岱海与达里诺尔湖重金属的环境地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然水是一个包括多种无机物和有机物的复杂的多相电解质系统。重金属作为这个系统的组分,其化学行为必然要受到整个系统的影响。湖泊沉积物中重金属污染是世界各国面临的环境问题之一。重金属是自然界中广泛存在的物质之一,可作为水体污染的指示剂,具有反应水—沉积物系统状况的意义,直接和间接地威胁着“自然—经济—社会”这一复合生态系统。因此,对湖泊沉积物中重金属进行环境风险评价是判识重金属对生态环境的影响具有重要的现实意义。
     本文以中国北方的岱海和达里诺尔为研究对象,以2个湖泊沉积物中重金属的形态分析为基础,系统开展了不同地质背景、不同水质类型湖泊沉积物中重金属赋存形态、AVS与SEM含量及分布特征的对比研究,探讨了重金属在这两个湖泊沉积物中的迁移转化规律,揭示了岱海和达里诺尔湖泊沉积物中重金属形态分布特征与生物有效性的关系,利用基于重金属总量、形态学和ΣSEM/AVS比值法等评价方法,预测和判识了岱海和达里诺尔沉积物中重金属污染可能存在的潜在危害性,得出如下主要结论:
     1.研究表明,岱海和达里诺尔湖水质类型分别为氯化物类钠组Ⅰ型水和碳酸盐类钠组Ⅰ型水。2个湖泊矿化度均从上世纪90年代末始逐渐增加,至2011年2个湖泊的氯离子和钠离子均有大幅增长,尤以岱海钙镁比例的失调须引起关注。
     2.形态分析表明,铁锰氧化物结合态是岱海沉积物Pb(占总量的43.56%)、Cd(占总量的65.25%)的主导形态,碳酸盐结合态是达里诺尔沉积物Pb(占总量的36.62%)、Cd(占总量的43.89%)的主导形态。总体上,达里诺尔沉积物中Cu、Pb、Zn、Cd的生物有效态含量高于岱海,揭示达里诺尔沉积物中4种重金属的潜在生态风险较高。2个湖泊沉积物中生物有效态重金属的主导形态体现了4种重金属元素的地球化学特性的差异性及2个湖泊水质类型和演化阶段的差异性。
     3.研究表明,2个湖泊沉积物中SEM/AVS比值的平均值都大于1,都可能对底栖生物产生毒性作用。尽管岱海硫酸根的含量(170.30mg/L)远小于达里诺尔的硫酸根含量(328.28mg/L),但达里诺尔高盐度(6759.20mg/L)、高碱度(3201.20mg/L)和高pH(9.5)抑制了硫酸盐还原细菌的活性使硫酸根得以保存下来,导致达里诺尔的AVS含量远小于岱海AVS,揭示了达里诺尔沉积物中AVS对重金属的控制作用较弱。此外,岱海南岸建有火力发电厂,其排放的冷却水中含有大量硫酸根离子且岱海水中氧化还原电位较低(平均Eh为-139.27mV),导致大量AVS产生。
     4.形态分析、SEM/AVS值及多种综合评价的结果均显示,2个湖泊沉积物中Cd和Pb的潜在生态风险最大,是水环境重金属污染中优先控制的污染物。
     5.两个湖泊沉积物中重金属污染用三类评价方法评价的结果并不完全一致,基于重金属总量的评价方法(除沉积物质量基准方法)的评价结果基本一致,且岱海沉积物污染水平高于达里诺尔;基于形态的评价方法中达里诺尔沉积物污染水平高于岱海;而用SEM/AVS的评价结果相近(岱海和达里诺尔沉积物中SEM/AVS分别为1.46、1.55)。这可能与这些评价方法的自身特色、适用范围及其局限性有关,例如基于重金属总量的评价方法的缺点是基准值设定的科学性和合理性有时难以保证。因此,有必要采用多种方法进行综合评价,以便相互补充。
Natural water is a complex multiphase electrolyte system that contains a variety of inorganic and organic matter. AS heavy metals are components of this system, its chemical behavior is necessarily affected by the whole system. Heavy metals pollution in lake sediment is one of the environmental problems facing the world. As one of the widely existing in the nature, heavy metals can be the indicator of water pollution, reflect condition of water-sediment system, while threaten the complex ecosystem of "nature-economy-society" directly or indirectly. So it has important practical significance to recognize the impact of heavy metals on the ecological environment using environmental risk assessment of heavy metals in lake sediment.
