水稻T-DNA插入突变体侧翼序列的分离与分析及控制杂合单株低育性基因Osfbox的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
创造基因功能缺失突变体是研究目的基因功能的最直接和有效的途径之一。农杆菌介导的T-DNA插入不仅破坏了插入位点的基因功能,而且因为7-DNA序列已知,使得被破坏的基因序列的分离相对简单和快捷。农杆菌介导的T-DNA转化还因其在水稻基因组中相对随机的分布规律,成熟的转化体系,稳定的后代遗传,简单的遗传背景,被广泛地用于水稻插入突变体库的构建。
     T-DNA侧翼序列的分离对水稻T-DNA插入突变体库的应用至关重要。一方面,我们可以根据大量的T-DNA侧翼序列来分析T-DNA在水稻基因组中的分布规律,进而明晰农杆菌介导的T-DNA转化机制;另一方面,根据侧翼序列提供的基因信息,我们可以广泛地开展反向遗传学的研究。本研究中,我们采用PCR扩增对突变体的阳性情况进行了检测,利用TAIL-PCR的方法成功地分离T-DNA侧翼序列,分析了T-DNA在水稻基因组中的分布规律,揭示了T-DNA插入位点序列的DNA物理特性和碱基组成特征。根据已有的侧翼序列,我们还开展了反向遗传学的研究,得到了一个杂合低育性的突变体,在细胞学水平观察了突变体败育的原因,并对控制突变性状的候选目标基因Osfbox的功能进行了详细的分析,主要研究结果如下:
     1.以T-DNA上的GAL4/VP16基因区段为标记,对9024个转基因植株DNA进行了PCR扩增阳性检测,扩增结果表明7862为PCR阳性,阳性率为87.1%。
     2.利用TAIL-PCR的方法,本人成功的分离得到了5100条水稻T-DNA侧翼序列,其中2609条可以准确的定位在水稻基因组上,定位率为51.2%。联合课题组其它五位同学的侧翼序列,课题组共有侧翼序列30577条,定位率为51.5%。
     3.无论是从T-DNA标签的绝对数量还是相对密度来看,T-DNA都偏爱于插入到水稻中长度较大的染色体上,且插入密度与染色体大小显著正相关(r=0.74,P<0.01)。在同一染色体上,T-DNA的分布更倾向于插入到远离着丝粒的染色体末端,且与染色体区段上的全长cDNA数目显著相关(r=0.70,P<0.01)。T-DNA在水稻基因组中极度地偏向于不插入到转座子相关序列中(SR=—34.0)。在水稻的基因区域中,我们发现T-DNA偏爱于插入到上游1kb区(SR=12.8)和下游500bp区(SR=10.3)而趋向于不插入到编码区(SR=—13.2).但在基因的编码区内,我们并没有发现T-DNA在外显子和内含子之间存在偏爱性(χ~2=2.81,P=0.09)。
     4.T-DNA在不同“分子功能”的基因中同样也存在着分布的偏爱性(χ~2=93.5,P<0.000001);偏向于插入到“Antioxidant”(SR=6.07)和“Catalytic”(SR=3.79)两类功能基因中,偏向于不插入到“Nutrient reservoir”,“Enzymeregulator”,“Transcription regulator”和“Ligand binding and carrier”(SR值介于—2.1到—3.8),而在其它的五类功能基因中基本上呈一种随机分布的状态。
     5.我们分析了本室和来源于其它三家研究单位的水稻T-DNA插入位点前后各1kb(共2001bp)序列(ISNS)的弯曲度的平均值,并以随机提取的2000条长度在2001bp的序列作为对照。弯曲度图的结果显示:随机序列的弯曲度值表现为杂乱的曲线。而本室提取的ISNS的弯曲度图中我们可以看到在序列的—200bp到200bp这一序列区间内弯曲度值出现了一个明显的波型变化,在—200和200位置为波谷。最大值波峰分别出现在约—10和10的位置,且在0,即T-DNA插入位点陡然的下降出现一个相对低值.在其它研究单位提取的ISNS中我们同样观察到了同样的现象。
     6.对不同ISNS的GC含量分析后我们认为GC含量的高低不是T-DNA插入位点的主要特征。但对ISNS和随机提取序列的GC skew和TA skew分析发现:两组ISNS的GC与ZA skews之间呈显著的负相关(r>-0.92).GC与TA skew曲线在插入位点位置出现交叉,且两种skew的值在插入位点都约为0;在-800到0的这段序列里,GC skew值表现为正值,且在-200到-100位置达到最大值,与之对应的是TA skew值为负值,但也是在同样位置达到最小值;在0-800区域内我们也发现了对应的结果,GC skew值表现为负值,TA skew值表现为正值,且在200到100位置碱基的分布出现极度的不均衡情况。在对照序列的结果中并没有发现这些特征。
     7.在我们的T-DNA插入群体中,同一插入位点的T-DNA串连重复普遍存在,正向重复,头对头反向重复和尾对尾反向重复的比例分别达到了19.9%,10.5%和25.4%,40.9%的单株中至少存在着一种以上的串连重复形式;载体骨架序列带入到水稻基因组中的情况同样突出,左右边界带入的载体骨架序列单株比例分别达到了49.6%和29.7%。
     8.对一个T-DNA插入位点位于第六染色体上的f-box基因3'UTR内的突变体开展了反向遗传学的研究,发现T-DNA杂合单株表现为半不育,但T-DNA阴性和纯合单株均育性正常,类似于水稻籼粳亚种间杂种不育。PCR扩增结果显示突变表型与T-DNA插入位点满足严格的共分离关系。目标基因被命名为Osfbox。
     9。Osfbox在TIGR中的编号为LOC_Os06g06050,基因全长4441bp。KOME提供了该基因的全长cDNA信息(AK065478):cDNA的总长度为3723bp,由4个外显子和3个内含子组成,编码一个包含720个氨基酸的蛋白,在第15—63氨基酸位置存在一个F-box domain,390—469氨基酸位置为Cysteine-containing LRR profile结构域。
     10.细胞学观察结果发现雌雄配子发育的受阻共同导致了T-DNA杂合单株的低育性。我们在小孢子的四分体时期开始发现绒毡层的降解出现了滞后。大、均能通过减数分裂时期,但在随后的有丝分裂过程中受阻,最(?)小孢子母细终导致败育。
     11.对10个典型的水稻籼粳品种的Osfbox基因的序列比对结果表明在籼粳品种之间的碱基变异共有18处,其中12处发生在基因转录起始位点的前648bp范围内。在基因的编码区,我们只发现了粳稻基因型存在2处缺失,导致两个位点粳稻的氨基酸序列分别产生了3个串连谷氨酸和1个甘氨酸的缺失。
     12.全生育期表达谱芯片和RT-PCR结果显示Osfbox是一个组成型表达基因,在雌雄蕊中的表达量稍高。RT-PCR的结果还表明在三到八期幼穗中,四期的幼穗中Osfbox的表达量达到最高,尔后随着时间的推移逐步减弱。原位杂交的结果也显示直至小孢子母细胞形成四分体,Osfbox都有较强烈的表达,但液泡化花粉期后花药中基本检测不到基因的表达。
     13.Osfbox基因编码的蛋白专一地定位在细胞核中。
