农杆菌介导高梁转化体系的建立与Bt(Bacillus thuringiensis)抗虫基因的导入
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在优化高粱再生系统和农杆菌介导的遗传转化体系的基础上,采用农杆菌介导法获得了含密码子优化的杀虫晶体蛋白(Bt)基因cry1Ab转基因高粱。
     通过正交试验和单因子试验确定了高梁离体培养的最佳培养基,并对其多种影响因素进行研究。结果表明,高梁茎尖直接再生的培养基为:MS无机盐+B5有机物+KT0.25mg/L+BAP 0.25mg/L+IAA 0.25mg/L+L-Asn 200mg/L+抗坏血酸10mg/L+PVP 100mg/L+蔗糖30g/L+琼脂10g/L;种子(胚)愈伤组织诱导培养基为:MS(C)无机盐+MS有机物+2,4-D 3mg/L+KT 0.05mg/L+L-Pro 50mg/L+水解酪蛋白500mg/L+PVP8mg/L+蔗糖30g/L+琼脂8g/L;种子(胚)愈伤组织继代培养基为:MS(C)无机盐+MS有机物+2,4-D 3mg/L+KT 0.5mg/L+L-Asn 200mg/L+L-Pro 50mg/L+PVP 100mg/L+抗坏血酸500rog/L+蔗糖30g/L+琼脂8e,/L;未成熟胚愈伤组织诱导培养基为:MS无机盐+MS有机物+2,4-D 2mg/L+KT 0.05mg/L+玉米素0.05mg/L+L-Asn 150mg/L+L-Pro700mg/L+水解酪蛋白lg/L+PVP 8mg/L+抗坏血酸10mg/L+NH_4NO_3 3.5g/L+KH_2PO_40.5g/L+蔗糖20g/L+琼脂8g/L;未成熟胚愈伤组织愈伤组织继代培养基为:MS无机盐+MS有机物+2,4-D2mg/L+玉米素0.5mg/L+L-Ash 150mg/L+L-Pro150mg/L+水解酪蛋白500mg/L+PVP 8mg/L+抗坏血酸10mg/L+NH_4NO_3 3.5g/L+KH_2PO_40.5g/L+蔗糖20g/L+琼脂8g/L;幼穗愈伤组织诱导培养基为:YI4培养基(MS+2,4-D2mg/L+玉米素2.2mg/L+PVP 8mg/L+抗坏血酸10mg/L+水解酪蛋白500mg/L+蔗糖30g/L+琼脂7.2g/L);幼穗愈伤组织继代培养基为YI4+KT0.175mg/L。
     对不同外植体和不同基因型诱导产生愈伤组织的再生能力进行比较研究,结果表明,幼穗愈伤组织分化率最高,平均为77.2%;其次是茎尖,平均再生率为39.4%;未成熟胚愈伤组织平均分化率为21.70%;种子(胚)愈伤组织分化能力最差,分化率平均仅为1%。此外,不同基因型间的再生能力差异很大。以幼穗、茎尖和未成熟胚作外植体比较理想,可用于进一步的转化研究。
     通过gus基因瞬时表达对农杆菌介导高梁转化体系及其影响因子进行了系统性研究,获得较高转化频率的条件为:(1)茎尖:预培养时间3d,在OD_(600)值为0.5农杆菌菌液中感染10min,共培养时间为3d;(2)未成熟胚和幼穗愈伤组织:预培养时间3d,
    
    最适农杆菌菌液浓度ODm值为0.5—0.7,感染时间5—20Inin,最适共培养基pH值为
    5二一5石,最适共培养温度为22—25℃,最佳共培养时间3d;()在共培养基、农杆菌预
    培养基、悬浮培养基中添加*51001llllOW有助于提高转化频率;N)在共培养基中添
    加 PVP 500mg/L,可防止外植体共培养后褐化死亡现象发生,促进转化频率的提高。
     首次研究了不同抗生素的抑菌效果和对高梁离体再生培养反应的影响,发现在农杆
    菌介导高梁遗传转化时,选用 250—500lug/L.的梭节青霉素抑菌较为合适。不同高梁品
    种及外植体对潮霉素和卡那霉素的敏感性不同,但对潮酶素比卡那霉素更敏感。在筛选
    转化体时,采用浓度为 256 潮酶素对茎尖和未成熟胚较为适宜,对愈伤组织则以
    50-75mg/L为宜。
     以幼穗愈伤组织为受体,在世界上第一次通过农杆菌介导法将杀虫晶体蛋白基因
    CryIAb导入高梁品种115、ICSZIB和5—27,共获ZI个独立转基因细胞系,52株转基
    因植株,平均转化率为1.go/o。经GUS活性、PCR、S。"them杂交分析表明此基因己整
    合进高梁基因组中。Bt蛋白测定表明,Cy1Ab基因能在转基因高粱植株中表达,但不
    同转基因植株及不同组织间表达量有所不同。室内饲虫试验表明,转基因高梁对大螟
     (&sanl la帅rens)具有一定抗性。
Transgenic sorghum plants containing a codon-modified insecticidal Bacillus thuringiensic (Bt) crylAb gene were obtained through /Igrofeacrerium-mediated transformation, based on optimizations of regenerative and transformation system.