     The objects of this study are sediments of Daihai Lake and Dalinuoer Lake in northern China. Based on the speciation analysis of heavy metals in both lake sediments, the speciation of heavy metals and the contents and distribution characteristics of AVS and SEM in lake sediment which have different geological background and different types of water quality are compared systematically; the transition and transform rule of heavy metals are discussed in both lake sediments; the relationship between distribution characteristics of speciation and the biological effectiveness of heavy metals in both lake sediments are revealed; being used assessment methods such as the method that is based on the total amount and speciation of heavy metals and∑SEM/AVS ratio, potential hazards of heavy metal pollution in both lake sediments are predicted and sentenced. The major conclusions are as following:
     1. The water quality type of Daihai Lake and Dalinuoer Lake is different. The former is I type water of sodium chloride class group, and the latter is I type water of sodium carbonate group. The dissolve solids of both lake have gradually increased since the beginning of the late1990s. Up until2011, the Cl" and Na+of both lake have increased significantly, and the imbalance of Ca/Mg ratio of Daihai Lake especially should be paid close attention.
     2. Speciation analysis shows that the dominant speciation of Pb (43.56%of the total) and Cd (65.25%of the total) in the sediments of Daihai Lake is iron and manganese oxides, while the dominant speciation of Pb (36.62%of the total) and Cd (43.89%of the total) in the sediments of Dalinuoer Lake is carbonates. Overall, the bio-available speciation of heavy metals (including Cu,Pb,Zn,Cd) in Dalinuoer Lake sediments is higher than those in Daihai Lake, which reveal that potential ecological risk of those four kinds of heavy metals in Dalinuoer Lake sediments is higher. The dominant speciations of those four kinds of heavy metals in the lakes not only show the difference of the geochemical features among four kinds of heavy metals, but also reveal the difference of lake water quality types and evolution stages between two lakes.
     3. Study shows that the average SEM/AVS ratio in both lake sediments are greater than1. So they would have toxic effects on benthos. Although the SO42-concentration (170.30mg/L) of Daihai Lake is far less than Dalinuoer Lake (328.28mg/L), the high salinity (6759.20mg/L), high basicity (3201.20mg/L) and high pH (9.5) of Dalinuoer Lake inhibit the activity of sulfate reducing bacteria so as to make SO4-2be preserved, which leads to the AVS concentration of Dalinuoer Lake is far less than Daihai Lake. This result reveals that the AVS content of Dalinuoer Lake sediments have weak control effects to the heavy metals. In addition, a lot of SO42-in the cooling water discharged by a coal-fired power plant built on Daihai Lake south shore and lower Eh (the average Eh is-139.27mV) of Daihai Lake result in forming a lot of AVS.
     4. The results of speciation analysis, SEM/AVS ratio and a variety of comprehensive assessment show that Cd and Pb in both lake sediments have the highest potential ecological risks and they are priority control pollutants in heavy metal pollution of watery environment.
     5. Using three different evaluation method, the evaluation result of heavy metal pollution in the sediments of tow lakes is not consistent. The evaluation results based on the evaluation method of the total amount of heavy metals (except the method of sediment quality criteria) are basically identical, and the sediment pollution level of Daihai Lake is higher than Dalinuoer Lake. Using evaluation method based on forms, the sediment pollution level of Dalinuoer Lake is higher than the Daihai Lake; Using the evaluation method of. SEM/AVS, the results are similar(SEM/AVS in Dalinuoer and Daihai Lake is1.46and1.55respectively). This may be related to the characteristics of evaluation method, the application scope and their limitations. So it is necessary to use a variety of evaluation methods comprehensively in order to complement each other.
引文
[1]Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical chemistry,1979,51(7):844-851.
    [2]Li X, Coles B J, Ramsey M H, et al. Sequential extraction of soils for multielement analysis by ICP-AES[J]. Chemical Geology,1995,124(1):109-123.
    [3]Singh K P, Mohan D, Singh V K, et al. Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India[J]. Journal of hydrology,2005,312(1):14-27.
    [4]李海燕,梅慧瑞,徐波平,王崇臣.沉积物中磷和重金属形态分析方法[A].武汉大学Proceedings of Conference on Environmental Pollution and Public Health[C]武汉大学:,2010:5.
    [5]程晓东,郭明新.河流底泥重金属不同形态的生物有效性[J].农业环境保护,2001,20(1):19-22.
    [6]Yao Z, Gao P. Heavy metal research in lacustrine sediment:a review[J]. Chinese Journal of Oceanology and Limnology,2007,25(4):444.
    [7]许东升,黄淑玲,李琦,等.水体中重金属形态分析的实验方法[J].河北北方学院学报(自然科学版),2011,2:010
    [8]宋天佑,程鹏,王杏桥.无机化学[M].高等教育出版社,2004
    [9]于瑞莲.泉州湾潮间带沉积物中重金属元素的环境地球化学研究[D].东北师范大学,2009.