Generating loss-of-function mutant is one of the most strait-forward and efficient way to study gene's bio-function.Agro-bacterium induced T-DNA integration not only disrupt the gene function of the insertion site,but also facilitate the gene cloning for the highly developed methods in isolating the sequences flanking the T-DNA. With a relatively random distribution pattern in rice genome,highly efficient transformation system,stable inheritance in progeny and simple genetic background, Agro-bacterium induced T-DNA transformation has been widely used in rice insertional mutant library establishment.
     The isolation of the flanking sequence tags(FST) is of great importance in the application of rice T-DNA insertional mutant library.On one hand,based on the vast FST data,we can have a deep insight into the T-DNA distribution pattern in rice genome and then elucidate the mechanism of Agro-bacterium induced T-DNA transformation;on the other hand,we can carry out reverse genetics study of the corresponding genes according to,the tagged gene information.
     In this study,I accounted the transformation positive ratio of our insertional population by PCR marker in T-DNA.By employing the TAIL-PCR method,30577 T-DNA FSTs were successfully isolated;T-DNA distribution pattern was analyzed, and several DNA physical property and base composition features of the insertion sites were revealed.With the tagged gene information,reverse genetics study was carried out here and a mutant which showed a semi-sterile phenotype in hemizygous lines was obtained.Cytological analysis of the mutant and functional analysis of the candidate gene Osfbox have been conducted.The main results are described as follows:
     1.The transformation positive ratio of 9024 transformants was checked by using GAL4/VP16 fragment in T-DNA as a PCR marker,7862(87.1%) showed to be PCR positive.
     2.Employing the TAIL-PCR method,I independently isolated 5100 FSTs,2609 (51.2%) out of which can be well mapped onto the dee genome.Combined with the FSTs isolated by colleagues,there are totally 30577 FSTs in our group, including 51.5%can be mapped.
     3.T-DNA insertions were biased towards large chromosomes,not only in the absolute number of insertions but also in the relative density,and the insertion density is highly correlated with the chromosome size(r= 0.74,P<0.01).Within chromosomes,the insertions occurred more densely in the distal ends,and less densely in the centromeric regions and the insertion number is significantly correlated with the cDNA number in corresponding region(r=0.70,P<0.01); T-DNA insertions strongly disfavored transposable element(TE)-related sequences(SR=—34.0) and favored genic sequences(SR=15.55).In rice genes, strong bias toward the 5' upstream(SR=12.8)and Y downstream regions(SR=10.3) of the genes were detected respectively,but the coding sequence region is observed to be disfavored(SR=—13.2).In the coding region,no insertional bias between intron and exon region was observed(χ~2 = 2.81,P = 0.09).
     4.According to the "molecular functions" of genes,T-DNA insertions bias among the various classes of functional genes were observed(χ~2=93.5,P<0.000001): preferentially occurred in "Antioxidant"(SR =6.07)and "Catalytic"(SR=3.79), but preferentially not occurred in "Nutrient reservoir","Enzyme regulator", "Transcription regulator" and "Ligand binding and cartier"(SR between -2.1 to -3.8).In the other 5 gene classes,T-DNA showed a random distribution pattern.
