轮式移动机器人的运动控制及定位方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动机器人应能根据所承担的任务在对环境信息感知与理解的基础上实现路径规划和自定位,并能完成相应的运动,即移动机器人是一个集环境感知、动态决策与规划、行为控制与执行等多功能于一体的综合系统。本文以应用于FMS的轮式移动机器人(AGV)为研究对象,对自动导航系统的设计、环境信息建模与理解技术、路径规划技术、定位和导航及控制技术等关键技术进行了深入的研究。
     (1)本文以运动功能最具代表性的3-TTR型AGV为对象,进行了运动状态量和控制量解析,提出了一种可进行AGV横滑特性识别的运动状态量求解方法;同时,对其各运动功能进行了分析。
     (2)通过对移动机器人常用导航方式的分析,为自主开发的XAUT·AGV100设计了一种组合导航系统:采用编码器和陀螺仪为AGV提供实时导航信息以实现轨迹跟踪,采用编码器和超声波传感器在作业站点及部分特征点处对环境信息的感知实现作业定位。该组合导航系统具有在行驶路径段适应能力强、在作业站点定位精度高、成本低廉等优点。
     (3)在分析移动机器人常见路径规划方法和环境建模方法的基础上,研究开发一种新的环境建模方法和全局路径规划方法。基于机床位姿阵和机床相对位姿阵的环境模型具有数据结构简单、可读性好、数据易维护,可扩充等优点。基于概率选择的AGV全局路径规划算法具有计算简单、规划用时短,实时性好的特点
     (4)通过对现有移动机器人定位方法的分析,为XAUT·AGV100研究开发了一种利用超声波传感器进行约束定位的定位方法。理论分析证明了该定位方法是可行的,实验结果验证了该定位方法是可靠的,该定位系统使用方便、定位精度高。
Mobile robot should be able to realize path planning, self-location and corresponding movements based on its apperceiving and understanding the environment information according to the task. Namely, mobile robot is a synthetical system incorporating multi-functions of environment apperceiving, dynamic decision making and planning and behavior controlling and performing. In this paper, a research has been carried out for wheeled mobile robot (AGV) used in FMS, including design of auto-navigating system, modeling and understanding techniques for environment, path planning techniques, positioning and navigation controlling techniques.
    (1) 3-TTR AGV with the most representative motion functions was selected as researching object. The motion state value and control value were analyzed. Then a method for solving the motion state value of the AGV transverse characteristic identification was introduced, and each motion function of 3-TTR AGV was analyzed.
    (2) A kind of combined navigation system for the XAUT·AGV100 developed by our institute was designed through the analysis of commonly used guiding styles of mobile robot, adopting coders and gyroscope to provide real-time guiding information to realize the path tracking, apperceiving the environment messages at the task points and part feature points by ultrasonic sensor to position. The combined navigation system had the following advantages: a good adaptability to the paths, high positioning accuracy at task points and low costs, etc.
    (3) A new environment modeling method and global path planning method were proposed on the basis of analyzing the usual methods for mobile robot. The environment model based on Pos Matrix of Machine and Relative Pos Matrix of Machines had the following advantages: simple data structures, good readability, easy data amendment, being expansible, etc. The global path planning algorithm based on probability had features of simple calculation, short planning time and good real-time characteristics.
    (4) A positioning method for XAUT·AGV100 using ultrasonic-sensors to constrain positioning was introduced by analyzing existing positioning method of mobile robot. The method was feasible by theoretical analysis and reliable by experiment. The position system had advantages of easy use, high positioning accuracy, and low cost.
    (5) The influencing factors, measuring methods, running conditions and warp model estimating methods of the AGV turning characteristics were analyzed. The effect on AGV by Multi-Step Predictive Control (MSPC) was also analyzed. The advantages of the control
引文
[1] 付宜利,徐贺,王树国,马玉林,顾晓宇.沙地环境移动机器人驱动轮的发展概况综述.机器人技术与应用[J],2004,Vol.4:22~29.
    [2] Meystel A.. Autonomous mobile robots vehicles with cognitive control [M]. World Scientific Publishing Co. Pte. Ltd., 1991.
    [3] Hart A P, Nilsson N J, Raphael B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Systems Science and Cybern[C], 1968. 4.
