板具有特殊泊松比这一特殊的性能和设计的可操作性。
     层合板的热膨胀系数是判断层合板热稳定性的重要指标,由于航空领域材料的特殊要求,零膨胀系数的材料是最为理想的。本文通过对层合板热膨胀系数的研究和设计,指出了过去常用的零膨胀系数的工程设计方法在精度上的不足,应用遗传算法进行优化设计的层合板更加接近真正意义上的零膨胀。另外应用遗传算法对由多种材料组成的层合板进行了零膨胀系数的设计,弥补了工程设计方法只能对由单一材料构成的层合板进行设计的不足。
     复合材料层合板设计是一个涉及因素较多的多目标优化问题,由于多目标设计问题本身的特点——各个优化目标之间经常是相互制约的,在绝大多数情况下无法找到
    
    遗传算法及其在复合材料层合板设计中的应用研究
    满足所有优化目标的最优解,因此本文在常用的线性加权法的基础上,针对定系数加
    权法的不足,把权系数作为优化变量参与优化过程,提出了变系数的线性加权法。另
    外根据层合板的特点提出了构造了一种多目标优化函数的方法,利用遗传算法对层合
    板进行了优化设计,设计的结果表明,由于遗传算法特有的群体搜索的性质决定了遗
    传算法在多目标优化问题中具有特别的优势。
Genetic Algorithms as a good optimization method, which has been rapid developed in the last decades, have feature of robustness and global convergence. The goal of this dissertation is to study the theory of Genetic Algorithm(GA) and to apply it on optimization of composite laminate, then to develop a new gradient free optimization design method.
    At first, based on the simple Genetic Algorithm, an improved GA which adopts a combination of emigration policy and adaptive operator is presented. Results of numerical optimization show that the improved GA is effective on preventing premature problem. Second, by combining theories of strength of laminate with GA, a new gradient free optimization method with new code strategy is discussed. The representation itself does not change the nature of the problem, but effects the searching efficiency of the algorithm. So the representation of the parameters to be optimized is a very important factor and the new code strategy is also easy used with crossover operator and variation operator in GA applications. In order to solve the premature problem in strength optimization design of laminate, to combine the part-degenerate operator and adaptive operator is a good idea.
    Poisson's ratio is a parameter which measures the volume-changed of objects. Generally, the value of Poisson's ratio is around 0.3, but elaborate laminates can have especial Poisson's ratio more than 1.0, moreover the negative. For sake of using this property, GA is used to design the Poisson's ration of laminate, and some optimization samples are given to show that laminates with this especial performance are available.
    Thermal expansion coefficient is an important property of composite laminate. In order to satisfy the special request in aero field, zero expansion coefficient is perfect. On the basis of analyzing the behavior of the thermal expansion coefficient of laminate, a new method used GA has been developed. Compared with results of two methods, GA method is much better than the 'isotropy' method . Furthermore, GA method also overcomes the shortcoming of the ' isotropy' method that can be only used for laminate composed with one kind of material.
    Design of composite laminate is a multi-objective optimization problem. The targets of each optimization are not consistent and it is very difficult to find the best solution to satisfy all the targets, which is the nature of multi-objective problem. In order to solve this question, an improved linear weighting method is presented of which the weight factors are changeable. In this method, the weight factors are used for optimize variables during the
    