     5.In ISNS bendability analysis result,the random CK showed an irregular curve. But in our ISNS,elevated bendability was observed at positions from -200 to 200 bp and the bendability peak is symmetric in this region,with the highest points at both -10 and 10 bp from the insertion sites.There was an abrupt drop in the bendability value at the insertion sites.A similar result was also observed in ISNS from other 3 research groups.
     6.The analysis of ISNS GC content indicated that GC content is not a necessary factor for T-DNA insertion site.But The GC skew and TA skew calculation exhibited several features in both ISNS from our lab and 3 other groups:The GC and TA skews appeared to be inversely correlated with r>-0.92;The two curves crossed each other at the insertion sites(point 0) at which both GC and TA skews were equal to 0;From the insertion site to 800-bp upstream,the GC skew was positive and reached a plateau in approximately the region from -300 to -100 bp, whereas the TA skew was negative and formed a valley in a similar position in approximately the region from -300 to -100 bp.The reverse was the case from the insertion sites to 800 bp downstream,whereas no such features were observed in the 2000 random sequences.
     7.In our T-DNA insertional population,T-DNA inserted in one loci as a "tandem repeats" was widely detected.The ratio of "direct repeat","5' end junction inverse repeat" and "3' end junction inverse repeat" can be up to 19.9%,10.5% and 25.4%respectively.40.9%are detected to have at least one tandem repeat. The introduction of vector backbone sequence into the rice genome are prominent as well,up to 49.6%and 29.7%of the transformants habor a backbone sequence in left and right border respectively.
     8.Reverse genetics study was carried out in a mutant which harboring a T-DNA insertion in the 3'UTR of an f-box gene in chromosome 6.The T-DNA hemizygous lines are semi-sterile,but both the T-DNA negative and homozygous lines are full fertile.This is similar to the semi-sterility of indica-japonica subspecies hybrids.The mutant phenotype is checked to be co-segregated with the T-DNA insertion.The candidate gene is named as Osfoox.
     9.The ID of Osfoox in TIGR is LOC_Os06g06050 with a length of 4441bp.The full-length eDNA information in KOME(AK065478) showed that:3723bp in length,containes 4 exons and 3 introns,encoding a 720AA protein.A potential F-box domain in 15-63 AA and Cysteine-eontaining LRR profile domain in 390-469AA were detected by Plantsp.
     10.Cytological analysis showed that tapetum degeneration retardation happened in tetrad stage,and the semi-sterility of T-DNA hemizygous lines are a consequence of both the undeveloped microspore and megaspore,which can pass the meiosis stage but are blocked in the following mitosis stage.
     11.By comparing the Osfbox gene sequence of 10 typical rice indica or japonica varieties,we found 18 base variations between the 2 subspecies,including 12 occurred in the 648bp upstream region from the transcription start site.In gene coding region,only 2 deletions were detected,resulting in a 3 tandem Glu and 1 Gly deletion respectively.
     12.Microarray based expression profile and RT-PCR data showed that Osfbox is a constitutively expressed gene.A higher expression level was detected in anther and pistil.In young panicle development stage 3-8,Osfbox expression level reaches the peak in stage 4 and then decreased.In situ hybridization result also showed that Osfbox is strongly expressed until tetrad formatted,but after the vacuolated pollen stage,no expression was detected in pollens.
     13.The Osfbox protein is specifically localized in cell nuclear.