    The cultural medium was optimized by a statistical method and dissecting effect of single factor on in vitro culture. The optimal medium for direct regeneration of shoot apex was MS salts, B5 vitamins, KT 0.25mg/L, BAP 0.5mg/L, IAA 0.25mg/L, L-Asn 200mg/L, ascorbic acid lOmg/L, PVP (polyvinylpyrrolidone) lOOmg/L, sucrose 30g/L and agar lOg/L; for callus induction of seed (mature embryo) was modified MS salts, MS vitamins, 2,4-D 3mg/L, KT 0.05mg/L, L-Pro 50mg/L, casamino acid 500mg/L, PW 8mg/L, sucrose 30g/L and agar 8g/L; the medium for callus sub-culture contained modified MS salts, MS vitamins, 2,4-D 3mg/L, KT 0.5mg/L, L-Asn 200mg/L, L-Pro 50mg/L, PVP lOOmg/L, ascorbic acid lOmg/L, casamino acid 500mg/L, sucrose 30g/L and agar 8g/L; for callus induction of immature embryo was MS salts, MS vitamins, 2,4-D 2mg/L, KT 0.05mg/L, zeatin 0.05mg/L, L-Pro 700mg/L, L-Asn 150mg/L, casamino acid Ig/L, PW 8mg/L, ascorbic acid lOmg/L, NH4NO3 3.5g/L, KH2PO4 0.5g/L, sucrose 20g/L and agar 8g/L; for callus sub-culture was MS salts, MS vitamins, 2,4-D 2mg/L, zeatin 0.5mg/L, L-Pro 150mg/L, L-Asn 150mg/L, casamino acid 0.5g/L, PVP 8mg/L, ascorbic acid lOmg/L, Ntt^MOs 3.5g/L, KH2P04 0.5g/L, sucrose 20g/L and agar 8g/L; for callus induction of immature inflorescence is YI4 containing MS salts, MS vitamins, 2,4-D 2mg/L, zeatin 2.2mg/L, PVP 8mg/L, ascorbic acid lOmg/L, casamino acid 0.5g/L, sucrose 30g/L and agar 7.2g/L; for sub-culture was YI4 with KT 0.175mg/L.
    The regenerative capability of different explants and genotypes was comparatively investigated. It showed that the regenerative frequency of immature inflorescence-derived callus was higher than that of other types of explant-derived callus and shoot apex. The average regenerative frequencies of callus induced from immature inflorescence, immature embryo and seed (mature embryo), and shoot apex were 77.2%, 21.7%, 1.0% and 39.4%, respectively. The regenerative capability was different among the genotypes. Immature inflorescence, shoot apex and immature embryo were ideal explants suitable for further transformation study.
    
    
    
    
    The genetic transgenic system of sorghum mediated by Agrobacterium and factors were investigated using the transient expression of gus gene and the optimal conditions were determined as follows: for shoot apex, pre-culture 3 days, bacterial concentration ODeoo 0-5, infection time 10 min, and co-culture 3 days; for immature embryo and inflorescence-derived callus, pre-culture 3 days, bacterial concentration ODeoo 0.5 to 0.7, infection time 5 to 20 min, pH value of co-culture medium 5.2 to 5.6, co-culture temperature 22℃ to 25 ℃, and less than 3-day co-culture. To be higher transformation frequency, it was important to add AS to co-culture medium, pre-culture medium of Agrobacterium., and the bacterial cell suspension. To avoid the browning and death of explants after co-culture and improve the transformation frequency, it was necessary to add PVP 500mg/L to co-culture medium.
    The effects of antibiotics on bacterial growth and in vitro response were comprehensively investigated. Carbenicillin with 250-500mg/L was optional to remove the bacterial cells after co-cultivation in the process of Agrobacterium-mediated transformation. Sensitivity to kanamycin and hygromycin varied among the varieties and explants, and the higher sensitivity to hygromycin was observed than that to kanamycin. The preferable concentration of hygromycin for transformant screening is 25-50mg/L for shoot apex and immature embryo and 50-75mg/L for callus, respectively.
    The insecticidal Bacillus thuringiensis (Bt) crylAb gene were firstly hi the world inserted into the immature inflorescence-derived callus of sorghum varieties, i.e. 115, ICS21B and 5-27 through Agrobacterium-mediated transformation. After gradient selection with hygromycin, a
引文
白志良,王良群,郑丽萍等.1995.高粱不同外植体离体培养.华北农学报,10(1):60-63
    崔海瑞,舒庆尧,项友斌等.1998.转crylAb基因水稻的田间表现,生命科学探索与进展.朱睦元等,主编.杭州,杭州大学出版社,pp819-816
    邓力银,邵启金.1989.酚类化合物促进致瘤农杆菌对单子叶植物鸭趾草的转化.科学通报.34:776-779
    冯新华,蒋兴邨,邵启金.1987.Ti质粒基因在单子叶植物朱顶兰和吊兰中的表达.科学通报.32:613-615
    郭建华.1989.高粱幼胚小盾片愈伤组织的诱导及其再生植株性状的变异分析.辽宁农业科学,(3):7-14
    韩福光,赫庞.1993.高粱不同外植体愈伤组织诱导的研究.辽宁农业科学,(1):45-48
    韩福光,赵海岩等.1997.高粱幼叶离体培养的衍生系的耐盐筛选与性状分析.作物学报,23(4):491-495
    何富刚,颜范悦,王艳琴等.1991.高粱质资源抗亚洲玉米螟鉴定研究.辽宁农业科学,(2):13-16
    何富刚,徐秀德.1996.国外高粱种质资源抗高粱蚜、玉米螟、黑穗病鉴定与评价研究.国外农学—杂粮作物,(1):47-53
    黄学林,李筱菊.1995.高等植物组织离体培养的形态建成及其调控..北京:科学出版社,pp.30-90
    李春喜,王文林.1997.生物统计学.北京:科学出版社,pp186-206
    李卫,郭光沁,郑国锠.2000.根癌农杆菌介导遗传转化研究的若干新进展.科学通报.45(8):798-807
    马鸿图.1985.高粱幼胚培养及再生植株变异的研究.遗传学报,12(5):350-357
    闵绍楷,申宗坦,熊振民.1996.水稻育种学,中国农业出版社,pp269-275
    母秋华.1982.高粱蔗茎尖培养成功.科学通报,27:1025
    石太渊,杨立国,王颖等.1995.基因型和培养基对高粱幼穗离体培养的影响.国外农学:杂粮作物,(2):2729
    石太渊,杨立国,王颖,郑文静,高连军.2001.PYH157广谱抗病基因导入高粱及转基因植株的筛选与研究.杂粮作物,21(1):12-14
    舒庆尧,叶恭银,崔海瑞等.1998.转基因“克螟稻”选育.浙江农业大学学报.24(6):579-580
    王关林,方宏筠.1998.植物基因工程原理与技术,科学出版社,pp1-6,323-329