    [4] Belenkov Y O, Gusev S Y, Zotov S Y, Ruzhanskiy Y I, Timofeyev A Y, Frolov Y M and Yakubovich Y A. Adaptive system for control of autonomous mobile robot. Engineer Cybernetic[J], No. 6, 1978.
    [5] Moravec H P. Robot rover visual navigation[M]. UMI Res Press, 1981.
    [6] Elfes A and Talukdar S N. Distributed control system for the CMU rover. Report of the Robotic Institute at Carnegie-Mellon University [R], Pittsburgh, 1983.
    [7] Giralt G, Chatila R and Yaisset M. An integrated navigation and motion control system for autonomous multi-sensory mobile robots. In Robotic research[M]. Eds. Brady M and Paul R, MIT Press, 1984.
    [8] 国家863计划智能机器人专家组.机器人博览[M].中国科学技术出版社,北京,2001.
    [9] R. Dillmann and C. Rembold. Autonomous robot of the university of Karisrche. Proc. 15th ISIR[C]. Tokyo, 1985: 91~102.
    [10] Yajima M and Schneider F. New concepts using robot-vehicles for transport and warehousing system. 4th Int. Conf. on Automation in Warehousing[C], Tokyo, 1981: 175~184.
    [11] Parodi A M, Nitao J J and Me Tamaney L S. An intelligent system for an autonomous vehicle. Proc IEEE Int Confon Robotics and Automation[C], San Franciscan, 1986,3.
    [12] Tsugawa S, Yatabe T, Hirose T and Matsumoto S. An automobile with artificial intelligence. Proc. IJCAI[C], 1979.
    [13] Kanade T, Thorpe C and Whittaker w. Autonomous vehicle project at CMU. Proc. ACM Computer Conf.[C], Cincinnati, Feb, 1986.
    [14] Chavez R and Meystel A. Structure of intelligence for an autonomous vehicle. Proc of the IEEE Int. Conf. on Robotics and Automation[C], Atlanta, 1984.
    [15] Meystel A. Primer on autonomous mobility[M]. Drexel University PA, 1986.
    [16] 杨德智,明守远.地面排爆机器人的应用.机器人技术与应用[J],2004.4:30~36.
    [17] 白小波,王宏玉,卞愧石,等.AGVS系统技术应用.物流技术[J],No.2,2000:9~12.
    [18] 唐文伟.AGV在物流领域中的应用前景分析.物流技术[J],No.3,2001:7~8.
    [19] 海心河(译),沈秉铨(校).AGV的未来.国际物流[J],No.1,1998:35~42.
    [20] 张晓萍.现代生产物流及仿真[M].清华大学出版社,1998.1.
    [21] J. Borenstein, H. R. Everentt, L. Feng (Edited), J.Borenstein(Complified). "Where am I?" Sensors and Methods for Mobile Robot Positioning[M]. The University of Michigan, April 1996.
    [22] 熊有伦.机器人技术基础.华中理工大学出版社,1996.
    [23] 卢韶芳,刘大维.自主式移动机器人导航研究现状及其相关技术.农业机械学报[J],33(4),2002.3:112~116.
    [24] 张其善,吴今培,杨东凯.智能车辆定位导航系统及应用[M].科学出版社,2002.7.
    [25] Olson C F.Probabilistic self-localization for mobile robot.IEEE Transaction on Robot and Automation[C], 16, 2000: 55~66.
    [26] 张可.车辆导航系统关键技术研究[D].北京工业大学博士学位论文,2001.5.
    [27] 杨兆升.运输系统规划与模型[M].北京:人民交通出版社,1996.
    [28] C. O. Nwagboso. Advanced Vehicle and Infrastructure Systems[M]. John Wiley & Sons Ltd., 1997: 307~316.
    [29] Enxiu Shi, Yumei Huang, Yizhong Lin. Research on the Method of Composite Navigation for AGV. 5th World Congress on Intelligent Control and Automation[C], 6(6), 2004(6), Hangzhou, China: 4987~4990.
    [30] 张纯刚,席裕庚.全局环境未知时基于滚动窗口的机器人路径规划.中国科学(E辑)[J],31(1),2001:51~58.
    [31] 陈世明,方华京.动态未知环境中的优化路径规划算法.华中科技大学学报(自然科学版)[J],31(12),2003:30~32.
    [32] Maaref H, Barret C. Sensor-Based on fuzzy navigation of an autonomous mobile robot in an indoor environment. Control Engineering Praeitce[J], 8(7), 2000: 747~768.