    [11]曾凡萍,肖化云,周文斌.鄱阳湖流域沉积物中重金属研究及环境意义[J].江西化工,2007,2:21-23.
    [12]董丽华,李亚男,常素云,等.沉积物中重金属的形态分析及风险评价[J].天津大学学报,2009,42(12):1112-1116.
    [13]王亮,潘绣,刘恩玲,等.温州市温瑞塘河表层沉积物重金属污染及生态风险评价[J].安徽农业科学,2011,39(21):1277-1277.
    [14]陈振楼,许世远,柳林,等.上海滨岸潮滩沉积物重金属元素的空间分布与累积[J].地理学报,2000,55(6):641-651.
    [15]刘俐,熊代群,高新华,等.海河及邻近海域表层沉积物重金属污染及其分布特征[J].海洋环境科学,2006,25(2):40-44.
    [17]李然,李嘉.水环境中重金属污染研究概述[J].四川环境,1997,16(1):18-22.
    [18]陈静生.水环境化学[M].高等教育出版社,1987.
    [19]Thuy H T T, Tobschall H J, An P V. Trace element distributions in aquatic sediments of Danang-Hoian area, Vietnam[J]. Environmental Geology,2000,39(7):733-740.
    [20]陈静生,洪松,王立新,等.中国东部河流颗粒物的地球化学性质[J].地理学报,2000,55(4):417-427.
    [21]田慧娟,何江,吕昌伟,等.黄河包头段不同粒级沉积物中重金属形态分布特征[J].沉积学报,2011,29(4):776-782.
    [23]蔡金娟,史衍玺.不同腐殖酸组分对湖泊沉积物中重金属释放的影响[J].水土保持学报,2006,20(1):108-110.
    [24]张远辉,杜俊民.南海表层沉积物中主要污染物的环境背景值[J].海洋学报,2005,27(4):161-166.
    [25]黄廷林.沉积物中重金属释放动力学及试验研究.环境科学学报[J],1995,15(4):440-446
    [26]俞慎,历红波.沉积物再悬浮-重金属释放机制研究进展[J].生态环境学报,2010,19(7):1724-1731.
    [27]王新伟,何江,李朝生.黄河包头段沉积物中生物可给态重金属分布研究[J].环境科学研究,2002,15(1):20-23.
    [28]尚爱安,党志,梁重山.土壤/沉积物中微量重金属的化学萃取方法研究进展[J].农业环境保护,2001,20(4):266-269.
    [29]刘晓端,徐清,葛晓立,等.密云水库沉积物中金属元素形态分析研究[J].中国科学:D辑,2005,35(Ⅰ):288-295.
    [30]陈春霄,姜霞,战玉柱,等.太湖表层沉积物中重金属形态分布及其潜在生态风险分析[J][J].中国环境科学,2011,31(11):1842-1848.
    [31]刘恩峰,沈吉,杨丽原,等.南四湖及主要入湖河流表层沉积物重金属形态组成及污染研究[J].环境科学,2007,6.
    [32]田林锋,胡继伟,秦樊鑫,等.重金属元素在贵州红枫湖水体中的分布特征[J].中国环境科学,2011,31(3):481-489.
    [33]Muller G. Index of geoaccumulation in sediments of the Rhine River[J]. Geojournal,1969,2(3): 108-118.
    [34]Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach [J]. Water research,1980,14(8):975-1001.
    [35]贾振邦,周华,智杰,等.应用地积累指数法评价太子河沉积物中重金属污染.京大学学报(自然科学版)[J].2000,36(4):525-530
    [36]霍文毅,李全生,马锡年.胶州湾养殖海区沉积物中酸可挥发性硫的研究[J].地理科学,2001,21(2):135-139.
    [37]王增焕,林钦,李纯厚,黄洪辉,杨美兰,甘居利,蔡文贵.珠江口表层沉积物铜铅锌镉的分布与评价[J].环境科学研究,2004,(04):5-9+24.
    [38]胡国成,许振成,彭晓武,赵学敏,刘伟锋,姚玲爱,周杨,邹洁.广东长潭水库表层沉积物重金属污染特征与潜在生态风险评价研究[J].农业环境科学学报,2011,(06):1166-1171.
    [39]吴彬,臧淑英,李苗.克钦湖水体重金属分布特征及评价[J].中国农学通报,2012,28(05):289-294.
    [40]Ankley G T, Di Toro D M, Hansen D J, et al. Assessing the ecological risk of metals in sediments[J]. Environmental Toxicology and Chemistry,1996,15(12):2053-2055.