    
    algorithm. Based on the method, combined with GA, a multiobjective optimum design of composite laminates is discussed. The results indicate that GA is an efficient method in solving multi-objective problems.
引文
[1] Goldberg D. E., Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley. Reading, MA.1989.
    [2] Davis L., Handbook of Genetic Algorithms[M]. Van Nostrand Reinhold,New York, 1991
    [3] Michalewicz Z., Genetic Algorithms+Data Structures=Evolution Programs[M]. New York, Springer-verlag, 1992.
    [4] Hisao Fukunaga, Hideki Sekine. Optimum Design of Composite Structures for Shape. Layer Angle and Layer Thickness Distributions,1993
    [5] McCullough R L, Peterson J M. Property optimization analysis for multicomponent(hybrid) composites. In:Developing in Composite Materials, G.S. Holister, ed., London: Applied Science Publisher,1977
    [6] Wurzel D P. On the design and optimization of bidirectional composites. Journal of Reinforced Plastic and Composites, 1983
    [7] Isbai O, Krishnam achari S. Structural design optimization of composite laminates Journal of Reinforced Plastics and Composites,1989
    [8] Saravanos D A, Chamis C C. An integrated methodology for optimizing the passive damping of compostite strures. Polymer Composites, 1990
    [9] Hsuan-The Hu, Chin-Deng Juang. Influence of geometry and end conditios on optimal fundamental frequency of laminated curved panels. AIAA-96-1585-CP, 1996
    [10] Miki M, Sugiyama Y. optimum design of laminated composite plates using lamination parameters. AIAA-91-O971-CP, 1991
    [11] Winter G. Periaux J., Galan M., Cuesta P., Genetic Algorithms in Engineering and Computer Science. John Wiley, Chichester, 1995.
    [12] Poloni C., Hybrid Gas for Multi-Objective Aerodynamic Shape Optimization. In G.Winter J. Periaux M. G. and Cuesta P.(eds.) Genetic Algorithms in Engineering and Computer Science. 397-415.John Wisley, 1995
    [13] Das I., A Preference Ordering among Yarious Pareto Optimal
    
    Alternatives, Structural Optimization[J], Vo1.18,30-35,1999
    [14] Doofly D.J., Perio J. and Spooner S., Design Optimization using Distributed Evolutionary Methods. AIAA 99-0111,1999
    [15] Li-Ren Tsau, Robert Plunkett. Finite Element Analysis of Progressive Failure for Laminated Frp Plates with Inplane Loading. Engineering Fracture Mechanics[J], Vol. 45, No. 4, 1993
    [16] Mateust H.C., Mota Soares C.M.. Buckling sensitivity analysis and optimal design of thin laminated structures. Computers & Structures[J], Vol. 64, No.14,1997
    [17] Walker M., Adali S. & Veri jenko V.E.. Optimal design of symmeric angle-ply laminates subject to nonuniform buckling loads and in-plane restrains. Thin-Walled Structures[J], Vol. 26, No.1, 1996
    [18] Kim C.W., Hwang W., Park H.C. & Han K.S.. Stacking sequence optimization of laminated plates. Composite Structure[J],Vol.39, No.3, 1997
    [19] Park J.H., Hwang J.H., Lee C.S., Hwang W.. Stacking sequence design of composite laminates for maximum strength using genetic algorithms. Composite Structure[J], 52(2001)
    [20] Conti P., Luparello S. and Pasta A.. Layer thickness optimisation in a laminated composite. Composites Part B 28B(1997)
    [21] Makarand G. Joshi and Sherrill B. Biggers, Jr. Thickness optimization for maximum buckling load in composite laminated plates. Composites Part B 27B(1996)
    [22] Han Yingshi, Guo Pengfei. A hybrid genetic algorithm for structural optimization with discrete variables. In Proceedings of the First China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical System, Xi'an, China, 1999-10-31~11-04. Xi'an: Xidian University Press, 1999.
    [23] Cheng Yeh. Hybrid genetic algorithms for optimization of truss structures. Computer-Aided Civil and Infrastructure Engineering,1999,14
    [24] Hajela P., Yoo J., Lee J.. GA based simulation of immune networks applications in structural optimization. Engineering Optimization,1997,29
    [25] Jenkins W M.Towards structural optimization via the genetic algorithm. Computer & Structurals[J], 1991, 40(5)
    [26] Birna P. Kristinsdottir, Zelda B. Zabinsky. Optimal design of large
    