引文
1.王以秀,严菊强,薛庆中,沈圣泉.水稻亚种间杂种一代部分雄性不育的细胞学研究.浙江农业大学学报,1991,17:417-422
    2.王功伟.广亲和品种Dular的f5、f6及02428的S5等位基因的广亲和性、基因效应及f5-Du 的精细定位研究.[博士学位论文].武汉:华中农业大学图书馆,2005
    3.王关林,方宏筠.植物基因工程.北京:科学出版社,623-624.2002
    4.卢诚,潘熙淦.水稻品种02428和8504的广亲和性遗传.中国水稻科学,1992,6:113-118
    5.刘永胜,孙敬三,周开达.水稻亚种间杂种小穗败育的细胞学基础.实验生物学报,1997,30:335-341
    6.刘向东,徐雪宾,卢永根,徐是雄.水稻胚囊形成过程与分期.中国水稻科学,1997,11:141-150
    7.刘桂富,卢永根,张桂权.籼粳稻F1花粉不育性等位基因的基因型和分化度.华南农业大学学报,1994,15:67-71
    8.庄楚雄,张桂权,梅曼彤,卢永根.栽培稻F1花粉不育基因座S-a的分子定位.遗传学报,1999,26:213-218
    9.庄楚雄,梅曼彤,张桂权,卢永根.用RAPD标记对栽培稻F1花粉不育基因座S-b定位.遗传学报,2002,29:700-705
    10.朱晓红,曹显祖,朱庆森.水稻籼粳亚种间杂种配子体败育及其与小穗不孕关系的研究.作物学报,1998,24:421-430
    11.吴昌银.水稻T-DNA插入突变体库及其Enhancer trap系的创建.[博士学位论文].武汉:华中农业大学图书馆,2003
    12.宋翔.水稻籼粳亚种间杂种不育机理的研究.[博士学位论文].武汉:华中农业大学图书馆,2005
    13.张桂权,卢永根,刘桂富,杨进昌,张华.栽培稻杂种不育性的遗传研究Ⅲ不同类型品种F1花粉不育性的等位基因分化.遗传学报,1993,20:541-551
    14.张桂权,卢永根.栽培稻杂种不育性的遗传研究ⅰ.等基因F1不育系杂种不育性的双列分析.中国水稻科学,1989,3:97-101
    15.张桂权,卢永根.栽培稻杂种不育性的遗传研究Ⅱ花粉不育性的基因模式.遗传学报,1993,20:222-228
    16.李述田,田颖川,何朝族.T-DNA标签在转基因水稻基因组中的整合特点.生物化学与生物物理进展,2004,31,912-917
    17.杨弘远.利用整体染色透明技术观察胚囊、胚、胚乳和胚状体.植物学报,1986,28:575-581
    18.赵艳,于彦春,黄大年.植物中转基因的整合机制.中国生物工程杂志,2003,23:29-32
    19.徐才国.水稻亚种内及亚种间杂交花粉在柱头上附着和萌发状态的观察.华中农业大学学报,1995,14:421-425
    20.顾铭洪,潘学彪,陈宗祥,杨文才.我国现用水稻广亲和性测验品种的亲和性分析.见:袁隆平主编,两系法杂交水稻研究论文集.北京:农业出版社,1992,229-235
    21.储昭晖,彭开蔓,张利达,周斌,魏君,王石平.水稻全生育期均一化cDNA文库的构建和鉴定.科学通报,2002,47:1656-1662
    22.谢卡斌,张建伟,向勇,冯旗,韩斌,储昭晖,王石平,张启发,熊立仲.10828条籼稻全长cDNA的分离和注释.中国科学C辑,2005,35:6-12
    23.Afolabi A S,Worland B,Snape J W,Vain P.A large-scale study of rice plants transformed with different T-DNAs provides new insights into locus composition and T-DNA linkage configurations.Theor Appl Genet,2004,109:815-826
    24.Alonso J M,Stepanova A N,Leisse T J,Kim C J,Chen H,Shinn P,Stevenson D K,Zimmerman J,Barajas P,Cheuk R,Gadrinab C,Heller C,Jeske A,Koesema E,Meyers C C,Parker H,Prednis L,Ansari Y,Choy N,Deen H,et al.Genome-wide insertional mutagenesis of Arabidopsis thaliana.Science,2003,301:653-657
    25.An S,Park S,Jenng D H,Lee D Y,Kang H G,Yu J H,Hur J,Kim S R,Kim Y H,Lee M,Han S,Kim S J,Yang J,Kim E,Wi S J,Chung H S,Hong J P,Choe V,Lee H K,Choi J H,et al.Generation and analysis of end sequence database for T-DNA tagging lines in rice.Plant Physiol,2003,133:2040-2047
    26.Assaad F F,Tucker K L,Signer E R.Epigenetic repeat-induced gene silencing(RIGS) in Arabidopsis.Plant Mol Biol,1993,22:1067-1085
    27.Azpiroz-Leehan R,Feldmann K A.T-DNA insertion mutagenesis in Arabidopsis:going back and forth.Trends Genet,1997,13:152-156
    28.Barakat A,Gallois P,Raynal M,Mestre-Ortega D,Sallaud C,Guiderdoni E,Delseny M,Bernardi G.The distribution of T-DNA in the genomes of transgenie Arabidopsis and rice.FEBS Lett,2000,471:161-164
    29.Brukner I,Sanchez R,Suck D,Pongor S.Trinucleotide models for DNA bending propensity:comparison of models based on DNaseI digestion and nucleosome packaging data.J Biomol Struct Dyn,1995,13:309-317
    30.Brunaud V,Balzergue S,Dubreucq B,Aubourg S,Samson F,Chauvin S,Bechtold N,Cruaud C,DeRose R,Pelletier G,Lepiniec L,Caboche M,Lecharny A.T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites.EMBO Rep,2002,3:1152-1157
    31.Campisi L,Yang Y Z,Yi Y,Heilig E,Herman B,Cassista A J,Allen D W,Xiang H J,Jack T.Generation of enhancer trap lines in Arabidopsis and characterization of expression patterns of the inflorescence.Plant J,1999,17:699-707
    32.Castle L A,Errampalli D,Atherton T L,Franzrnann L H,Yoon E S,Meinke D W.Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis.Mol Gen Genet,1993,241:504-514
    33.Cervera M,Juarez J,Navarro L,et al.A broad exploration ofa transgenie population of citrus:stability of gene expression and phenotype.Theor Appl Genet,2000,100:670-677
    34.Chen S,Jin W,Wang M,Zhang F,Zhou J,Jia Q,Wu Y,Liu F,Wu P.Distribution and characterization of over 1000 T-DNA tags in rice genome.Plant J,2003,36:105-113
    35.Cluster P D,Odell M,Metzlaff Met al.Details of T-DNA structural organization from a transgenic petunia population exhibiting co-suppression.Plant Mol Biol.1996,32:1197-1203
