基于层层自组装的纳米碳管柔性应变传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来结构性建筑大量增加,提高这些建筑的安全检测水平十分重要。计算机实时评估系统可以大大推进桥梁的健康检测水平,而由大量传感器组成的传感网络则是建立该系统的基础。能适应外界环境变化并且可以安装在不平整表面上的柔性应变传感器是未来发展的趋势。其中碳纳米管薄膜传感器由于具有优异的性能而成为研究热点,目前已有不少相关报道。但是,基于柔性基底的碳纳米管薄膜应变传感器的相关研究主要集中于国外,而且大多数研究针对的是刚性基底。并且现有的碳纳米管应变薄膜研究,大多未考虑薄膜对工作环境的适用性。
     本文设计并制作了一种用于结构健康监测的柔性碳纳米管薄膜应变传感器,对传感器敏感元碳纳米管薄膜的性能进行了探讨,对应变传感器的应变响应性能和稳定性能进行了研究。
     利用层层自组装(Layer-by-layer, LBL)方法在柔性基底聚乙烯膜上制备了单壁碳纳米管网状薄膜,并对其进行了SEM、AFM薄膜表面形貌表征。测试了薄膜电性能,探讨了碳纳米管薄膜的导电机理,并分析了关键工艺因素对薄膜电性能的影响以优化LBL工艺。试验表明碳纳米管薄膜有良好的电导性,12层薄膜的电阻率为1.47×10-9M?·m;薄膜的电阻随着层数的增加呈指数态下降,电阻率越来越低;改变PDDA(poly (dimethyldiallylammonium chloride)浓度或碳纳米管浓度亦对薄膜导电性能有较大影响。测试了薄膜透光性。
     采用层层自组装碳纳米管薄膜及微细加工工艺,在柔性衬底上制备了应变传感器。该传感器通过输出薄膜电阻反映应变大小。测试了器件对压应变和拉伸应变的不同响应情况,器件对应变呈现较好的敏感性、快速响应特性、线性响应和可恢复性,灵敏度为4.25。研究了湿度和光照等因素对器件信号的影响,试验表明添加防护层能有效减少外界湿度和光照因素影响,传感器稳定性明显提高。探讨了应变传感机理及外界因素的影响机制。该传感器由于在柔性基底上制作,可用于桥梁等结构设施中弯曲表面的应力应变检测。
Recently lots of bridges and tunnels are being developed, and the security evaluating for these structures is very important. Computer in-time evaluating system has many advantages at this field, the basic of which is Sensor network system. Therefore, flexible strain sensors being able to endure the environmental changes and to be used on curved surfaces become the development trend. And sensors based on CNT thin films become a hot subject branch because of their excellent properties, which have been studied by many researchers. But related researches are mostly carried out by foreigners, and most of those researches focus on rigid substrate. And little studies is reported to analyze the applicability of CNT thin film strain sensor in different environment.
     This essay designed and manufactured a kind of strain sensor that is used for structure health monitoring and based on single-walled carbon nanotube network thin films deposited on flexible polyethytlene film with layer-by-layer self-assemble method. And both the films and the sensors were characterized.
     SWNT network thin films were developed on flexible substrate PET with layer-by-layer (LBL) self-assembly. Then the films were characterized by SEM and AFM and tested by electricity measuring devices. The mechanism of film conductivity is analyzed, and the key process factors are optimized. The experimental data show the CNT films are with good electric conductivity property, and the resistivity of CNT film of 12 layers is 1.47× 10-9M?·m. The resistance of the films will decay exponentially with the increase of layers. The affect of changing the concentration of PDDA(poly (dimethyldiallylammonium chloride) and SWNT was also measured. The light transmittance properties of these films were also tested.
     Strain sensors were manufactured with LBL self assembly CNT film by microelectronic process on flexible substrate. The sensors output different resistance for different strain with prompt and nearly linear response, as well as they achieve their strain sensitivity up to 4.25. The response of the sensor to tensile strain and compressive strain are all tested. Stability is evidently improved by adding protective coating on the surface of the devices, with which devices become less vulnerable to humidity and illumination. The piezoresistive effect of the CNT films and the mechanism of the affect of humidity and illumination to CNT films are discussed. These flexible sensors can be used on curved surfaces of bridges and other buildings to test stress and strain because of their flexible substrates.