    composite panels with varying loads. Composite Structures[J],51(2001)
    [27] Liu Jingui, Ding Yunliang, Wu Bin, Xiao Shide. An improved strategy for gas in structural optimization. Computers & Structures[J], 1996,61(6)
    [28] Masahiro Sugimoto, Yamakawa Hiroshi. A study on simultaneous optimization by parallel genetic algorithms. In:Gu Y X ed.Proceedings of the First China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical System, Xi'an,China, 1999-10-31~11-04. Xi'an: Xidian University Press, 1999
    [29] Hajela. P., Lee E., Cho H.. Genetic algorithms in topologic design of grillage structure. Computer-Aided Civil and Infrastructure Engineering[J], 1998,13
    [30] Kita E., Tanie H.. Topology and shape optimization of continuum structures using GA and BEM. Structural Optimization[J], 1999,17
    [31] Yamakawa Hiroshi. Study on multidisciplinary optimization for topology, Shape of structural systems and designs of control systems using genetic algorithm. In Gu Y X ed. Proceedings of the First China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical System, Xi'an, China, 1999-10-31~11-04. Xi'an: Xidian University Press, 1999
    [32] Ewing M.S., Downs K.. Optimization of a Rectangular Cross-section Wingbox Using Genetic Algorithms. AIAA-96-1536-CP.1996
    [33] Sob Chee-Kiong, Yang Jiaping. Optimal layout of bridge trusses by genetic algorithms. Computer-Aided Civil and Infrastructure Engineering[J], 1998,13
    [34] Eiben A.E, harts E.H, Van Hee K.M. Global convergence of genetic algorithms: an infinite markov chain analysis.In: Schwefel H P,Manner R eds. Parallel Problem Solving from Nature. Heidelberg,Berlin: Springer-verlag, 1991
    [35] Rajendran, S. Vijayarangan. Optimal design of a composite leaf spring using genetic algorithms. Computers and Structures[J],79(2001)
    [36] Soremekun G., Gūrdal Z. Composite laminate design optimization by genetic algorithm with generalized elitist selection. Computers and Structures[J], 79(2001)
    
    
    [37] BrindleA. Genetic Algorithms for Function Optimization. Doctoral Dissertation. Univertion of Alberrta, 1981
    [38] Bethke A.D. Genetic Algorithm as Function Optimizers. PH.D.Thesis,Dept. Computer and Communication Sciences, University of Michigan,1981
    [39] David Schaffer J. A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization. in Proceeding of the Third International Conference on Genetic Algorithms and on Their Application, in Proc. 1989
    [40] David E. Goldberg. Genetic Algorithms with Sharing for Multimodal Function Optimization. in Proceeding of the Second International Conference on Genetic Algorithms and on Their Application, 1987
    [41] David Schaffer J. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. in Proceeding of International Conference on Genetic Algorithms and on Their Application.1985
    [42] Fogel, D.B. Evolutionary computation: toward a new philosophy of machine intelligence. IEEE Neural Networks Council. New York: IEEE Press, 1995
    [43] Miettinen, K., Neittaanmaki, P., Periaux J.(eds). Evolutionary algorithms in engineering and computer science:recent advances in genetic algorithms, evolution strategies, evolutionary programming.New York: John Wiley & Sons, June 1999
    [44] De Jong, K. A. An analysis of the behavior of a class of genetic adaptive systems(Ph.D Dissertation). University of Michigan, No.76—9381,1975
    [45] Bertoni, A., Dorigo, M. Implicit parallelism in genetic algorithms.Artificial Intelligence, 1993, 61(2)
    [46] Fraser, A S. Simulation of genetic systems. Journal of Theoretical Biology, 1962,2
    [47] Bethke, A.D. Genetic algorithm as function optimizers.(Ph.D.dissertation). University of Michigan, No. 8106101,1980
    [48] Smith, S.E.A learning system based on genetic adaptive algorithms(Ph.D.dissertation). University of Pittsburgh, 1980
    [49] Grefenstette, J. J. Optimization of control parameters for genetic algorithms. IEEE Transaction on Systems, Man, and Cybernetics,1986,16
    