    36.Colbert T,Till B J,Tompa R,Reynolds S,Steine M N,Yeung A T,McCallum C M,Comai L,Henikoff S.High-throughput screening for induced point mutations.Plant Physiol,2001,126:480-484
    37.Coyne J A.Genetics and speciation.Nature,1992,355:511-515
    38.Dai X,Zhang Q.Genetic diversity of six isozyme loci in cultivated barley of Tibet.Theor Appl Genet 1989,78:281-286
    39.De Neve M,De Buck S,Jacobs A,Van Montagu M,Depicker A.T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs.Plant J,1997,11:15-29
    40.Dieterle M,Zhou Y C,Schafer E,Funk M,Kretsch T.EID1,an F-box protein involved in phytochrome A-specific light signaling.Genes Dev,2001,15:939-944
    41.Dill A,Thomas S G,Hu J,Steber C M,Sun T P.The Arabidopsis F-box protein SLEEPY1targets gibberellin signaling repressors for gibberellin-induced degradation.Plant Cell,2004,16:1392-1405
    42.Dlakic' M,Harrington R E.The effects of sequence context on DNA curvature.Proc Natl Acad Sci USA,1996,93:3847-3852
    43.Droc G,Ruiz M,Larmande P,Pereira A,Piffanelli P,Morel J B,Dievart A,Courtois B,Guiderdoni E,Perin C.OryGenesDB:a database for rice reverse genetics.Nucleic Acids Res,2006,34:D736-740
    44.Feng Q,Zhang Y,Hao P,Wang S,Fu G,Huang Y,Li Y,Zhu J,Liu Y,Hu X,Jia P,Zhang Y,Zhao Q,Ying K,Yu S,Tang Y,Weng Q,Zhang L,Lu Y,Mu J,et al.Sequence and analysis of rice chromosome 4.Nature,2002,420:316-320
    45.Francis K E,Spiker S.Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations.Plant J,2005,41:464-477
    46.Gheysen G,Villarroel R,Van Montagu M.Illegitimate recombination in plants:a model for T-DNA integration.Genes Dev,1991,5:287-297
    47.Gibbings J G,Cook B P,Dufault M R,Madden S L,Khuri S,Tumbull C J,Dunwell J M.Global transcript analysis of rice leaf and seed using SAGE technology.Plant Biotechnol J,2003,1:271-285.
    48.Glaszmann J C.Isozymes and classification of Asian rice varieties.Theor Appl Genet,1987,74:21-30
    49.Goff S A,Ricke D,Lan T H,Presting G,Wang R,Dunn M,Glazebrook J,Sessions A,Oeller P,Varma H,Hadley D,Hutchison D,Martin C,Katagiri F,Lange B M,Moughamer T,Xia Y,Budworth P,Zhong J,Miguel T,et al.A Draft Sequence of the rice genome(Oryza sativa L.ssp.japonica).Science,2002,296:92-100
    50.Goodsell D S,Dickerson R E.Bending and curvature calculations in B-DNA.Nucleic Acids Res,1994,22:5497-5503
    51.Grant S G,Jessee J,Bloom F R,Hanahan D.Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants.Proc.Natl.Acad.Sci.,USA,1990,87:4645-4659
    52. Gray W M, del Pozo J C, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby W L, Yang M, Ma H, Estelle M. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev, 1999, 13: 1678-1691
    53. Green, P. Documentation for phrap. Nature, 1996, 390: 580-586.
    54. Han M J, Jung K H, Yi G, Lee D Y, and An G. Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development. Plant Cell Physiol, 2006, 47: 1457-1472
    55. Herrera-Estrella L, Van den Broeck G, Maenhaut R, Van Montagu M, Schell J, Timko M, Cashmore A. Light-inducible and chloroplast-associated expression of a chimaeric gene introduced into Nicotiana tabacum using a Ti plasmid vector. Nature, 1984, 310: 115-120
    56. Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994,6:271-282
    57. Hieter P, Boguski M. Functional Genomics: it's all how you read it. Science, 1997, 278: 601-602
    58. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA, 1996, 93: 7783-7788
    59. Hirochika H. Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol, 2001,4: 118-122
    60. Hsing Y I, Chern C G, Fan M J, Lu P C, Chen K T, Lo S F, Sun P K, Ho S L, Lee K W, Wang Y C, Huang W L, Ko S S, Chen S, Chen J L, Chung C I, Lin Y C, Hour A L, Wang Y W, Chang Y C, Tsai M W, et al. A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol, 2007, 63: 351-364
    61. Huang J, Zhao L, Yang Q, Xue Y. AhSSK1, a novel SKP1-like protein that interacts with the S-locus F-box protein SLF. Plant J, 2006,46: 780-793
    62. Huang Y, Zhang L, Zhang J, Yuan D, Xu C, Li X, Zhou D, Wang S, Zhang Q. Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs. Plant Mol Biol, 2006, 62: 579-91.