    项友斌.1998.苏云杆菌杀虫基因crylA(b)和crylA(c)的密码子改良与构建以及菜苔与水稻抗虫转基因植株的培育.浙江农业大学博士学位论文,pp172-173
    项友斌,梁竹青,高明尉等.1999.农杆菌介导的苏云金杆菌抗虫基因crylAb和crylAc在水稻中的遗传转化及蛋白表达.生物工程学报.15(4):494-500
    杨立国.1998.转导外源总DNA创造农作物新种质.作物品种资源,(1):14-16
    虞剑平,蒋兴邨,邵启金.1989.Ti质粒基因在单子叶植物石蒜和金针菜中的表达.遗传学报.16(3):174-177
    赵天永,王国英,谢友菊.1994.用基因枪将GUS基因导入玉米和小麦的茎尖分生组织(简报).农业生物技术学报,2(2):93~94
    朱海山.1996活性炭对玉米花药培养的影响.植物生理学通讯,32(1):16-18
    Able J A. 1998. Transformation of sorghum using the Particle Inflow Gun(PIG).International sorghum and millets newsletter, 39:98-100
    Adang M.J.,merlo D.J.and Murry E.E. 1995. Sythetic gene for B. thuringiensis insecticidal
    
    protein-designed agaist insect pests. A01N063/00, Patent No.EP6882115
    Aldemita R R.and Hodges T.K.1996. Agrobactarium tumefaecciens-mediated transfonnation of japenica and indica rice varieties. Planta.199:612-617
    Allen G.C., Hall G.E., Childs L.C., et al.1993. Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell, 5:603-613
    Allison A.S. and Pedro M.P.1997. Commercialization of transgenic plants:potential ecological risks. Bioscience, 47:86-96
    Aronson A.I., Wu D. and Zhang C.1995. Mutagenesis of specificity and toxicity regions of a Bacillus thuringiensis protoxin gene.J.Bacteriol., 177: 4059-4065.
    Ballas N. and Citovsky V.1997. Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein.Proc. Natl. Acad. Sci. USA.94:10723-10728
    Barton KA.,Whitely H. R.,Yang N.S.1981. Bacillus thuringiensis delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant physiol, 85:1103-1109
    Barton K.A., Whiteley H.R.and Yang N.S.1987. Bacillus thuringiensis delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidoptern insects.Plant Physiol., 85: 1103-1109
    Battraw M. and Hall T.C.1991. Stable transformation of sorghum bicolor protoplasts with chimeric neomycin phosphotransferase II and β-glucuronidase genes.Theor Appl Genet,82:161-168
    Bhaskaran S., Smith R.H., Paliwal S. ,et al. 1987. Somaclonal variation from Sorghum bicolor(L.) Moench cell culture. Plant Cell,Tissue and Organ Culture, 9:189-196
    Bhat S. and Kuruvinashetti M.S. 1995. Plant regeneration from tissue cultures of cytoplasmic-genetic male-sterility maintainer lines of sorghum(Sorghum bicolor). India Journal of Agriculttural Sciences, 65(20) :127-129
    Blank R.G., Ely S.., Tailor R.H., et al.1989. Bacterial genes. International Patent Application ,PCT/GB90/00706
    Block M. 1990. Factors influencing the tissue culture and the Agrobacterium tumefaciens-mediated transformation of hybrid aspen and poplar clones. Plant Physiol, 93:1110-1116
    Bosch D., Schipper B., Van derKleij H.,et al.1994. Recombinant proteins with new properties: possibilities for resistance management Bio/Technology, 12:915-918.
    Bosch H.J.,and Stiekema WJ. 1995. New Bacillus thuringiensis hybrid toxin fragment(hybrid toxins, recombinant DNA, vectors, transformed plants and microorganisms)for insect A01H005/00,Paten No.W09506730
    Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing me principle of protein-dyeing binding. Anal. Biochem.72:248-254
    Bravo-Angel A. M., Gloeckler V., Hohn B. ,et al.1999. Bacterial conjugation protein MobA mediates integratiom of complex DNA structures into plant cells. J. Bacteriol.,181:5758-5765
    Bravo A., Hendrickx K., Jansens S., et al.1992 . Immunocytochemical localization of Bacillus thuringiensis insecticidal crystal proteins to lepidopteran and coleopteran midgut membranes. J.Invert. Pathol., 60: 247-253
    Brettel R.I.S.,Wemicke W.and Thomas E.1980. Embryogenesis from cuktured immature inflorescences of sorghum bicolor. Protoplasma,104:141-148
    Bundock P., Den D.R., Beijersbergen A., et al. 1995. Trans-Kingdom T-DNA transfer from Agrobacterium to Saccharomyces cercvisiae. EMBO J., 14(3) :3206-3214
    Bytebier B. F., Deboeck F., Greve H. D. ,et al. 1987. T-DNA organization in tumor cultures and transgenic plants of the monocoty-ledon Aaparagus officinalis. Proc. Natl. Acad. Sci. USA .84:5345-5349
    Cai T., Daly B. and Butler L.. 1987. Callus induction and regeneration from shoot portions of mature embryos of hightannin sorghums. Plant Cell,Tissue and Organ Culture, 9:245-252
    Cai T. & Butler L. 1990. Plant regeneration from embryogenic callus initiated from immature inflorescences of several high-tannin sorghums. Plant Cell, Tissue and Organ Culture, 20:101-110
    Casas A M. ,Kononowicz A.K.,Zehr U.B.,et al.1993. Transgenic sorghum plants via microprojectile
    
    bombardment. Proc Natl Acad Sci USA, 90(23) :11212-11216
    Casas A M., Kononowicz A.K,Hann T.G.,et al.1997. Transgenic sorghum plants obtained after microporjectile bombardment of immature inflorescences.In Vitro Cell Dev Biol Plant, 33:92-100
    Chan M.T., Chang H.H., Ho S. L., et al.1993. Agrobacteium-mediated Production of transgenic rice Plants expressing a chimeric a-amylase promoter/B-glucuronidase gene. Plant Mol Biol., 22:491-506