    
    [50] Baner, R. J. Genetic algorithms and investment strategies. New York:John Wiley & Sons, Inc.,1994
    [51] Srinivas, M., Pamaik, L. M. Adaptive probabihties of crossover and mutation in genetic algorithms. IEEE Transaction on Systems, Man,and Cybernetics, 1994,24(4)
    [52] Koza, J. R. Genetic programming l. Cambridge, MA-The MIT Press,1992
    [53] Koza, J. R. Genetic programming 2. Cambridge, MA: The MIT Press,1994
    [54] Jenkins, W. M. Structural optimization with the genetic algorithm.Structural Engineer, 1991, 69(24)
    [55] Chandrasekharam, R., et al. Genetic algorithm for embedding a complete graph in a hypercube with a VLSI application.Micro-processing and Micro-programming, 1994
    [56] Forrest, S. Genetic algorithm: principles of natural selection application to computation. Science, Aug.,1993, 261
    [57] Xin Yao. A review of evolutionary artificial neural network.International Journal of Intelligent Systems, 1993,8(3)
    [58] Byungjoo Yoon. Efficient genetic algorithm for training layered feed-forward neural network. Information Science, 1994, 76(1-2)
    [59] Davis, J. J., et al. Training product unit neural networks with genetic algorithms. IEEE Expert, 1993, 8(5)
    [60] Montana, D. J, and Davis. L. Training feed-forward neural networks using genetic algorithms. In Proceeding of the International Joint Conference on Artificial Intelligence, Los Altos, CA: Morgan Kaufmann Publishers, 1989
    [61] Van Bommel, P. Genetic algorithm for optimal logical database design.International Software Sechnology, 1994, 36(2)
    [62] Karr, C.L. Design of an adaptive fuzzy logic controller using genetic algorithm. In Proceedings of Fourth International Conference on Genetic Algorithms, Los Altos. CA: Morgan Kaufmann Publishers, 1991
    [63] De Jong, K.A., Potter, M. A., Spears, W M. Using problem generators to explore the effects of epistasis. In[260], 1997
    [64] Reeves, C., and Wright, C. Epistasis in genetic algorithms: an experimental design perspective. In Proceedings of the Sixth
    
    International Conference on Genetic Algorithms, Eshelman, L.J.(ed.), San Francis-co, CA:Morgan Kaufmann Publishers, Inc., 1995
    [65] Jones, T.C.Evolutionary algorithms, fitness landscapes and search.Ph.D.thesis,University of New Mexico, Albuquerque, NM, March,1995
    [66] Jones, T., Forrest, S.. Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In Proceedings of the Sixth International Conference on Genetic Algorithms(ICGA6).Jones,T.and For-rest, S., Eshelman, L.J.(eds.), San Francisco. CA-Morgan Kaufmann, 1995
    [67] Forrest. S., and Mitchell, M. Towards a stronger building-blocks hypothesis: effects of relative building block fitness on GA performance, in[5], 1993
    [68] Forrest. S. and Mitchell, M. What makes a problem hard for a genetic algorithm? Some Anomalous Results and their Explanation. Machine Learning, 1993, 13
    [69] Manderick. B., Weger, M. D., Spiessens. P.The Genetic algorithm and the structure of the fitness landscape. In Proceedings of the Fourth International Conference on Genetic Algorithms(ICGA 4),Belew, R.K.and Booker, L.B.(eds).San Mateo, CA:Morgan Kaufmarm.1991
    [70] Weinberger, E.D.Correlated and un-correlated fitness landscapes and how to tell the difference. Biological Cybernetics, 1990(63)
    [71] Horn. J., Goldberg, D.E., Deb, K. Long path problems. In Parallel Problem Solving From Nature(PPSN 3), Davidor. Y., Schwefel. H.-P.,Manner, R.(eds), volume 866 of Lecture Notes in Computer Science.Berlin: Springer-Verlag. 1994
    [72] Davidor.Y.Epistasis 4 variance: a viewpoint on GA-hardness. In Foundations of Genetic Algorithms. Rawlins. G.J.E.(ed).Vol. 1.San Marco, CA:Morgan Kaufmann. 1991
    [73] Miller, B.L.,Shaw, M.J.Genetic Algorithms with dynamic niche sharing for multi-modal function optimization. In IEEE International Conference on Evolutionary Computation, Piscataway,NJ: IEEE Press, 1996
    [74] Harik,G.Finding multiple solutions in problems of hounded difficulty. IlliGal report no.94002, University of Illinois, The
    