    63. Iglesias V A, Moscone E A, Papp I, Neuhuber F, Michalowski S, Phelan T, Spiker S, Matzke M, Matzke A J. Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell, 1997, 9: 1251-1264
    64. Ikehashi H, Araki H. Varietal screening for compatibility types revealed in F1 fertility of distant crosses in rice. Jpn J Breed, 1984, 34: 304-312
    65. Ingram G C, Doyle S, Carpenter R, Schultz E A, Simon R, Coen E S. Dual role for fimbriata in regulating floral homeotic genes and cell division in Antirrhinum. EMBO J, 1997, 16: 6521-6534
    66. International rice genome sequencing project. The map-based sequence of the rice genome. Nature, 2005, 436: 793-800
    67. Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol, 2005,46: 79-86
    68. Izawa T, Shimamoto K. Becoming a model plant: The importance of rice to plant science. Thends Plant Sci, 1996, 1: 95-99
    69. Jackson P K, Eldridge A G, Freed E, Furstenthal L, Hsu J Y, Kaiser B K, Reimann J D. The lore of the RINGs:substrate recognition and catalysis by ubiquitin ligases.Trends Cell Biol,2000,10:429-439
    70.Jeon J S,An G.Gene tagging in rice:a high throughput system for functional genomics.Plant Sci,2001,161:211-219
    71.Jeon J S,Lee S,Jung K H,Jun S H,Jeng D H,Lee J,Kim C H,Jang S,Lee S,Nam J,An K,Han M J,Sung R J,Choi H S,Yu J H,Choi J H,Cho S Y,Kim S I,An G.T-DNA insertional mutagenesis genomics in rice.Plant J,2000,22:561-570
    72.Jeong D H,An S,Kang M G,Moon S,Han J J,Park S,Lee H S,An K,An G.T-DNA insertional mutagenesis for activation tagging in rice.Plant Physiol,2002,1636-1644
    73.Jeong D H,An S,Park S,Kang H G,Park G G,Kim S R,Sim J,Kim Y O,Kim M K,Kim S R,Kim J,Shin M,Jung M,An G.Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice.Plant J,2006,45:123-132
    74.Jiang H,Wang S,Dang L,Wang S,Chen H,Wu Y,Jiang X,Wu P.A novel short-root gene encodes a glucosamine-6-phosphate acetyltransferase required for maintaining normal root cell shape in rice.Plant Physiol,2005,138:232-242
    75.Johnson X,Brcich T,Dun E A,Goussot M,Haurogne K,Beveridge C A,Rameau C.Branching genes are conserved across species.Genes controlling a novel signal in pea are coregulated by other long-distance signals.Plant Physiol,2006,142:1014-1026
    76.Jorgensen R,Snyder C,Jones J D G.T-DNA is organized predominantly in inverted repeat structures in plants transformed with Agrobacterium tumefaciens c58 derivatives.Mol.Gen.Genet,1997,207:471-477
    77.Jung K H,Han M J,Lee D Y,Lee Y S,Schreiber L,Franke R,Faust A,Yephremov A,Saedler H,Kim Y W,Hwang I,An G.Wax-deficient antherl is involved in cuticle and wax production in rice anther walls and is required for pollen development.Plant Cell,2006,18:3015-3032
    78.Kang H G,Park S,Matsuoka M,and An G.White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB).Plant J,2005,42:901-911
    79.Kato S,Kosaka H,Hara S.On the affinity of rice varieties as shown by fertility of hybrid plants.Bull Sci Fac Agric Kyushu Univ,1928,3:132-147
    80.Katz R A,Gravuer K,Skalka A M.A preferred target DNA structure for retroviral integrase in Vitro.J Biol.Chem.1998,273:24190-24195.