    Chan M. T., Lee T. M. and Chang H. H.1992. Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. Plant Cell Physiol.,33:577-583
    Chen X.J., Lee M.K. and Dean D.H.1993. Site-directed mutations in a highly conserved region of Bacillus thuringiensis δ-endotoxin affect inhibition of short circuit current across Bombyx mori midgets. Proc. Natl. Acad. Sci.USA, 90:9041-9045
    Cheng M., Fry J. E., Plant S. Z., et al.1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol.,115:971-980
    Cheng X., Sardana R., Kaplan H. ,et al.1998. Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc. Natl. Acad. Sci. USA., 95:2767-2772
    Cooksey K..E. 1971. The protein crystal toxin of Bacillus thuringiensis: Biochemistry and mode of action. In Microbial Control of Insects and Mites(Eds.H.D.Burges and N.W. Hussey).pp.247-274, Academic Prers. London
    Delannay X., BJ.Lavallee, R.K.Proksch, et al. 1989. Field performance of transgenic tomato plants expressing the Bacillus thuringiensis var.kurstaki insect control protein. Bio/Technology, 7:1265-1269
    Delbreil B., Guerche P. and Jullien M.1993. Agrobacterium-mediated transformation of Asparagus officinalis L. Long-term embryogenic calls and regeneration of transgenic plants Plants Cell Reports. 12:129-132
    De Maagd RA., Bosch D.and Stiekema W.1999. Bacillus thuringiensis toxin-mediated insect resistant in plants.Trends in Plant Science, 4(1) :9-13
    Deng W., Chen L., Liang X., et al.1999. VirEl is a specific molecular chaperone for the export sing-stranded-DNA-binding protein VirE2 in Agrobacterium. Mol. Microbiol. 31(6) :1795-1807
    Deng W. Y., Chan L. H., Wood D. W., et al .1998. Agrobacterium VirD2 Protein interacts with plant host cyclophilins. Proc. Natl Acad. Sci: USA. 95(2) :7040-7045
    Dong J., Teng W., Buchholz W. G.,et al.1996. Agrobacterium-mediated transformatim of Javanica rice. Molecular Breeding,2 :267-276
    Donson J., Gunn H. V, Woolston C., et al.1988. Agrobacterium-mediated infectivty of cloned digitania streak Virus DNA. Virology. 162:248-250
    Elkonin LA. .Lopushanskaya R.F. and Pakhomova N.V..1995. Initiation and maintenance of friable, embryogenic callus of sorghum (sorghum bicolor (L.) Moench) by amino acids. Madica,40:153-157
    Elkonin LA. and Pakhomova N.V. 2000. Influence of nitrogen and phosphorus on induction embryogenic callus of sorghum. Plant Cell,Tissue and Organ Culture, 61:115-123
    Ellar DJ.1989. Pathogenicity determinants of entomapatho-genic bacteria. Proc 5th Int Colloguimon Invertebrate Pathology and Microbial Control, Adelaide, Australia, 20-24 August
    Emani C.,Similkumar G.and Rathore K.S.2002. Transgene silencing and reactivation in sorghum. Plant Science,162:181-192.
    Enriquez O. G. A., Vazquez P.R.I., Prieto S. D.L.,et al.1998. Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated. transformation. Planta,206(1) :20-27
    Fast P.G.1981. The crystal toxin of Bacillus thuningiensis . In Microbial Control of Pests and Plant Dieases 1970-1980 (Eds.H.D.Burges),pp.221-248, Academic Press, London
    Feng X., Shao Q and Jiang X.1986. Transformation of the monocot Disoscorea opposita using Agrobacterium tumefaciens. Genetic Manipulation Crops Newsl.2:52-59
    Finnegan J. and D. McElroy 1994. Transgenic inactivation: Plants fight back! Bio/technology, 12: 883-888
    Fischhoff DA., Bowdish K.S., Perlak FJ.,et al.1987. Insect tolerant transgenic tomato
    
    plants.Bio/technology, 5: 807-813
    Fred S.B.,Bruce G.H.and Roy C.F.2000. Safety and Advantages of Bacillus thuringiensis-Protected Plants to Control Insect Pests..Regulatory Toxicology and Pharmacology ,32: 156-173
    Fullaer K. J., Lara J. C. and Nester E. W. 1996. Pilus assembly by Agrobacterium T-DNA transfer genes.Science. 273:1107-1109
    Gelvin S. B. 1998. Agrobacterium VirE2 protein can form a complex T strands in the plant cytoplasm. J.Bacteriol. 180(16) :4300-4302
    Gendy C., Sene M., Van Le B., et al. 1996. Somatic embryogenesis and plant regeneration in Sorghum bicolor(L.) Moench. Plant Cell Reports, 15: 900-904
    George L.and Eapen S.1989. Callus growth and plant regeneration in some Indian cultivars of sorghum.Current science,58:308-310
    Ghareyazie B., Alinia F., Menguito C.A., Rubia Palma J.M., Liwanag E.A., Cohen M.B., Kuush G.S., Bennett J. 1997. Enhanced resistance to two stem borers in an aromatic rice cotaining a synthetic cryIA(b) gene. Molecular Breeding, 3: 401-414
    Gill S.S., Cowles E.A.and Pietrantonio P.V.1992. The mode of action of Bacillus thuringiensis endotoxins.Annu.Rev.Entomol., 37: 615-636
    Godwin I., Todd G., Ford-Lloyd B., et al.1991. The effects of acetosyringone and PH on Agrobacterium-mediated transformation vary according to plant species. Plant cell Reports.9:671-675
    Godwin I. and Chickwamba R. 1994. Transformation grain sorghum (Sorghum bicolor) Plants via Agrobacterium. In:R.J.Henry and J.A.Ronald(Ed.),Improvement of Cereal Quality by Genetic Engineering, Plerum Press .New York.,pp.47-53.