    Illinois Genetic Algorithms Laboratory, Urbana-Champaign, 1994
    [75] De Jong, K. A. Genetic algorithms: a 25 year perspective. In Proceedings of the fifth International Conference on Genetic Algorithms(ICGA 5),Whitley, L.D.(ed.), San Mateo, CA: Morgan Kaufmann, 1993
    [76] Mahfoud, S.W.Crowding and pre-seleetion revisited. In Parallel Problem Solving from Nature(PPSN 2),Manner, R.,Manderiek,B.(eds.),North-Holland, Elsevier Science Publishers, Amsterdam,1992
    [77] Mengshoel,O.J.,Goldberg, D.C.Probabilistic crowding:deterministic crowding with probabilistic replacement. In Proceedings of the Genetic and Evolutionary Computation Conference 1999(GECC0-99), Banzhaf, W., et al(eds.), San Fransisco, CA: Morgan Kaufmann.1999
    [78] Goldberg, D.C.,and Wang, L. Adaptive niching via co-evolutionary sharing. In Genetic Algorithms in Engineering and Computer Science,Quagliarella, et al.(eds.).John Wiley & Sons, Ltd.1997
    [79] Beasly, D., Bull, D.R.,Martin, R.R.A sequential niche technique for multi-modal function optimization. Evolutionary Computation,1993, 1(2)
    [80] Goldberg, D.E.,Deb,K.,Horn, J.Massive multi-modality, deception and genetic algorithms. In Parallel Problem Solving from Nature(PPSN 2), Manner, R., Manderick, B.(eds.), North-Holland,Elsevier Science Publishers, Amsterdam, 1992,(2)
    [81] Wolpert, D.H.,Macready,W.G.No free lunch theorems for optimization. IEEE Transaction on Evolutionary Computation, 1997, 1
    [82] Booker, L.B. Recombination distributions for genetic algorithms.In[5],1993
    [83] De Jong, K.A., Spears, W. M. Using genetic algorithms to solve NP-complete problems. In Proceedings of the Third International Conference on Genetic Algorithms(ICGA 3), Schaffer, J.D.(ed.),San Mateo, CA:Morgan Kaufmann, 1989
    [84] Mitchell, D., Selman,B., and Levesque, H.Hard and easy distributions of sat problems, In Proceedings of the Tenth National Conference on Artificial Intelligence. AAAI Press/The MIT Press.1992
    
    
    [85] Salomon,R.Reevaluating genetic algorithm performance under coordinate rotation of bench-mark functions. BioSysteras, 1996,39
    [86] Beyer,H.-G. The Theory of Evolution Strategies. New York:Springer-Verlag, 2000
    [87] Frank, J., Cheeseman, P., and Stutz,J. When gravity fails: local search topology. Journal of Artificial Intelligence Research, 1997,(7)
    [88] Jones R.M.Mechanics of Composite Materials[M].1975
    [89] Sih G.C., Skudra A.M.. Failure Mechanics of Composites[M]. 1989
    [90] Joo J.W., Sun C.T. A Failure Criterion for Laminates Governed by Free Edge Inter laminar Shear Stress. Comp. Mater[J].1992
    [91] Adali S,Summers E B, Verijenko V E. Optimization of laminated cylindrical pressure vessels under strength criterion. Composite Structure. 1993
    [92] Herakovich CT.Composite laminate with negative through-the-thickness Poisson's ratio[J]. Composite Materials,1984,18
    [93] Sun, CT, LiSijan Three-dimensional effective elastic constants for thick laminates. [J]Composite Materials,1984,22
    [94] Donoghue J.P,Evans. KE. Composite laminates with enhanced indentation and fracture Resistance due to negative Passion Ratios.Proc ICCM——V IV(8~(th) Int Conf On Composite Materials), 1991,2
    [95] 李顺林,王兴业.复合材料结构设计基础[M].武汉工业大学出版社,1993
    [96] 王兴业,唐羽章.复合材料力学性能[M].国防科技大学出版社,1998
    [97] 周明,孙树栋.遗传原理及应用[M],北京:国防工业出版社,1999
    [98] 王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安交通大学出版社2002
    [99] 李敏强,寇纪淞等.遗传算法的基本理论与应用[M],北京:科学出版社,2002.3
    [100] 范明玉,张莹.最优化技术[M].清华大学出版社,1982
    [101] 唐文艳,顾元宪.遗传算法在结构优化中的研究进展.力学进展[J],2002年2月第32卷第一期
    [102] 杨海,黄琦,丁惠梁.复合材料层压板振动参数的铺层顺序优化研究.复合材料学报 1995,12(4)
    [103] 晏飞,李为吉.基于自适应遗传算法的复合材料层合板铺层顺序优化设计.西北工业大学学报[J],2000年01期
    