引文
[1]魏保立,等.桥梁结构健康监测研究现状分析.北方交通.2008, 1(1):122-125.
    [2]杨建春,等.桥梁结构状态参数监测技术研究现状.传感器技术. 2004, 23(3):13-16.
    [3]项贻强.结构健康监测与控制发展保持强势.国际学术动态. 2007, (4):14-16.
    [4] Bergmeister K., et al. Global monitoring concepts for bridges. Structural Concrete. 2001, 2(1): 29-39, 35.
    [5] Doebling S.W., et al. Summary review of vibration-based damage identification methods. Shock Vib. Digest. 1998,30(2):91-105.
    [6] Galbreath J.H., et al. Civil structure strain monitoring with power-efficient high-speed wireless sensor networks. International Workshop for Structural Health Monitoring. Stanford CA, Sep 15-17, 2003.
    [7] Park G. Overview of piezoelectric impedance-based health monitoring and path forward. Shock and Vibration Digest. 2003, 35(6): 451-463.
    [8] Lynch J.P. The design of a wireless sensing unit for structural health monitoring. 3rd International Workshop on Structural Health Monitoring. Stanford, CA, USA, September 12-14, 2001.
    [9] Loh K.J., et al. Mechanical-electrical characterization of carbon-nantube thin films for structural monitoring applications. SPIE 13the Annual International Symposium on Smart Structures and Materials. San Diego, CA, Feb.26-Mar.2, 2006.
    [10]冯新建.纳米技术及其在化工行业中应用.新疆化工. 2008, (3)
    [11] Iijima S. Helical microtubules of graphitic carbon. Nature. 1991, 354: 56–58.
    [12] Mahar B., et al. Development of carbon nanotube-based sensors—a review. IEEE Sensors Journal. 2007, 7(2): 266-284.
    [13] Krishnan A., et al. Young’s modulus of single-walled nanotubes. Phys. Rev. B. 1998, 58(20): 14013-14019.
    [14] Siegal M.P., et al. Precise control of multiwall carbon nanotube diameters using thermal chemical vapor deposition. Appl. Phys. Lett. 2002, 80: 2171–2173.
    [15] Wildoer J.W.G., et al. Electronic structure of atomically resolved carbon nanotubes. Nature. 1998, 391: 59–62.
    [16] Avouris P. Supertubes. IEEE Spectrum. 2004, 41(8): 40–45.
    [17] LmcEuen P. Single-walled carbon nanotube electronics. IEEE Transactions on Nanotechnology. 2002, 1(1): 78-85.
    [18] Laxminarayana K. Functional nanotube-based textiles: pathway to next generation fabrics with enhanced sensing capabilities. Textile Research Journal. 2005, 75(9): 670-680.
    [19] Yu M., et al. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical Review Letters. 2000, 84(24): 5552-5555.
    [20] Tombler T.W. Fundamental electrical and electromechanical Properties of Nanotubes. Nature. 2000, 405: 769-772.
    [21] Minot E.D., et al. Tuning carbon nanotube bandgaps with strain. Phys. Rev. Lett. 2003, 90: 156401.
    [22] Semet V, et al. Reversible electromechanical characteristics of individual multiwall carbon nanotubes. Appl. Phys. Lett. 2005, 87: 223103.
    [23] Dohn S., et al. Direct measurement of resistance of multiwalled carbon nanotubes using micro four-point probes. Sensor Lett. 2005, 3: 1–4.
    [24] Yogeswaran U., Chen S. Recent Trends in the application of carbon nanotubes-polymer composite modified electrodes for biosensors:A review. Analytical Letters. 2008, 41(2): 210– 243
    [25] Peng S.J., et al. Carbon Nanotube chemical and mechanicla sensors. The 3rd InternationalWorkshop on Structural Health Monitoring. Stanfrod, CA, 2001.