    Gould J., Devey M. and Hasegawa O. 1991. Transformation of Zea mays L. using Agrobactium tumefaciens and the shoot apex.Plant Physiol.,95:426-434
    Gould J., Ulian E. and Smith R. 1993 .Transformation of petunia and corn plants(Petunia hybrida and Zea mays) using Agrobacterium tumefaciens and the shoot apex. Biotechnol Agricult.For.,23:302-314
    Graves A. C. F. And Goldman S.L. 1987. Agrobacterium tumefnciens-mediated transformtion of the monocot genus Glodidusi detection of expression of T-DNA-encoded genes. J. Bacteriol.169:1745-1746
    Grimsley N., Hohn T., Davis J. W.,et al. 1987. Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature.325:177-179
    Gubba S., Xie Y. H. and Das A. 1995. Regulation of Agrobacterium tumefaciens virulence gene expression :isolation of a mutation that restores virGD52E function. Molecular Plant-Microbe Interactions.8(5) :788-791
    Guo G. Q., Maiwald F., Lorenzen P., et al.1998. Factors influencing T-DNA transfer into wheat and barley cells by Agrobacterium tumefaciens. Cereal Research Communications.26(1) :15-22
    Hagio T. 1987. Callus formation from immature embryo ,mature seed and shoot segment of sorghum.Sorghum Newsletter,30:92-94
    Hagio T., Blowers AX)., and Earle E.D.1991. Stable transformation of sorghum cell culture after bombardment with DNA-coated microprojectiles.Plant Cell Report, 10:260-264
    Hamilton C. M., Frary A., Lewis C., et al. 1996. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl. Acad. Sci. USA, 93:9975-9979
    Hamilton C. M.1997. A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene,200:107-116
    Hannay C.L.1953. Crystalline inclusions in aerobic spore-forming bacteria .Nature. 172: 1004
    Hannay C.L.and Fitz-James P. 1955. The protein crystals of Berliner. Can. J. Microbiol., 1:674-710
    Hansen G., Das A. and Chilton M. D.1994. Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc.Natl. Acad. Sci. USA.91:7603-7607
    Hansen G. and Chilton M. D. 1996. "Agrolistic" transformation of plant cells: Integration of T-strands
    
    generated in planta. Proc. Natl. Acad . Sci. USA,93:14978-14983
    Hansen G., Schillito R. D.and Chilton M.D.1997. T-strand integration in maize protoplasts after co-delivery of a T-DNA substrate and virulence genes. Proc. Natl. Acad. Sci. USA.94:11726-11730
    Hansen G.2000 Evidence for Agrobacterium-induced apoptosis in maize cells. Molecular Plant-Microbe Interactions, 13(6) : 649-657
    Heidi F. 1997. Kaeppler and Jeffrey F. Pedersen. Evaluation of 41 elite and exotic inbred Sorghum genotypes for high quality callus production. Plant Cell, Tissue and Organ Culture, 48: 71-75
    Henry T N. 1996. Use of biotechnology in sorghum drought resistance breeding. In: Proceedings of the international conference on genetic improvement of sorghum and pearl millet, Lubbock , Texas, pp.241-249
    Hemalsteens J. R., Thia-Toong L., Schall J. ,et al.1984. An Agrobacterium-tranformed cell culture from the monocot Asparagus officinalis. EMBO J. 13:3039-3041
    Hiei Y.,Ohta S., Komaari T., et al. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J., 6:271-282
    Hiei Y., Komari T. and Kubo T.1997. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol.Biol.,35:205-218
    Hilbeck A., Baumgartner M.,Fried P.M., et al.1998. Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla cornea(Neuroptera:Chrysopidae). Environmental Entomology, 27(2) :481-487
    Hilder YA., Gatehouse A.M.R., Sheerman S.E.,et al.1987. A novel mechanism of insect resistance engineered into tobacco. Nature, 300:160-163
    Hilder VA. & Boulter D.1999. Genetic engineering of crop plants for insect resistance-a critical review.Crop Protection,18:177-191
    Hofte Rand Whiteley H.R.1989. Insecticidal crystal proteins of Bacillus tyhuringiensis. Microbio.Rev.,(53) :242-255
    Hooykaas P. J. J. and Schilperoort R. A. 1992. Agrobacterium and plant genetic engineering. Plant Mol.Biol. 19:15-38
    Hooykaas P. J. J. and Beijersbergan A. G. M.1994. The virulence system of Agrobacterium tumefaciens. Annu Rev Phytopathol. 32:157-179
    Iannacone R., Grieco P.D. and Cellini F. 1997. Specific sequence modification of a cry3B endotoxin gene result in high levels of expression and insect resistance. Plant Mol. Biol., 34:485-496
    Iyer L.M.,Kumpatla S.P.,Chandrasekharan M.B.,et al.2000. Transgene silencing in monocots. Plant mol.Biol.,43:323-346
    Ishida Y., Sslto H., Ohta S., et al.1996. High efficiency transformation of maize(Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol., 14(6) :745-750
    James C. 2000. Global review of commercialized transgenic crops:2000. ISAAA Briefs:No.21-2000
    James C.2001. Global review of commercialized transgenic crops:2000. ISAAA Briefs:No.23-2001
    Judith B. R., James M. D. and Norman S. 1986. Anther Culture of Sorghum bicolor(L.) Moench : II. Pollen development in vivo and in vitro. Plant Cell Tissue Organ Culture, 6:23-31
    Kaeppler H. F. and Jeffrey F. Pedersen. 1997. Evaluation of 41 elite and exotic inbred Sorghum genotypes for high quality callus production. Plant Cell, Tissue and Organ Culture, 48: 71-75
    Kane E. J., A J. 1992. Wilson and P.S. Chourey. Mitochondrial genome vaiability in Sorghum cell culture protoclones. Theor Appl .Genet, 83:799-806
    Konowicz A K., Casas A.M., and Tomes D.T. 1995 New vistas are opened for sorghum improvement by genetic transformation. African Crop Sci J,, 3:171-180
    Kozeil M.G., Carozzi N.B., Currier T.C., et al .1936. The insecticidal crystal proteins of Bacillus thuringiensis: past, present and further uses. Biotechnol. GenetEngin.Rev., 11:171-228
    Koziel M.G., Beland G.L., Bowman C.,et al.1993. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology, 11: 194-200
    
    
    Kuehnle A. R. and Sugii N.1991. Induction of Tumors in Anthurium and raeanum by Agrobacterium tumefaciens. Hertscience, 26(10) :1325-1328
    Kumaravadivel N.and Rangasamy S. R. S..1994. Plant regeneration from sorghum anther cultures and field evaluation of progeny. Plant Cell Reports, 13:286-290
    Kumpatla S. P., Teng W., Buchholz W. C.,ey al.1997. Epigenetic transcriptional silencing and 5-azacytidine-mediated reactivation of a complex transgene in rice. Plant Physiol. 115:361-373.