    [41]Lacey E M, King J W, Quinn J G, et al. Sediment quality in Burlington Harbor, Lake Champlain, USA[J]. Water, Air, and Soil Pollution,2001,126(1-2):97-120.
    [42]刘文新,栾兆坤,汤鸿霄.乐安江沉积物中金属污染的潜在生态风险评价[J].生态学报,1999,(02):64-69.
    [43]张鑫,周涛发,杨西飞,殷汉琴,肖正辉.河流沉积物重金属污染评价方法比较研究[J].合肥工业大学学报(自然科学版),2005,(11):1419-1423.
    [44]Jose do Patrocinio H A, de Andrade Passos E, Garcia C A B. Metals and acid volatile sulfide in sediment cores from the Sergipe River Estuary, Northeast, Brazil[J]. J. Braz. Chem. Soc,2007,18(4): 748-758.
    [45]Hammerschmidt C R, Burton G A. Measurements of acid volatile sulfide and simultaneously extracted metals are irreproducible among laboratories[J]. Environmental Toxicology and Chemistry,2010,29(7): 1453-1456.
    [46]刘金铃,冯新斌,朱伟,李仲根,尹润生.东江沉积物重金属分布特征及污染评价[J].生态学杂志,2011,(05):981-986.
    [47]柳林,许世远,陈振楼,余佳.上海滨岸带潮滩表层沉积物中重金属的空间分布与环境质量评价[J].上海地质,2000,(01):1-5.
    [48]余广彬,刘义,俞慎,李桂林.京杭大运河江南城镇段表层沉积物重金属富集水平及潜在生态风险评价[J].环境化学,2011,(11):1906-1911.
    [49]邴海健,吴艳宏,刘恩峰,羊向东.长江中下游不同湖泊沉积物中重金属污染物的累积及其潜在生态风险评价[J].湖泊科学,2010,(05):675-683.
    [50]张晓晶,李畅游,张生,史小红,李卫平.呼伦湖沉积物重金属分布特征及生态风险评价[J].农业环境科学学报,2010,(01):157-162.
    [51]尚英男,倪师军,张成江,黄艺,尹观.成都市河流表层沉积物重金属污染及潜在生态风险评价[J].生态环境,2005,(06):827-829.
    [52]何江,王新伟,李朝生,等.黄河包头段水-沉积物系统中重金属的污染特征[J].环境科学学报,2003,23(1):53-57
    [53]赵铮,姜霞,吴永贵,等.太湖沉积物酸可挥发性硫化物分布特征及重金属生物有效性评价[J].2011,31(12):2714-2721
    [54]Wolfenden S, Charnock J M, Hilton J, et al. Sulfide species as a sink for mercury in lake sediments[J]. Environmental science & technology,2005,39(17):6644-6648.
    [55]胡俊.水体沉积物中酸可挥发性硫化物(AVS)研究进展[J].2004.
    [56]Di Toro D M, Mahony J D, Hansen D J, et al. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments[J]. Environmental Science & Technology,1992,26(1):96-101.
    [57]Zago C, Giblin A E. Analysis of acid volatile sulfide and metals to predict the toxicity of Boston Harbor sediments [J]. The Biological Bulletin,1994,187(2):290-291.
    [58]宋进喜,李金成,王晓蓉,等.太湖梅梁湾沉积物中酸挥发性硫化物垂直变化特征研究[J].环境科学学报,2004,24(2):271-274.
    [59]方涛,张晓华,徐小清.东湖沉积物中酸挥发性硫化物的季节,深度分布特征研究[J].水生生物学报,2002,26(3):239-245.
    [60]文湘华,H e r b e r t E.Allen.乐安江沉积物酸可挥发硫化物含量及溶解氧对重金属释放特性的影响[J].环境科学,1997,(04):33-35+93.
    [61]李金城,宋进喜,王晓蓉.太湖五里湖区表层沉积物中酸挥发性硫化物和同步提取金属[J].湖泊科学,2004,1.
    [62]刘飞,钟少军,蒲晓强,等.胶州湾李村河口沉积物中重金属分布特征及其控制因素[J].海洋科学,2006,4.
    [63]吴丰昌,孟伟,宋永会,等.中国湖泊水环境基准的研究进展[J].环境科学学报,2008,28(12): 2385-2393.
    [64]刘芳文,颜文,黄小平,施平.珠江口沉积物中重金属及其相态分布特征[J].热带海洋学报,2003,(05):16-24.