    [26] Li S., et all. DNA-directed self-assembling of carbon nanotubes. J. Am. Chem. Soc. 2005, 127: 14-15.
    [27] Besteman K., et al. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 2002, 3: 727-730.
    [28] Gruner G. Carbon nanotube films for transparent and plastic electronics. J. Mater. Chem. 2006, 16: 3533-3539.
    [29] Patra M.K., et al. Nanotechnology applications for chemical and biological sensors. Defence Science Journal. 2008, 58 (5): 636-636.
    [30] Vichchulada P. Recent progress in chemical detection with single-walled carbon nanotube networks. Analyst. 2007,132 (8):719-723.
    [31] Sharma P. Recent advances in carbon nanotube-based electronics. Materials Research Bulletin. 2008, 43(10): 2517-2526.
    [32] Patwardhan J.P. NANA: A nano-scale active network architecture. ACM Journal on Emerging Technologies in Computing Systems. 2006, 2(1):1-30.
    [33] Ago H., et al. Norizontally-aligned single-walled carbon nanotubes on sapphire. Journal of Nanoscience and Nanotechnology. 2008, 8(11): 6165-6169.
    [34] Heras A. Flexible optically transparent single-walled carbon nanotube electrodes for UV-Vis absorption spectroelectrochemistry. Electrochemistry Communications. 2009, 11 (2): 442-445.
    [35] Dharap P.Z., et al. Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnology. 2004, 15: 379-382.
    [36] Li Z.P., et al. Carbon nanotbue film sensors. Advanced Materials. 2004, 16(7):640-643.
    [37] Ferrer-Anglada N., et al. Transparent and flexible carbon nanotube/polypyrrole and carbon nanotube/polyaniline PH sensors. Phys. stat. sol.(b). 2006, 243(13): 3519-3523.
    [38] Parekh B.B., et al. Improved conductivity of transparent single-wall carbon naotube thin films via stable postdepsoition functionlization. Appl.Phy.Lett. 2007, 90: 121912/1-3.
    [39] Beecher P. Ink-jet printing of carbon naotube thin film transistors. J. Appl. Phy. 2007, 102: 043710/1-7.
    [40] Andrew M.H., et al. Efficient coating of transparent and conductive carbon nantube thin films on plastic substrates. Nanotechnology. 2008, 19: 205703/1-5.
    [41] Lee S.W., et al. Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical application. J. Am. Chem. Soc. 2009, 131:671-679.
    [42] Xue W., et al. Characterization of layer-by-layer self-assembled carbon nanotube multilayer thin films. Nanotechnology. 2007, 18: 45709/1-6.
    [43] Mamedov A.A., et al. Molecular design of strong single-wallcarbon nanotube/polyelectrolyte multilayer composites. Nat.Mater. 2002, (1):190–194.
    [44] Rouse J.H., et al. Electrostatic assembly of polymer/single walled carbon nanotube multilayer films. Nano Lett. 2003, (3): 59–62.
    [45] Zhang M., et al. Electrostatic layer-by-layer assembled carbon nanotube multilayer film and its electrocatalytic activity for O2 reduction. Langmuir. 2004, 20: 8781–8785.
    [46] Allen A., et al. Flexible microdevices based on carbon nanotubes. J. Micromech. Microeng. 2006.16: 2722-2729.
    [47] Lima M.D., et al. Thin, Conductive, carbon nanotube networks over transparent substrates by electrophorestic deposition. J. Mater. Chem. 2008, 18: 776-779.
    [48] Zhang X., et al. Layer-by-layer assembly: From conventional to unconventional methods. Chemical Communications. 2007, (14): 1395-1405.
    [49] Hassler B.L., et al. Versatile bioelectronic interfaces on flexible non-conductive substrates. Biosensors and Bioelectronics. 2008, 23(10): 1481-1487
    [50] Xue W., Cui T. Electrical and electromechanical characteristics of self-assembled carbon nanotube thin films on flexible substrates [J]. Sensors and Actuators A. 2008, 145–146: 330-335.