    
    [104] 晏飞,李为吉.基于改进遗传算法的复合材料层合板自振频率优化设计.机械科学与技术[J],2000年01期
    [105] 罗志军,乔新.复合材料层压板的纤维铺设角全局优化的遗传算法解法.工程力学增刊[J],1999
    [106] 罗志军,乔新.基于遗传算法的复合材料层压板固有频率的铺层顺序优化.复合材料学报[J],1997年10月第14卷第4期
    [107] 李琼,曾宪友,金升平,肖金生.基于遗传算法的功能梯度材料的优化设计.武汉交通科技大学学报[J],1999年23卷第5期
    [108] 张延辉,姜伟,李为吉.复合材料层板优化的遗传算法.机械科学与技术[J],1998,11
    [109] 佟维,利用遗传算法的结构优化设计.大连铁道学院学报[J],2001年6月第21卷第2期
    [110] 韩万林,张幼蒂.遗传算法的改进.中国矿业大学学报[J],2000年1月第29卷第1期
    [111] 黄洪钟,赵正佳,姚新胜,冯春.遗传算法原理、实现及其在机械工程中的应用研究与展望.机械设计[J],2000年3月No.3
    [112] 王石刚,刘莉等.结构优化的GA算法.应用力学学报[J],1998,15(3):88~92
    [113] 王石刚,邹时智,钱勤,黄玉盈.结构优化设中的一种有效的混合GA算法.华中理工大学学报[J],1996,24(12):32~35
    [114] 陈红全,隋洪涛,遗传算法在数值模拟中的应用研究,第九届全国计算流体力学会议论文集(特邀报告),10-15,1998
    [115] 丁武学,龚光容.基于虚拟刀具库FMS刀具分配策略研究.南京理工大学学报(自然科学版)[J],2001年05期
    [116] 刘永清,桑正中.潜土逆转旋耕刀数学模型及参数优化.农业工程学报[J],2000年04期
    [117] 杨勇 沈秀良.基于遗传算法的铣削参数优化.机械设计与研究[J],2001,17(2).-60-62
    [118] 申丽国,韩至骏.应用生物遗传算法规划切削参数.中国机械工程[J],1994,5(6).34-35
    [119] 吴晓,马健勋.复合材料连续层合板的屈曲特征方程.强度和环境[J],1998年第4期
    [120] 龚进峰,彭商贤.基于C空间的机器人双手协调避碰路径规划.制造业自动化[J],2002,24(2).27-30
    [121] 蔡自兴,彭志红.一种新的路径编码机制在移动机器人路径规划中的应用.机器人[J],2001,23(3).-230-233
    [122]孙树栋,林茂.基于遗传算法的多移动机器人协调路径规划.自动化学报
    