    [65]方圣琼,胡雪峰,徐巍,巫和昕,许世远.长江口潮滩沉积物的性状对重金属累积的影响[J].环境化学,2005,(05):586-589.
    [66]滕德强,吕颂辉,郭福星,江涛.长江口及其邻近海域表层沉积物中重金属分布和潜在生态危害评价[J].海洋地质与第四纪地质,2012,(02):11-19.
    [67]何孟常,王子健,汤鸿霄.乐安江沉积物重金属污染及生态风险性评价[J].环境科学,1999,(01):8-11.
    [68]杜德文,石学法,孟宪伟,等.黄海沉积物地球化学的粒度效应[J].海洋科学进展,2003,21(1):
    78-82.
    [69]何江,李朝生,王新伟,等.黄河沉积物对Cd2+的吸附及其形态转化影响的实验研究[J].农业环境科学学报,2003,22(2):134-137.
    [70]郭军辉,殷月芬,陈发荣,等.胶州湾表层沉积物重金属污染分布特征及其生态风险评价[J].环境污染与防治,2012,34(3):13-21.
    [71]陈洁,李升峰.巢湖表层沉积物中重金属总量及形态分析[J].河南科学,2007,25(2):303-307.
    [72]赵萱.我国不同生态型湖泊沉积物有机质赋存形态及其与重金属相互作用研究[D].山东师范大学,2012.
    [73]李玉斌,冯流,刘征涛,等.中国主要淡水湖泊沉积物中重金属生态风险研究[J].环境科学与技术,2012,35(2):200-205.
    [74]刘峰,胡继伟,吴迪,等.基于形态学分析红枫湖沉积物中重金属的分布特征及污染评价[J].环境化学,2011,30(2):440-446.
    [75]齐剑英,许振成,李祥平,等.阳宗海水体中砷的形态分布特征及来源研究[J].安徽农业科学,2010(020):10789-10792.
    [76]袁旭音,陈骏,季峻峰,等.太湖沉积物和湖岸土壤的污染元素特征及环境变化效应[J].沉积学报,2002,20(3):427-434.
    [77]李晓晨,赵丽,王超.玄武湖上覆水间隙水和沉积物中的重金属分布研究[J].环境科学与技术,2008,(05):4-6+10.
    [78]彭景,李泽琴,侯家渝.地积累指数法及生态危害指数评价法在土壤重金属污染中的应用及探讨[J].广东微量元素科学,2007,14(8).
    [79]王小庆,郑乐平,孙为民.淀山湖沉积物孔隙水中重金属元素分布特征[J].中国环境科学,2004,24(4):400--404.
    [80]郑利,徐小清,金利娜.武汉东湖沉积物中重金属生物有效性研究[J].湖泊科学,2003,15(4):319-324.
    [84]吴锋,战金艳,邓祥征,等.中国湖泊富营养化影响因素研究——基于中国22个湖泊实证分析[J].生态环境学报ISTIC,2012,21(1).
    [85]陈海英,付旭峰,赵慧珍,等.岱海湿地生态环境变化的气候影响分析[J].内蒙古气象,2011(6):14-17.
    [86]毛海芳,何江,吕昌伟,等.乌梁素海和岱海沉积物有机碳的形态特征[J].环境科学,2011,32(3):658-666.
    [87]李志强.岱海湖开发利用中存在问题及对策研究[J].地下水,2011,33(2):113-115.
    [88]孙占东,姜加虎,黄群.近50年岱海流域气候与湖泊水文变化分析[J][J].水资源保护,2005,21(5):16-18.
    [89]赵斌,蔡庆华,黎道丰,等。岱海水质咸化过程中营养状况的变化。水生生物学报[J],2000,24(5):509-513.
    [90]萨茹拉,李青丰,李静,等.达里诺尔国家级自然保护区生态环境现状调查以及综合管理对策分析[J].内蒙古环境科学,2009(006):9-15.
    [91]张生,李畅游,梁喜珍,等.基于模糊综合评价法的内蒙古达里诺尔湖水环境质量评价[J].中国工程科学,2010,12(006):28-31.
    [92]王俊,安晓萍,刘宇霞,等.达里湖水体营养状况探索性分析[J].内蒙古农业科技,2009,1:48-50.
    [93]王苏民,地质,窦鸿身.中国湖泊志[M].科学出版社,1998.
    [94]赵丽囡.达里诺尔自然保护区资源状况与环境问题分析[J].科学中国人,2000(11):52-53.
    [95]韩一平.达里湖渔业资源现状调查分析[J].内蒙古水利,2007,1:45-46.
    [96]陈静生,王飞越,陈江麟.论小于631μm粒级作为水体颗粒物重金属研究介质的合理性及有关 粒级转换模型研究[J].环境科学学报,1994,14(4):419-425.