    Kumpatla S. P.and Hall T. C.1998. Recurrent onset of epigeneric silencing in rice harboring multi-copy transgene. Plant J. 14:129-135
    Kuruvinashetti M.S.,Patil V.M.,Bhat S.,et al.1998. High-frequency plant regeneration from embryogenic callus culture in genus sorghum.Indian Journal of Agricul. Sci.,68(1) :27-28
    Lee L. Y., Gelvin S. B. and Kado C. I.1999. pSa causes oncogenic suppression of Agrobacterium by inhibiting VirE2 protein export. J. Bacterial. 181(1) : 186-196
    Lee S. H., Shon Y. G., Lee S. L., et al. 1999. Cultivar variability in the Agrobacterium-rice cell interaction and plant regeneration. Physiol. Plantarum. 107:338-345
    Leuhrsen K.R.and Walbot V.1990. Insertion of Mul elements in the first intron of Adh1-s gene of maize result in novel RNA processing events. The Plant cell, 2:1225-1238
    Li J., Carroll J.and Ellar D.J.1991. Crystal structure of insecticidol δ-endotoxin from Bacillus thuringiensis at 2. 5A resolution. Nature, 353: 815-821.
    Lin J.J., Assad-Garcia N. , and Kuo J. 1995. Plant hormone effect of antibiotics on the transformation efficiency of plant tissue by Agrobacterium twnefaciens cells. Plant Sci. ,109:171-177
    Liu Y. G., Shirano Y., Fukaki H., et al .1999. Complementation of mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc. Natl. Acad. Sci. USA.96: 6535-6540
    Losey J.E., Rayor L.S.and Carter M.E.1999. Transgenic pollen harms monarch larvae. Nature, 399:214
    Lynch P.T., Jones J., Blackhall N.W.,et al.1995. The phenotypic characteristics of R2 generation transgenic rice plants under field and glasshouse condition. Euphytica, 85:395-401
    Ma H.,Gu M.and Liang G. 1987. Plant regeneration from cultured immature embryoes of sorghum bicolor(L.) Moench. Theo.and Appl.genetics,73:389-394
    Manthanvan S., Sudha P.M. and Pechimuthu S.M.1989. Eeffect of Bacillus thuringiensis on the midgut cells of Bombyx mori larvae:a histopathological and histochemical study. J.Inver.Pathol., 53: 217-227
    Maqbool S.B., Husana T., Riazuddin S., et al. 1998. Effective control of yellow stem borer and rice leaf folder in transgenic rice india varieties Basmati 370 and M7 using the novel δ-endotoxin cry2A Bacillus thuringiensis gene. Mol. Breed., 4:501-507
    Masteller V.J. and Holden D.J. 1970. The growth of and organ formation from callus tissue of sorghum.Plant Physiology, 45: 362-364
    McBride K.E., Svab Z., Schaaf D.J., et al.1995. Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/technol, 13:362-365
    Meyer P.1995. Understating and controlling transgene expression. Trends in Biotechnology, 13:332-337
    Mooney PA., Goodwin P.B., Dennis E. S. ,et al.1991. Agrobacterium tunefaciens-gene transfer into wheat tissues .Plant Cell Tissus and Organ Culture. 25:209-218
    Murry E.E., Rochleau T.R., Eberle M., et al. 1991. Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts. Plant Mol.Biol.,16:1035-1060
    Murty U.R.and cocking E.C.1987. Studies on callus and plant regeneration in sorghum.Sorghum Newsletter,30:12-13
    Mythili P. K., N.Seetharama and V. D. Reddy. 1999. Plant regeneration from embryogenic cell suspension cultures of wild sorghum. Plant Cell Reports, 18:424-428
    Nahdi S. and de Wet J.MJ.1995. In vitro regeneration of sorghum bicolor lines from shoot apexes. Inter.Sorghum and Millets Newsl.,36:88-90
    
    
    Nguyen T.V., Godwin I.D., Able J.A. and Gray S.J. 1998. Effect of growth regulators on embryogenic callus formation and growth in vitro of grain sorghum. Inter. Sorghum and Millets Newsl.,39:88-90
    Mam J., Mysore K. S.,Zhang C., et al.1999. Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium. Mol. Gen. Genet. 26(3) :429-438
    Nayak P., Basu D., Das S.,etal.1997. Transgenic elite indica rice plants expressing CryIAc delta-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer(scripophaga incertulas). Proc. Nalt. Acad. Sci. USA, 94:2111-2116
    Norris J.R.1971. The protein crystal toxin of Bacillus thuningiensis: biosynthesis and physical structure. In Microbial Control of Inserts and Mites (Eds.H.D.Burges and N.W.Hussey),pp.229-246, Academic Press, London
    Oerke E.C., Dkhne H.W., Schonbeck F., et al.1994. Crop production and crop protection: Estimated Loses in Major Food and Dash Crops. Elsevier, Amsterdam
    Ou-Lee,Tyrgeon R.,Wu R.,et al. 1986. Expressing of a foreign gene linked to either a plant-virus or a Drosophila promoter,after electroporation of protoplasts of rice,wheat,and sorghum. Proc Natl Acad Sci USA, 83:6815-6819
    Park S. H., Pinson S. R. M. and Smith R. H. 1996. T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices. Plant Mol. Biol.,32:1135-1148
    Pawlowski W. P. and Somers D. A. 1998a Trangenic DNA intrgrated into the oat genome is frequently interspersed by host DNA. Proc. Natl. Acad. Sci. USA, 95:12106-12110.