    [51]李建波,许群.层一层自组装技术的发展与应用[J].世界科技研究与发展. 2007, 29(3):31-38.
    [52] Xue W., Cui T. A thin-film transistor based acetylcholine sensor using self-assembled carbon nanotubes and SiO2 nanoparticles. Sensors and Actuators B. 2008, 134: 981–987.
    [53] Rowell M.W., et al. Organic solar cells with carbon nanotube network electrodes. Applied Physics Letters. 2006, 88 (23) : 233506.
    [54] Matsuzaki R., et al. Wireless flexible capacitive sensor based on ultra-flexible expoxy resin for strain measurement of anutomobile tires. Sensors and Acturators A. 2007, 140: 32-42.
    [55] Sayago I., et al. Carbon nanotube networks as gas sensors for NO2 detection. Talanta. 2008, 77 (2): 758-764.
    [56] Minnikanti S., et al. Electrochemical characterization of multi-walled carbon nanotube coated electrodes for biological applications. Carbon. 2009, 47 (3): 884-893.
    [57] Kim P., et al. Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters. 2001, 87 (21):2155021-2155024.
    [58] Beecher P. Ink-jet printing of carbon naotube thin film transistors. J. Appl. Phy. 2007, 102: 043710/1-7.
    [59] Anglada N.E., et al. Synthesis and characterization of carbon nanotube-conducting polyer thin film. Diamond and Related Materials. 2004, 13: 256-260.
    [60] Sun X., et al. Single-walled carbon nanotubes for flexible electronics and sensors. J. Mater. Sci. Technol. 2008, 24: 569-577.
    [61] Dharap P., et al. Nanotube film based on single-wall caron nanotubes for strain sensing. Nanotehchnology. 2004, 15: 379-382.
    [62] Chen C., et al. Mechanical and electrical evaluation of parylene-C encapsulated carbon anotube networks on a flexible substrate. Appl.Phy.Lett. 2008, 93: 0931092/1-3.
    [63] Chen C., et al. Fabrication and evaluation of carbon naotube-parylene functional composite-films. Transducers & Eurosensors '07, the 14th International Conference on Solid-Sate Sensor, Actuators and Microsystems. Lyon, France, June 10-14, 2007.
    [64] Pham G.T., et al. Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Composites: Part B. 2008, 39: 209-216 .
    [65] Jung S., et al. Flexible Strain Sensors Based On Pentacene-Carbon Nanotube Composite Thin Films. Proceedings of the 7th IEEE International Conference on Nanotechnology. Hong Kong, August 2-5, 2007.
    [66] Loh K.J., et al. Conformable single-walled carbon nanotube thin film strain sensors for structural monitoring. The 5th International Workshop on Structural Health Monitoring. Stanformd,CA, September 12-15, 2005.
    [67] Loh K.J., et al. Tailoring piezoresistive sensitivity of multilayer carbon nanotube composite strain sensors. Journal of Intelligent Materials Systems and Structures. 2008, 19:747-764.
    [68] Loh K.J, et al. Nanoengineered inductively coupled carbon nanotube wireless strain sensor. 4th World Conference on Structural Control and Monitoring. 2006.
    [69] Loh K.J., et al. Inductively coupled nanocomposite wireless strain and pH sensors. Smart Structures and Systems. 2008, 4(5): 531-548.
    [70] Loh K.J., et al. Electrical impedance analysis of carbon anotube-polyelectrolyte thin film strain sensors. Proceedings of the US-Korea Workshop on Smart Structures Technology for Steel Structures. Seoul, Korea, 2006.
    [71] Loh K.J., et al. Electrical impedance tomography of carbon nanotube composite materials. Sensors and Smart Structures Technologies for Civil, Mechanical and Aerospace Systems. 2007.
    [72] Grow R.J., et al. Piezoresistance of carbon nanotubes on deformal thin-film membranes. Apply. Phys. Lett. 2005, 86: 93104-93107.