    [97]魏复盛.水和废水监测分析方法[M].中国环境科学出版社,2002.
    [98]许金树,李亮歌.海洋沉积物中有机质的测定方法[J].分析化学.1982.12(5):424-426
    [99]Filgueiras A V, Lavilla I. Bendicho C. Chemical sequential extraction for metal partitioning in environmental solid samples[J]. Journal of Environmental Monitoring,2002,4(6):823-857.
    [100]Quevauviller P, Ure A, Muntau H, et al. Improvement of analytical measurements within the BCR-programme:single and sequential extraction procedures applied to soil and sediment analysis[J]. International journal of environmental analytical chemistry,1993,51(1-4):129-134.
    [101]Ruttenberg K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments[J]. Limnology and Oceanography,1992,37(7):1460-1482.
    [102]Ajayi S O, Vanloon G W. Studies on redistribution during the analytical fractionation of metals in sediments[J]. Science of the total environment,1989,87:171-187.
    [103]Chester R, Kudoja W M, Thomas A, et al. Pollution reconnaissance in stream sediments using non-residual trace metals[J]. Environmental Pollution Series B, Chemical and Physical,1985,10(3): 213-238.
    [104]Davidson C M, Thomas R P, McVey S E, et al. Evaluation of sequential extraction procedure for the speciation of heavy metals in sediments[J]. Analytica Chimica Acta,1994,291 (3):277-286.
    [105]林玉环,郭明新,庄岩.底泥中酸性挥发硫及同步浸提金属的测定[J].环境科学学报,1997,17(3):353-358.
    [106]奚旦立,孙裕生,刘秀英.环境监测[M].高等教育出版社,2004.
    [107]周云凯,姜加虎,黄群,等.内蒙古岱海水质咸化过程分析[J].干旱区资源与环境,2008,22(12):51-55.
    [108]左其亭,马军霞,陈曦.博斯腾湖水体矿化度变化趋势及调控研究[J].水科学进展,2004,15(3):307-311
    [109]王亚俊,李宇安,王彦国.20世纪50年代以来博斯腾湖水盐变化及趋势[J][J].干旱区研究,2005,22(3):355-360.
    [110]刘进琪,王一博,程慧艳.青海湖区生态环境变化及其成因分析[J][J].干旱区资源与环境,2007,21(1):32-37.
    [111]周云凯,姜加虎,黄群.内蒙古岱海水质现状分析与评价[J].干旱区资源与环境,2006,20(6):74-77.
    [112]李种,马巍,史晓新,等.呼伦湖水位,盐度变化(1961-2002年)[J].湖泊科学,2006,18(1):13-20.
    [113]李立人,王雪冬.乌伦古湖水质现状及污染防治对策[J].干旱环境监测,2003,17(2):103-106.
    [114]阿列金,张卓元.水文化学原理[M].地质出版社,1960.
    [115]裴浩,郝璐,韩经纬.近40年内蒙古候降水变化趋势[J].应用气象学报,2012,23(5):543-550.
    [116]周国良.从水文气象角度看1998年大洪水[J].面向21世纪的科技进步与社会经济发展(上册),1999.
    [117]岱海,赵斌,蔡庆华,等.岱海水质咸化过程中若干生态因子的变化[J].
    [118]陈静生.河流水质原理及中国河流水质[M].科学出版社,2006.
    [119]周云凯,姜加虎,黄群,等.内蒙古岱海水体营养状况分析[J].干旱区地理,2006,29(1):42-46.
    [120]史为良.关于碳酸盐型湖泊达里诺尔鲫鱼大量死亡原因的探讨[J].淡水渔业,1979(5):1-4.
    [121]金章东,邹成娟,李福春,等.湖泊沉积物中元素相态的连续提取分析--以岱海为例[J].湖泊科学,2005,17(1):47-53.
    [122]赵丽囡,陈子红,韩力峰.达里诺尔湿地水化学特征与发展态势[J].内蒙古环境保护,2000,12(4):27-28.
    [123]Nguyen H L, Leermakers M, Osan J, et al. Heavy metals in Lake Balaton:water column, suspended matter, sediment and biota[J]. Science of the Total Environment,2005,340(1):213-230.
    [124]Kishe M A, Machiwa J F. Distribution of heavy metals in sediments of Mwanza Gulf of Lake Victoria, Tanzania[J]. Environment International,2003,28(7):619-625.
    [125]Perez-Cid B, Lavilla I, Bendicho C. Application of microwave extraction for partitioning of heavy metals in sewage sludge[J]. Analytica Chimica Acta,1999,378(1):201-210.