    Pawlowski W. D., Torbert K. A., Rines H. W. ,et al. 1998b. Irregular patterns of transgene silencing in allohexaploid oat Plant Mol. Biol. 38:597-607
    Peferoen M. 1997. Progress and prospects for field use of Bt genes in crops.Trends in Biotechnology, 15:173-177
    Perl A.,Lotan O.,Abu-Abied M.,et al. 1996. Establishment of an Agrobacterium-inediated transformation system for grape(Vitis vinifera L.):the role of antioxidants during grape-Agrobacterium interactions. Nature Biotech, 14:624-628
    Perlak F.J., Deaton R.W., Armstrong T.A., et al.1990. Insect resistant cotton plants. Bio/Technology,8:939-943
    Perlak F.J., Fuchs R.L., Dean DA., et al.1991. Modification of the coding sequence enhances plant expressing of insect control protein genes. Proc.Natl.Acad.Sci.USA,88:3324-3328
    Perlak F.J., Stone T.B., Muskoof Y.M., et al.1993. Genetically improved potatoes: proection from damage by Colorado potato beetles. Plant Mol. Biol., 22;313-321
    Pierpoint W.S.and Shewry P.R.(eds).1996. Genetic engineering of crop plants for resistance to pests and diseases. British crop protection council.pp8-15
    Prinsen E., Bytebier B., Hernalsteens J. P., et al.1990. Functional expression of Agrobaterium tumefaciens T-DNA one-genes in Asparagus Crown gall tissues. Plant Cell Physiol.31(1) :69-75
    Pu X.A. and Goodman R.N.1992. Induction of necrogenesis by Agrobacterium tumefaciens on grape explants-Physiol. Mol. Plant Pathol.,41:241-254
    Ranier D.M., Bottino P., Gordon M.P. ,et al. 1990. Agrobacterium-mediated transformation of rice(Oryza sativa L.). Bio/technology. 8:33-38
    Rashid H., Yokoi S., Toriyama K.,et al.1996. Transgenic Plant production mediated by Agrobacterium in Indica rice. Plant Cell Reports, 15:727-730
    Radius C. 1996. Progress towardstransgenic sorghum. In:Foale M A.(Ed.),Proceedings of the third Australian sorghum conference, Australian Institute of Agrocultural Science (ALAS) Occasional Publication no.93 Australian,,pp.409-414
    Rogers H.J.and Parkes I.M.1993. Transgenic plants and me environment J. Of Experimental Biology, 46:467-488
    Rueb S. and Hensgens L.A.M. 1989. A improved histochemical staining for β-D-glucuronidase activity in monocotyledonous plants. Rice Genet. Newsl. 6:168-169
    
    
    Sairam R. V., Seetharama N.,.Dev P. S i, et al. 1999. Culture and regeneration of mesophyll-derived protoplasts of sorghum [sorghum bicolor(L.) Moench]. Plant Cell Reports, 18:972-977
    Sairam R.V.,N. Seetharama,Dev P.S.S. et al. 2000. Plant regeneration from scutella of immature embryos of diverse sorghum gentypes. Cereal Research Communication , 28(3) : 279-285
    Schafer W., Gorz A. and Kahl G.1987. T-DNA integration and expression in a monocot crop plant after induction of Agrobacteriuml. Nature,327:529-532
    Schlappi M. and hohn B.1992. Competence of immature maize embryo for Agrobacterium-mediated gene transfer. The Plant Cell, 4:7-16
    Schnepf H.E. and Whiteley H.R.1981. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc.Natl.Acad.Sci.USA, T8: 2893-2897
    Schuler T.H., Poppy G.Y., Kerry B.R.,et al. 1998. Insect-resistant transgenic plants. Trends in Biotechnology, 16:168-175
    Seetharama N.V. Sairam R.V.and Rani T.S.2000. Regeneration of sorghum from shoot tip cultures and field performance of the progeny.Plant Cell,Tissue and Organ Culture,61:169-173
    Shen W., Escudero J., Schlappi M., et al.1993. T-DNA transfer to maize cells: histochemical investigation of β-glucuronidase activity in maize tissues. Proc. Natl. Acad. Sci. USA, 90:1488-1492
    Shi Y., Wang M.B., Powell K.S., et al.1994. Use of the rice sucrose synthase-1 promoter to direct phloem-specific expression of beta-glucuronidase and snowdrop lectin genes in transgenic tobacco plants. J.Exp.Biol., 45:623-631
    Smith R.H. and S.Bhaskaran. 1988. Sorghum cell culture: somaclonal variation/screening.Iowa State Journal of Research, 5:571-585
    Smith R. H. and Hood E. E. 1995. Agrobacterium tumefaciens transformation of monocotyledons. Crop Science. 35(2) :301-309
    Snow A.A.and Moran Palma P. 1995. Ecological risks of cultivating transgenic plants. Corvallis(OR):US Environmental Protection Agency
    Stachel S. E., Messens E., Montagu M. V. ,et al.1985. Identification of the signal molecules produced by wounded plant cell that activate T-DNA transfer in Agrobacterium tumefaciens. Nature,318:624-629
    Stewart C.N., Adang M.J., All J.N., et al. 1996. Genetic transformation , recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiol., 112:121-129