    [33] 于红斌,李孝安.基于栅格法的机器人快速路径规划.微电子学与计算机[J],22(6),2005:98~100.
    [34] 刘旭.智能移动机器人路径规划及仿真[D].南京理工大学硕士学位论文,2004.6.
    [35] 李宏超,黄亚楼,阙嘉岚,徐君,孙凤池.基于四叉树环境模型的轮式移动机器人平滑路径生成方法.机器人[J],23(5),2001:426~430.
    [36] R A Brooks. Solving the Find-path Problem by Good Representation of Free Space. IEEE Trans on Sys Man and Cybern[C],13(3), 1983: 190~197.
    [37] 杜端甫.运筹图论[C].北京:北京航空航天大学出版社,1990.
    [38] J. Anez, T. Barra, et al.. Dual Graph Representation of Transport Networks. Transportation Researeh-B[J], 30(3), 1996: 209~219.
    [39] Pere. Automatic Planning of Manipulator Movements. IEEE Translation. on System Man and Cybern[C], 11(11), 1981: 681~698.
    [40] Mataric M. J.. Behavior-based control: Examples from navigation, learning and group behavior. Journal of Experimental and Theoretical Artificial Intelligence[J], 1997(7): 2~3.
    [41] 史恩秀,黄玉美,马建辉.基于机床方向和位置矩阵的AGV路径规划.组合机床与自动化加工技术[J],No.7,2003:18~19.
    [42] 杨兆升.运输系统规划与模型[M].北京:人民交通出版社,1996.
    [43] C. O. Nwagboso. Advanced Vehicle and Infrastructure Systems[M]. John Wiley & Sons Ltd., 1997: 307~316.
    [44] Lozano-Perez, T. and Wesley, M. A.. An algorithm for Planning Collision-Free Paths among Poly-Hedral Obstacle. Common Ass. Compute Math[J], 37(22), 1993: 560~570.
    [45] 唐平,杨宜民.动态二叉树表示环境的A~*算法及其在足球机器人路径规划中的实现,中国工程科学[J],4(9),2002.9:50~53.
    [46] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Nuberische Mathematik[J], 1959. 1: 269~271.
    [47] 冯文镛,杨灿军,陈鹰.ACR原型系统的全局路径规划遗传算法研究.控制理论与应用[J],19(2),2002,4:282~286.
    [48] 董玉成,陈义华.基于蚂蚁算法的移动机器人路径规划.重庆大学学报[J],26(3),2003(3):49~51.
    [49] 刘彩虹,胡吉全,齐晓宁.基于混合遗传算法的连续空间下机器人的路径规划*.武汉理工大学学报(交通科学与工程版)[J],27(6),2003,10:819~821.
    [50] 王仲民,戚厚军,闫兵,李充宁.一种新型混合优化算法在机器人路径规划中的应用.机械设计[J],20(6),2003,6:43~59.
    [51] 傅维潼.概率论与数理统计辅导[M].北京:清华大学出版社,2003.6.
    [52] 郑向阳,熊蓉,顾大强.移动机器人导航和定位技术.机电工程[J],20(5),2003:35~37.
    [53] 陈华志,谢存禧.移动机器人导航及其相关技术的研究.机床与液压[J],4,2003:12~15.
    [54] 王田.车载组合导航系统误差修正方法研究[D].国防科学技术大学硕士研究生学位论文,2002.2.
    [55] 方强,谢存禧.基于视觉的移动机器人自主定位导航.机床与液压[J],17,2004:40~56.
    [56] Herbert G. Tanner, Savvas G. Loizou, etc.. Nonhoionomic Navigation and Control of Cooperation Mobile Manipulators. IEEE Transactions on Robotics and Automation[C], 2003,19.1: 53~64.
    [57] Trahanias P. Visuai Recognition of Workspace Landmarks for Topological Navigation. Autonomous Robotics[J], 7(2), 1999: 143~158.
    [58] 董再励,王光辉,田彦涛,朱枫,洪伟.自主移动机器人激光全局定位系统研究.机器人[J],22(3),2000.5:207~210.
    [59] 王冰,张惠侨,叶庆泰.移动式机器人信标定位系统的误差分析及其应用.机械设计与研究[J],No.2,2000:13~16.
    [60] Elfes A. A Sonar-Based Mapping and Navigation System. Proc. Of the IEEE Inter. Conf. on Robotics and Automation[C], 1986: 1151~1156.