    [126]王云,魏复盛.土壤环境元素化学[M].中国环境科学出版社,1995.
    [127]刘英俊,地球化学,曹励明.元素地球化学导论[M].地质出版社,1987.
    [128]丁疆华,温琰茂,舒强.土壤环境中镉,锌形态转化的探讨[J].城市环境与城市生态,2001,14(2):47-49.
    [129]樊庆云.黄河包头段沉积物重金属的生物有效性研究[D].内蒙古大学,2008.
    [130]翁焕新,沈忠悦,陈建裕,等.沿海表层沉积物中重金属的有效结合态[J].地质科学,2002,37(2):243-252.
    [131]杨永强.珠江口及近海沉积物中重金属元素的分布、赋存形态及其潜在生态风险评价[D].中国科学院研究生院(广州地球化学研究所),2007.
    [132]黄家祥,殷勇.灌河口潮滩重金属累积特征及其对环境的意义[J].环境保护科学,2007,33(6):35-37.
    [133]钟晓兰,周生路,黄明丽,等.土壤重金属的形态分布特征及其影响因素[J].生态环境学报,2009,18(4):1266-1273.
    [134]Marchand C, Lallier-Verges E, Baltzer F, et al. Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana[J]. Marine Chemistry,2006,98(1):1-17.
    [135]何红蓼,李冰,杨红霞,等.环境样品中痕量元素的化学形态分析[J].岩矿测试,2005,24(1):51-54.
    [136]千娜,金章东,姚拓.太湖梅梁湾沉积物中重金属的赋存相态及其对污染历史的示踪[J].湖泊科学,2007,19(4):397-406.
    [137]林玉环.重金属污染及其生态效应研究工作成果文集[I].1993:94-99
    [138]高会旺,张英娟,张凯.大气污染物向海洋的输入及其生态环境效应[J].地球科学进展,2002,17(3):326-330.
    [139]夏汉平.土壤一植物系统中的镉研究进展[J].应用与环境生物学报,1997,3(3):289-298.
    [140]Rubio B, Nombela M A, Vilas F. Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain):an assessment of metal pollution[J]. Marine Pollution Bulletin,2000,40(11): 968-980.
    [141]刘培桐,王华东,潘宝林,等.岱海盆地的水文化学地理[M].北京师范人学地理系,1964.
    [142]Yamashita Y, Jaffe R. Characterizing the interactions between trace metals and dissolved organic matter using excitation-emission matrix and parallel factor analysis[J]. Environmental science & technology,2008,42(19):7374-7379.
    [143]Shuman L M.地球环境污染与保护译文集,第八集[J].科学技术文献出版社,1980:335.
    [144]Gonzalez M J, Ramos L, Hernandez L M. Distribution of trace metals in sediments and the relationship with their accumulation in earthworms[J]. International journal of environmental analytical chemistry,1994,57(2):135-150.
    [145]赵济,陈传康.中国地理[M].高等教育出版社,1999.
    [146]罗金发,孟维奇,夏增禄.土壤重金属(镉、铅、铜)化学形态的地理分异研究[J].地理研究,1998,(03):42-49.
    [147]唐阵武,程家丽,岳勇,等.武汉典型湖泊沉积物中重金属累积特征及其环境风险[J][J].湖泊科学,2009,21(1):61-68.
    [148]庄源益,戴树桂,谷文新.底质酸挥发硫化物(AVS)测定[J].中国环境监测,1995,5.
    [149]Ankley G T, Phipps G L, Leonard E N, et al. Acid-volatile sulfide as a factor mediating cadmium and nickel bioavailability in contaminated sediments[J]. Environmental Toxicology and Chemistry,1991, 10(10):1299-1307.
    [150]Allen H E, Fu G, Deng B. Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments[J]. Environmental Toxicology and Chemistry,1993,12(8):1441-1453.
    [151]Rickard D, Morse J W. Acid volatile sulfide (AVS)[J]. Marine Chemistry,2005,97(3):141-197.
    [152]Nguyen L T H, Vandegehuchte M B, van der Geest H G, et al. Evaluation of the mayfly Ephoron virgo for European sediment toxicity assessment[J]. Journal of Soils and Sediments,2012,12(5):749-757.
    [154]尹洪斌,范成新,蔡永久.太湖表层沉积物AVS与SEM分布特征及相互关系[J].湖泊科学,2008,20(5):585-590.
    [155]Besser J M, Ingersoll C G, Giesty J P. Effects of spatial and temporal variation of acid-volatile sulfide on the bioavailability of copper and zinc in freshwater sediments[J]. Environmental Toxicology and Chemistry,1996,15(3):286-293.