    81.Khrustaleva L I,Kik C.Localization of single-copy T-DNA insertion in transgenic shallots (Allium cepa) by using ultra-sensitive FISH with tyramide signal amplification.Plant J,2001,25:699-707
    82.Kikuchi S,Satoh K,Nagata T,Kawagashira N,Doi K,Kishimoto N,Yazaki J,Ishikawa M,Yamada H,Ooka H,Hotta I,Kojima K,Namiki T,Ohneda E,Yahagi W,Suzuki K,Li C J,Ohtsuki K,Shishiki T,Otomo Y et al.Collection,mapping,and annotation of over 28,000cDNA clones from japonica rice.Science,2003,301:376-379
    83.Kim S R,Lee J,Jun S H,Park S,Kang H G,Kwon S,An G.Transgene structures in T-DNA-inserted rice plants.Plant Mol Biol,2003,52:761-773
    84.Kinoshita T.Report of the committee on gene symbolization,nomenclature and linkage group.Rice Genet Newsl,1995,12:9-13
    85.Kitamura E.Genetics studies on sterility observed in hybrids between distantly related varieties of rice(Oryza sativa L.).Bull Chgoku Arg Exp Sta,1962,Series A:141-205
    86.Koh S,Lee S C,Kim M K,Koh J H,Lee S,An G,Choe S,and Kim S R.T-DNA tagged knockout mutation of rice OsGSK1,an orthologue of Arabidopsis BIN2,with enhanced tolerance to various abiotic stresses.Plant Mol Biol,2007,[Epub ahead of print]
    87.Kohli A,Griffiths S,Palacios N,Twyman R M,Vain P,Laurie D A,Christou P.Molecular characterization of transforming plasmid rearrangements in transgenie rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology mediated recombination.Plant J,1999,17:591-601
    88.Kohli A,Twyman R M,Abranches R,Wegel E,Stoger E,Christou P.Transgene integration,organization and interaction in plants.Plant Mol Biol,2003,52:247-258
    89.Kononov M E,Bassuner B,Gelvin S B.Integration of T-DNA binary vector 'backbone'sequences into the tobacco genome:evidence for multiple complex patterns of integration.Plant J,1997,11:945-957
    90.Krizkova L,Hrouda M.Direct repeats of T-DNA integrated in tobacco chromosome:characterization of junction regions.Plant J,1998,16:673-680
    91.Krysan P J,Young J C,Sussman M R.T-DNA as an insertional mutagen in Arabidopsis.Plant Cell,1999,11:2283-2290
    92.Kumar S,Fladung M.Transgene repeats in aspen:molecular eharacterisation suggests simultaneous integration of independent T-DNAs into receptive hotspots in the host genome.Mol Gen Genet,2000,264:20-28
    93.Laufs P,Autran D,Traas J A.Chromosomal paraeentrie inversion associated with T-DNA integration in Arabidopsis.Plant J,1999,18:131-139
    94.Lee D Y,Lee J,Moon S,Park S Y,and An G.The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem.Plant J,2007a,49:64-78
    95.Lee J H,Lee S Y.Selection of stable mutants from cultured rice anthers treated with ethylmethane sulfonic acid,Plant Cell,Tissue and Organ Culture,2002,71:165-171
    96.Lee S,Jung K H,An G,Chung YY.Isolation and characterization of a rice eysteine protease gene,OsCP1,using T-DNA gene-trap system.Plant Mol Biol,2004a,54:755-765
    97.Lee S,Kim J,Han J J,Han M J,An G.Functional analyses of the flowering time gene OsMADS50,the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20(SOC1/AGL20) ortholog in rice.Plant J,2004b,8:754-764
    98.Lee S,Kim Y Y,Lee Y,and An G.Rice P1B-type Heavy Metal ATPase,OsHMA9,Is a Metal Efflux Protein.Plant Physiol,2007b,[Epub ahead of print]
    99.Leung H,Wu C,Baraoidan M.Deletion mutants functional genomics:progress in phenotyping,sequence assignment and database development.In:4th International Rice Genetics Symposium,Abstract Book,IRRI Philippines,2000.pp18-19
    100.Li J,Zhu S,Song X,Shen Y,Chen H,Yu J,Yi K,Liu Y,Karplus V J,Wu P,Deng X W.A Rice Glutamate Receptor-Like Gene Is Critical for the Division and Survival of Individual Cells in the Root Apical Meristem.Plant Cell,2006a,18:340-349
    101.Li M,Xu W,Yang W,Kong Z,and Xue Y.Genome-wide gene expression profiling reveals conserved and novel molecular functions of the stigma in rice.Plant Physiol,2007,144:1797-1812
    102.Li N,Zhang D S,Liu H S,Yin C S,Li X X,Liang W Q,Yuan Z,Xu B,Chu H W,Wang J,Wen T Q,Huang H,Luo D,Ma H,Zhang D B.The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development.Plant Cell,2006b,18:2999-3014
    103.Li X,Song Y,Century K,Straight S,Ronald P,Dong X,Lassner M,Zhang Y.A fast neutron deletion mutagenesis-based reverse genetics system for plants.Plant J,2001,27:235-242
    104.Li X,Zhang Y.Reverse genetics by fast neutron mutagenesis in higher plants.Funct Integr Genomics,2002,2:254-258
    105.Li Y,Rosso M G,U" lker,B,Weisshaar B.Analysis of T-DNA insertion site distribution patterns in Arabidopsis thaliana reveals special features of genes without insertions.Genomics,2006c,87,645-652
    106.Lian X,Wang S,Zhang J,Feng Q,Zhang L,Fan D,Li X,Yuan D,Han B,Zhang Q.Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray.Plant Mol Biol,2006,60:617-31.