    [61] 项志宇,刘济林.基于环境特征跟踪的移动机器人定位.仪器仪表学报[J],24(4),2003.8:391~394.
    [62] Thrun S. Finding Landmarks for Mobile Robot Navigation. Proc. of IEEE Inter Conf. Robotics and Auto[C], 1998, 2: 958~963.
    [63] 袁冬莉,席庆彪,阎建国,张继萍,张洪才.联邦卡尔曼滤波器在无人机导航系统中的应用.西北工业大学学报[J],20(2),2002.5:310~313.
    [64] 姜明,李科杰,汪光,黄祖光.GPS/电子地图组合定位技术在侦察机器人系统中的应用.高技术通讯[J],2002:58~62.
    [65] O. Wijk, H. I. Christensen. Localization and Navigation of a Mobile Robot Using Natural Point Landmarks Extracted from Sonar Data. Robotics and Autonomous Systems[J], 31(1), 2000: 31~42.
    [66] M. Prokin. Extremely wide-range speed measurement using a double-buffered method. IEEE Trans. and Electron[C], 41(5), 1994. 10: 440~559.
    [67] D. Fox, W. Burgard, and S. Thrun. Markov Localization for Mobile Robots in Dynamic Environments. Journal of Artificial Intelligence Research[J], 2000. 11: 391~427.
    [68] W. Gerchard, W. Christoper, etc.. Keeping Track of Position and Orientation of Moving indoor Systems by Correlation of Range Finder Seans. Proc. of the IEEE/RSJ/GI Int. Conf. on Advanced Robotic Systems and the Real World, IROS[C], 94, 1, 1994: 595~601.
    [69] 史恩秀,黄玉美,陈亮,等.基于超声波传感器的AGV定位方法的实验研究.传感器技术[J],No.10,2005:23~28.
    [70] Diaz R F, Jimonez G, Sevillanl J L, Ageneralization of path following for mobile robots[A]. Proc. 1999 IEEE Int. Conf, Robot and Automat[C], May, 1999: 7~12.
    [71] Canudas de Wit C, Siciliano B, Bastin G. Theory of robot control [M]. London: Springer-Verlag, 1998.
    [72] Jong-Hwan Kim. Lecture notes on multi-Robot cooperative system development[M]. Seoul, Korea: Green Publishing Company, 1998.
    [73] 刘淼,赵群飞,等.基于PLC的防爆机器人控制系统设计.机械[J],31(1),2004:37~39.
    [74] Jiang Z P, Nijmeijer H. Tracking control of mobile robots: A case study in baekstepping Automatiea[J], 33(7), 1997: 1393~1399.
    [75] Ei Hajjaji. Frizzy Control of Industrial Mobile Robot. Smart Engineering System Design[J], 5, 2003: 111~117.
    [76] O. Popovici Vlad and T. Fukuda. Design method for neuro-fuzzy motion controllers. Integrated Computers-Aided Engineering[M] (IOS Press), 11, 2004: 37~62.
    [77] 吴筱苏.AGV的视觉引导及其控制策略研究[C].合肥工业大学硕士学位论文,2003.月.
    [78] 孙炜,王耀南.基于控制器输出误差方法的自适应模糊控制及其在机器人轨迹跟踪控制中的应用.机器人[J],23(7),2001.10:616—619.
    [79] 李艳,林廷圻,高峰.基于神经网络的3自由度移动机器人跟踪方法研究.西安交通大学学报[J],37(7),2003.7:711—714.
    [80] Dongbing Gu, Huosheng Hu. Neural predictive control for a car-like mobile robot. International Journal of Robotics and Autonomous systems[J], 2002: 392~395.
    [81] 徐俊艳,张培仁.非完整轮式移动机器人轨迹跟踪控制研究.中国科学技术大学学报[J],34(3),2004.6:375~379.
    [82] PEI, Xin-Zhe, LIU Zhi-Yuan, et al.. Robust Trajectory Tracking Controller Design for Mobile Robots with Bounded Input. ACTA AUTOMATICA SINICA[J], 29(6),2003. 11: 876—882.
    [83] HU Zhongxu, HU Yueming,et al.. An Adaptive Variable Structure Control Approach for Mobile Robot. Control theory and application[J], 18(6),2001.12:919~924.