    Stoger E., Williams S., Keen D. ,et al.1998. Molecular characteristics of transgenic wheat and the effect on transgene expression. Transgenic Res.7:463-471
    Sundberg C., Meek L., Carroll K., et al. 1996. VirE1 Protein mediates export of the single-stranded DNA-binding protein VirE2 from Agrobacterium tumefaciens into plant cells. J. Bacteriol, 178(4) :1207-1212
    Sundberg C. D. and Rean W.1999. The Agrobacterium tumefaciens chaperone-like protein, VirE1, interacts with VirE2 at domains reguired for single-stranded DNA binding and cooperative interaction. J. Bacteriol. 181 (21 ):6850-6855
    Suseelan K. N., Bhagwat A., Mathews H.,et al. 1987. Agrobacterium tumefaciens-induced tumour formation on sone tropical dicot and monocot plants. Current Sci.56:888-889
    Tailor R., Tippect J., Gibb G., et al.1992. Indentification and characteization of a novel Bacillus thuringiensis δ-endotoxin entomocidal to coleopteran and lepidopteran larvae .Mol.Microbiol.,6(9) :1211-1217
    Tae-Seok K. 1995. Transformation of sorghum bicolor L.In:19th biennal grain sorghum research & utilization conference :Sorghum journey to success,Lubbock, Texas, pp.35
    Taylor C.B.1997. comprehending cosuppression. The Plant Cell, 9:1245-1249
    Tingay S., Mcelroy D., Kalla R., et al.1997. Agrobacterium tumefaciens-mediated barley transformation.Plant J.,11(6) :1369-1376
    Tu J., Datta K., Alam M.F., Fan Y., khush g.S.,and Datta S.K. 1998. Expression and function of a hybrid
    
    
    Bt toxin gene in transgenic rice conferring resistance to insect pest. Plant Biotechnology. 15(4) : 195-203
    Vaeck M., Reynaerts A., Hofte H.. et al.1987. Transgenic Plants protected from insect attack .Nature. 328:33-37.
    Van Lijsebetens M., Vanderhacghen R.and Montagu M.V.1991. Insertional mutagenesis in Arabidopsis thaliana:isolation of a T-DNA linked mutation that alters leaf morphology. Theor.Appl.Genet.. 81:277-284
    Van Slogteren G. M. S. H., Hooykass P. J. J. and Schilperoor B.A.1984. Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens. Nature, 311: 763-764
    Vergunst A.C., Jansen L. E.T. and Hooykaas P.J.J.1998. Site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase. Nucleic Acids Res.,26(11) :2729-2734
    Von Tersch M.A.,Slatin S.L., Kulesza C.A. ,et al.1994. Membrane-permeabilizing activities of Bacillus thuringiensis coleopteran-active toxin Cry IIIBz and Cry III Bz domain I peptide. App. Environ. Microbiol, 60:3711-3717.
    Weiser J.1986. Impact of Bacillus thuringiensis on applied entomology in eastern Europe and in the Soviet Union. In Miteilungen aus der Biologischen Bundesanstalt fur Land-Und Forstwirtschsft Berlin-Dahlem (Eds. A. Krieg and A.M. Huger), Heft 233, 9937-50, Paul Parey, Berlin
    Wen F.S., Sorensen E. L.,Barnett F.L,et al. 1991. Callus induction and plant regeneration from anther and inflorescence culture of sorghum. Euphytica, 52: 177-181
    Wenck A., Coako M., Kanevski 1. , et al.1997. Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol. Biol.34:913-922
    Wu S.J.and Dean D.H.1996. Functional significance of loops in the receptor binding domain of Bacillus thuringiensis CryIIIA δ-endotoxin.J.Mol.Biol.,255:628-640
    Yang L. 1995 A new molecular breeding approach for direct transfer to exotic DNA into sorghum. In: 19Th biennal grain sorghum research & utilization conference :Sorghum journey to success,Lubbock,Texas, pp.36-38
    Yang Y. W. , Newton R. J. and Miller F.R.. 1990. Salinity tolerance in Sorghum. II. Cell culture response to sodium chloride in S.bicolor and S. Halepense. Crop Science, 30(7-8) :781-785
    Ye G.Y., Shu Q.Y., Yao H.W., et al.2001. Field evaluation of resistance of transgenic rice containing a synthetic cry1Ab gene from Bacillus thwingiensis Berliner to two stem borers. Entomological Society of Averica, 94(1) :271-276
    Zambryski P. C.1992. Chronicles from the Agrobacterium-plant cell DNA transfer story. Annu Rev. Plant Physiol. Plant Mol. Biol. 43:465-490
    Zhang J., Xu R. J., Elliott M. C., et al.1997. Agrobocterium-mediated transformation of elite indica and japonica rice cultivars.Mol. Biotechnol.,8(3) :223-231
    Zhao Z., Cai T., Tagliani L., et al.2000 Agrobacterium-mediated sorghum transformation. Plant Mol. Biol.,44:789-798
    Zhu H.,Muthukrishana S., Krishnaveni S., et al. 1998. Biolistic transformation of sorghum using a rice chitinase gene. J Genet Breed, 52:243-252
    Zupan J. R. and Zambryski P. C. 1995. Transfer of T-DNA from Agrobacterium to the Plant cell. Plant Physiol., 107 Kononowicz A.K

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700