    [156]Garcia C A B, de Andrade Passos E, Alves J P H. Assessment of trace metals pollution in estuarine sediments using SEM-AVS and ERM-ERL predictions[J]. Environmental monitoring and assessment,2011, 181(1-4):385-397.
    [157]Yin H, Fan C. Dynamics of Reactive Sulfide and its Control on Metal Bioavailability and Toxicity in Metal-Polluted Sediments from Lake Taihu, China[J]. Archives of environmental contamination and toxicology,2011,60(4):565-575.
    [158]刘飞,邓道贵,杨威,等.巢湖表层沉积物重金属的分布特征及生物有效性[J].水土保持学报,2012,26(005):149-153.
    [159]姚志刚,鲍征宇,高璞.湖泊沉积物中重金属的环境地球化学[J].地质通报,2005,24(10):997-1001.
    [160]樊庆云,何江,薛红喜,等.包头南海湖沉积物中AVS-SEM的分布规律研究[J].农业环境科学学报,2007,26(3):910-914.
    [161]开勋,郭生武,陈志昕.7一忸 硫酸盐还原菌生长规律的研究[J].西北大学学报(自然科学版),1999,29(5).
    [162]Wijsman J W M, Middelburg J J, Herman P M J, et al. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea[J]. Marine Chemistry,2001,74(4):261-278.
    [163]王世山,韩强.临涣电厂循环冷却水处理中的pH控制[J].工业水处理,2007,27(11):68-70.
    [164]邓楚平,黄伯云,尹志民,等.硫酸亚铁成膜对HSn70-1AB铜管腐蚀行为的影响[J].湖南有色金属,2006,22(4):28-33.
    [165]卢慧恋.农村饮用水源污染因素分析及对策[J].中国环保产业,2009,2:45-47.
    [166]王海,王春霞,王子健.太湖表层沉积物中重金属的形态分析[J].环境化学,2002,21(5):
    430-435.[167]方涛,徐小清.水体沉积物中酸挥发性硫化物的研究进展[J].水生生物学报,2001,25(5):508-515.
    [168]刘峰,秦樊鑫,胡继伟,等.红枫湖沉积物中酸可挥发硫化物及重金属生物有效性[J].环境科学学报,2009,29(10):2215-2223.
    [169]郑利,徐小清.武汉东湖沉积物中酸挥发性硫化物(AVS)的深度分布及其影响因素[J].湖泊科学,2003,15(3):245-250.
    [170]Mackey A P, Hodgkinson M C. Concentrations and spatial distribution of trace metals in mangrove sediments from the Brisbane River, Australia[J]. Environmental Pollution,1995,90(2):181-186.
    [171]Howard D E, Evans R D. Acid-volatile sulfide (AVS) in a seasonally anoxic mesotrophic lake: Seasonal and spatial changes in sediment AVS[J]. Environmental toxicology and chemistry,1993,12(6): 1051-1057.
    [172]Fang T, Zhang X, Xu X. Seasonal and vertical distribution of acid volatile sulphide (AVS) in Lake Donghu sediments[J]. Acta Hydrobiologica Sinica,2002,26(3):245-251.
    [173]Middelburg J J. Organic carbon, sulphur, and iron in recent semi-euxinic sediments of Kau Bay, Indonesia[J]. Geochimica et Cosmochimica Acta,1991,55(3):815-828.
    [174]李键,郑春江.环境背景值数据手册[M].1989.
    [175]殷晋铎,么俊东,薛恩树,等.大沽排污河沉积物重金属和砷污染及生态风险性研究[J].环境工程,2004,22(1):70-72.
    [176]贾振邦,赵智杰,杨小毛.洋涌河,茅洲河和东宝河沉积物中重金属的污染及评价[J].环境化学,2001,20(3):212-219.
    [177]陈静生,周家义.中国水环境重金属研究[M].中国环境科学出版社,1992.
    [178]Macdonald D D, Carr R S, Calder F D, et al. Development and evaluation of sediment quality guidelines for Florida coastal waters[J]. Ecotoxicology,1996,5(4):253-278.
    [179]Buchman M F. NOAA screening quick reference tables[J]. NOAA HazMat report,1999,99(1).
    [180]贾振邦.淡水沉积物中重金属的毒性预测-评价酸可挥发硫(AVS)的重要作用[J].辽宁城乡环境科技,1997,(01):85-87.
    [181]陈静生,洪松,范文宏,王立新.各国水体沉积物重金属质量基准的差异及原因分析[J].环境化学,2001,(05):417-424.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700