    [84] 张文志,吕恬生,王乐天.进化学习模糊规则实现移动机器人的自适应导航.上海交通大学学报[J],38(1),2004.1:66—70.
    [85] 张文志,吕恬生.基于改进的遗传算法和模糊逻辑控制的移动机器人导航.机器人[J],25(1),2003.1:1~6.
    [86] Riehalet J. Model Predictive Heuristic Control: Application to Industrial Process. Automatica[J], 14(5), 1978: 413~428.
    [87] Cutler C R, Ramaker B L. Dynamic matrix Control——A Computer Control Algorithm. Proc. JACC[C]. SanFranciso, 1980.
    [88] Clarke D W, Mohtadi C,et al.. Generalized predictive Control. pt. 1. The Basic Algorithm, pt.2.Extensions and Interpretations. Automatica[J], 23(2), 1987:137~160.
    [89] Lelic M A, Zarrop M B. Generalized Poleplacement Self-tuning Controller. Int. J. Control[J], 46(2),1987: 547~568.
    [90] Brosilow C B and Tong M. The Structure and Dynamics of Inferential Control System. A. I. Ch. E. Journal[J], 24(3), 1978: 485~499.
    [91] Garcia C E and Morari M. Internal Model Control. A Unifying Review and Some New Results. Ind. Eng. Chem. Pro. Des[J],21(2),1982.12: 308~323.
    [92] 郑辑光,施仁,王孟效.预测控制的无扰切换技术.信息与控制[J],2003.4,32(2):146~149.
    [93] Richalet J.. Industrial Applications of Model Based predictive Control. Automatics[J], 29(5), 1993: 1251~1274.
    [94] 周建锁,刘志远,叶青,裴润.机器人轨迹跟踪连续预测控制.系统工程与电子技术[J],22(11),2000:39~42.
    [95] 史恩秀,黄玉美,史文浩.轮式移动机器人的轨迹跟踪的预测控制.机械科学与技术[J],2004.10.
    [96] 张智焕.复杂系统预测控制算法及其应用研究[D].浙江大学博士学位论文,2002.5.
    [97] 张纯刚,席裕庚.动态未知环境中移动机器人的滚动路径规划及安全性分析.控制理论与应用[J],20(1),2003.1:37~43.
    [98] 李力争,何清华,谢习华,郭勇.双三角钻臂直接定位自适应预测控制.中南大学学报(自然科学版[J],35(6),2004.10:983~987.
    [99] 席东民,凌呼君,等.鲁棒广义预测控制在单元机组的协调控制.控制工程[J],12(4),2005.7:327~330.
    [100] Lee, Y. I., Kouvaritakis, B. A Linear Programming Approach to Constrained Robust Predictive Control. IEEE Transactions on Automatic Control[C], 45(9), 2000. 9: 1765~1770.
    [101] 刘雪芹,刘晓华.基于多神经无模型的非线性系统预测控制.控制工程[J],12,2005.7:128~130.
    [102] 师五喜,霍伟,吴宏鑫.基于特征模型的柔性结构直接自适应模糊预测控制.控制理论与应用[J],22(5),2005.10:677~681.
    [103] 李桂丽,刘文超,刘军.具有PID结构的改进广义预测控制算法.青岛科技大学学报[J],26(5),2005.10:462~465.
    [104] 林林,申东日,陈义俊.基于最优保留遗传算法的非线性模糊预测控制.计算机仿真[J],21(12),2004.12:149~151.
    [105] 邢宗义,胡维礼,贾得民.基于T-S模型的模糊预测控制研究.控制与决策[J],20(5),2005.5:495~499.
    [106] 臧传德.船舶航行的智能预测控制研究[D].哈尔滨工程大学博士学位论文,2002.1.
    [107] 马新军,胥布工.注塑机炉温的模糊预测.自动化仪表[J],25(12),2004.12:37~38.
    [108] 蒋仙华,熊蓉,周科,金毅.预测模糊控制在足球机器人底层运动优化中的应用.四川大学学报(工程科学版)[J],35(3),2003.5:79~82.
    [109] Jialiang Lu, Guanrong Chen, Hao Ying. Predictive fuzzy PID control: theory, design and simulation. Information Sciences[J], 137(1-4), Sep. 2001: 157~187.
    [110] 李少远,李柠.复杂系统的模糊预测控制及其应用[M].北京:科学出版社,2003年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700