    [J],2000,26(5).672-676
    [123] 冯文镛,杨灿军.基于遗传算法的自动导引机器人全局路径规划.机械科学与技术(西安)[J],2001,020(003).380-382
    [124] 崔长彩,车仁生等.基于遗传算法的圆度误差评估.光学精密工程[J],2001,009(006).499-505
    [125] 李团结,曹惟庆.基于遗传算法和结构误差的平面四杆机构轨迹优化综合.机械科学与技术(西安)[J],2002,21(1).72~74,78
    [126] 袁镒吾.用里兹法解复合材料层合板的屈曲问题 强度和环境[J],1996年第2期
    [127] 周洪,邹慧君.双曲柄连续轨迹生成机构的优化综合.机械设计与研究[J],1999,(4).39-41
    [128] 息志臣,陈浩然.复合材料层合板非线性屈曲分析.复合材料学报[J],1993年12月10卷第4期
    [129] 倪庆清,岩本正治.对称层合板复合材料的屈曲变形解析.复合材料学报[J],1999年8月第16卷第3期
    [130] 陈晓,许可,戴诗亮.层合板在固支边界条件下的不稳定后屈曲分析.力学季刊[J],2001年3月22卷第1期
    [131] 马钩水,刘贵忠,贾玉兰.改进遗传算法搜索性能的大变异操作.控制理论与应用[J],1998,15(3)
    [132] 韩炜,廖振鹏.一种全局优化算法:遗传-单纯形法.地震工程与工程震动[J],2001,21(2)
    [133] 王宁,蔚承建,盛昭瀚.基于混沌序列的遗传算法.系统工程理论与实践[J],1999,(11)
    [134] 向丽,顾培亮 一种快速收敛的混合遗传算法 控制与决策[J],2002,17(2)
    [135] 袁晓辉,刘冠蓉.一种用于函数优化的改进混合遗传算法.武汉理工大学学报 信息与管理工程版[J],2002.6,24(3)
    [136] 吴斌,吴坚等.快速遗传算法研究.电子科技大学学报[J],1999,28(1)
    [137] 陈明.基于进化遗传算法的优化计算.软件学报[J],9(11)
    [138] 高尚.基于MATLAB遗传算法优化工具箱的优化计算.微型电脑应用[J],2002,18(8)
    [139] 叶正华,谢勇,郑金华.一种改进的基于实数编码的遗传算法.湘潭大学自然科学学报[J],2002,24(3)
    [140] 陈国良,王用法,庄镇泉等著.遗传算法及其应用[M].北京:人民邮电出版社.1996
    [141] 王忠,柴贺军,刘浩吾.关于进化遗传算法的几点改进.电子科技大学学报[J],2002,31(1)
    [142] 鲁刚,李伯全.基于VB的遗传算法软件实现及其应用.计算机与现代化[J],2002年第7期
    
    
    [143] 孟炳泉,孙方裕.基于最优保存和自适应性的混合遗传算法.高等学校计算数学学报[J],2002年第3期
    [144] 恽为民,席裕庚.遗传算法的全局收敛性和计算效率分析.控制理论与应用[J],1996,13(4)
    [145] 李顺林编.复合材料力学引论[M].上海交通大学出版社,1986
    [146] 周履,范赋群.复合材料力学[M].高等教育出版社,1991
    [147] 蔡为仑.复合材料设计[M].北京:科学出版社,1989
    [148] 蒋咏秋等.复合材料力学[M].西安交通大学出版社,1990
    [149] 王士杰.复合材料导引[M].重庆大学出版社,1987
    [150] 陆关兴,王耀先.复合材料结构设计[M].华东化工学院出版社,1991
    [151] 王震鸣.复合材料力学和复合材料结构力学[M].机械工业出版社,1991
    [152] 张双寅,刘济庆,于晓霞,蔡良武.复合材料结构的力学性能[M].北京理工大学出版社,1992
    [153] 蔡四维.复合材料结构力学[M].人民交通出版社,1987
    [154] 张志民,张开达,杨乃宾.复合材料力学[M].北京航空航天大学出版社,1993
    [155] 航空航天工业部科学技术研究院编.复合材科设计手册[M].北京:航空工业出版社,1990
    [156] 范赋群,张元红.复合材料叠层板的破坏与强度.复合材料及其结构的力学进展[J].1991
    [157] 周仕刚,嵇醒等.复合材料层合板的强度.玻璃钢/复合材料[J].1997年第2期
    [158] 周仕刚,嵇醒等.复合材料层合板强度界限.玻璃钢/复合材料[J].1996年第5期
    [159] 李地红,谢怀勤.均衡型层合板的强度.玻璃钢/复合材料[J].1998年第1期
    [160] 孙雪坤,杜善义,林德春.纤维增强复合材料强度准则适用性.宇航材料工艺[J].1996年第3期
    [161] 张汝光.复合材料负泊桑比的设计.玻璃钢,1993,9(2):13
    [162] 李恩简,胥伟.厚度方向零值与负值泊桑比的均衡对称板.复合材料进展,1993
    [163] 王玉庆、张名大.复合材料热膨胀的一个理论模型.材料科学进展,1989年10月,第3卷第5期
    [164] 区焕文、冼定国.等效介质理论数值法计算复合材料的热膨胀系数.复合材料学报,1995年6月,第12卷第2期
    [165] 王洪华、李贤铨.基体和纤维的种类对复合材料热膨胀系数的影响.机械工程材料,1990年第1期

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700