    [73]彭倚天,等.多壁碳纳米管在不同表面功能基团自组装膜上的沉积.中国机械工程. 2005, 16(14): 1286-1288.
    [74]彭倚天,等.碳纳米管在APTES自组装膜表面沉积的研究.微细加工技术. 2006, (3): 54-57.
    [75] Liu C.H., et al. Nonliear electrical conducting behavior of carbon nantube networks in siliconelastomer. Appl. Phy. Lett. 2007, 90: 041905/ 1-3.
    [76] Luo C., et al. Flexible carbon nanotube-polymer composite films with high conductivity and superhydrophobicity made by solution process. Nano Letters. 2008, 8(12): 4454-4458.
    [77] Yu H., et al. Layer-by-layer assmebly and humidity sensitive behavior of poly(ethyleneimine) /multiwall carbon nanotube composite films. Sensor and Actuators B. 2006, 119: 512-515.
    [78] Xiao L., et al. Flexible, stretchable,transparent carbon nanotube thin film loudspeakers. Nano Letters. 2008, 8(12): 4359-4545.
    [79]秦霞,等.层层自组装制备基于多壁碳纳米管的胆碱生物传感器.分析化学研究简报. 2006, 36(6): 827-830.
    [80] Cao C.L., et al. Temperature dependent piezoresistive effect of multi-walled carbon nanotube films. Diamond and related materials. 2007, 16(2):388-392
    [81]胡陈果,叶翠兰,陈杨.碳纳米管膜电阻率的测定与导电机理.重庆大学学报(自然科学版). 2005, 28(9): 112-115
    [82]曲新喜,过璧君.薄膜物理[M ].北京:电子工业出版社. 1994: 108 - 161.
    [83]杨帮朝,王文生.薄膜与物理技术[M ].成都:电子科技大学出版社. 1997: 207 - 209.
    [84] Tombler T.W., et al. Reversible electromechanical characteristics of carbon nanotubes under local probe manipulation. Nature. 2000, 405: 769–772.
    [85] Wang W., et al. Piezoresistive Effect of Doped Carbon Nanotubes/cellulose Film. Chin. Phys. Lett. 2003, 20(9): 1544-1547.
    [86] Kaiser A.B., et al. Heterogeneous model for conduction in conducting polymers and carbon nanotubes. Synthetic Metals. 2001, 117(1-3):67-73.
    [87] Yoacobson B.T., et al. Nanomechanics of Carbon Tubes: Instabilities Beyound Linear Response. Phys. rew. Lett. 1996, 76(14): 2511-2514.
    [88] Stone A.J., Wales D.J. Theoretical Studies of Icosahedral C60 and Some Related Structures. Chem. Phys. Lett. 1986, 128(5): 501-503.
    [89] Yacobson B.J. Mechanical Relaxation and "Intramolecular Plasticity" in Carbon Nanotubes. Appl. Phys. lett. 1998, 72(8): 918-920.
    [90]王万录,王永田,廖克俊,等.应力诱导碳纳米管电阻的变化.微纳电子技术. 2003, (7/8): 514- 516.
    [91]吴子华,王万录,廖克俊,等.多壁碳纳米管膜湿敏特性的研究.物理学报. 2004, 53(10): 3462 -3466.
    [92]胡陈果,叶翠兰,陈杨.碳纳米管膜电阻率的测定与导电机理.重庆大学学报. 2005, 28(9): 112-115.
    [93]吴子华,王万录,廖克俊,等.多壁碳纳米管膜湿敏特性的研究.物理学报. 2004, 53(10): 3462-3466.
    [94] Lee S. W., et al. Layer-by-Layer Assembly of All Carbon Nanotube Ultrathin Films for Electrochemical Applications. J. Am. Chem. Soc. 2009, 131(2): 671-679.
    [95] Lvov Y., et al. Non-linear optical effects in layer-by-layer alternate films of polycations and an azobenzene-containing polyanion. Thin Solid Films. 1997, 300:107-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700