    107.Liang D,Wu C,Li C,Xu C,Zhang J,Kilian A,Li X,Zhang Q,Xiong L.Establishment of a Patterned GAL4-VP16 transactivation system for discovering gene function in rice.Plant J,2006,46:1059-1072
    108.Liao G C,Rehm E J,Rubin G M.Insertion site preferences of the P transposable element in Drosophila melanogaster.Proc Natl Acad Sci USA,2000,97:3347-3351
    109.Lin S Y,Ikehashi H,Yanagihara S,Kawashima A.Segregation distortion via male gametes in hybrids between Indica and Japonica or wide-compatibility varieties of rice(Oryza sativa L.).Theor Appl Genet,1992,84:812-818
    110.Lindsey K,Wei W,Clarke M C,McArdle H F,Rooke L M,Topping J F.Tagging genomic sequences that direct transgene expression by activation of a promoter trap in plants.Transgenic Res,1993,2:33-47
    111.Liu H Y,Xu C G,Zhang Q.Male and female gamete abortions,and reduced affinity between the uniting gametes as the causes for sterility in an indica/japonica hybrid in rice.Sexual Plant Reprod,2004,17:55-62
    112.Liu K D,Wang J,Li H B,Xu C G,Liu A M,Li X H,Zhang Q.A genome-wide analysis of wide compatibility in rice and the precise location of the S5 locus in the molecular map.Theor Appl Genet,1997,95:809-814
    113.Liu K D,Zhou Z Q,Xu C G,Zhang Q,Saghai Maroof M A.An analysis of hybrid sterility in rice using a diallel cross of 21 parents involving indica,japonica and wide compatibility varieties.Euphytica,1996,90:275-280
    114.Liu Y G,Mitsukawa N,Oosumi T,Whittier R F.Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR.Plant J,1995,8:457-463
    115.Liu Y G,Whittier R F.Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking.Genomics,1995,25:674-681
    116.Liu Y S,Zhu L H,Sun J S,Chen Y.Mapping QTLs for defective female gametophyte development in an inter-subspecific cross in Oryza sativa L..Theor Appl Genet,2001,102:1243-1251
    117.Lobry J R.Asymmetric substitution patterns in the two DNA strands of bacteria.Mol Biol Evol,1996,13:660-665
    118.Martienssen R A.Functional genomics:probing plant gene function and expression with transposons.Proc Natl Acad Sci USA,1998,95:2021-2026
    119.Matsumoto S,Ito Y,Hosoi T,Takahashi Y,Machida Y.Integration of Agrobacterium T-DNA into a tobacco chromosome:possible involvement of DNA homology between T-DNA and plant DNA.Mol Gen Genet,1990,224:309-316
    120.Mayerhofer R,Koncz-Kalman Z,Nawrath C,Bakkeren G,Crameri A,Angelis K,Redei G P,Schell J,Hohn B,Koncz C.T-DNA integration:a mode of illegitimate recombination in plants.EMBO J,1991,10:697-704
    121.McCallum C M,Comai L,Greene E A,Henikoff S.Targeting induced local lesions IN genomes(TILLING) for plant functional genomics.Plant Physiol,2000,123:439-442
    122.McElver J,Tzafrir I,Aux G,Rogers R,Ashby C,Smith K,Thomas C,Sehetter A,Zhou Q,Cushman M A,Tossberg J,Nickle T,Levin J Z,Law M,Meinke D,Patton D.Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana.Genetics,2001,159:1751-1763
    123.Meinke D W,Meinke L K,Showalter T C,Sehissel A M,Mueller L A,Tzafrir I.A sequence-based map of Arabidopsis genes with mutant phenotypes.Plant Physiol,2003,131:409-418
    124.Miyao A,Tanaka K,Murata K,Sawaki H,Takeda S,Abe K,Shinozuka Y,Onosato K,Hirochika H.Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome.Plant Cell,2003,15:1771-1780
    125.Mori M,Tomita C,Sugimoto K,Hasegawa M,Hayashi N,Dubouzet J G,Ochiai H,Sekimoto H,Hirochika H,Kikuchi S.Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice.Plant Mol Biol,2007,63:847-860
    126.Muller H P,Varmus H E.DNA bending creates,favored sites for retroviral integration:an explanation for preferred insertion sites in nueleosomes.EMBO J,1994,13:4704-4714
    127.Muskett P R,Kahn K,Austin M J,Moisan L J,Sadanandom A,Shirasu K,Jones J D,Parker J E.Arabidopsis RAR1 exerts rate-limiting control of R gene-mediated defenses against multiple pathogens.Plant Cell,2002,14:979-992
    128.Nacry P,Camilleri C,Courtial B,Caboche M,Bouchez D.Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis.Genetics,1998,149:641-650
    129.Nacry P,Camilleri C,Courtial B,Caboehe M,Bouchez D.Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis.Genetics,1998,149:641-650
    130.Nambara E,Keith K,McCourt P,Naito S.Isolation of an internal deletion mutant of the Arabidopsis thaliana ABI3 gene.Plant Cell Physiol,1994,35:509-513
    131.Nelson D C,Lasswell J,Rogg L E,Cohen M A,Bartel B.FKF1,a clock-controlled gene that regulates the transition to flowering in Arabidopsis.Cell,2000,101:331-340
    132.Ohba T,Yoshioka Y,Machida C,Machida Y.DNA rearrangement associated with the integration of T-DNA in tobacco:an example for multiple duplications of DNA around the integration target.Plant J,1995,7:157-164
    133.Oikawa T,Koshioka M,Kojima K,Yoshida H,Kawata M.A role of OsGA20oxl,encoding an isoform of gibberellin 20-oxidase,for regulation of plant stature in rice.Plant Mol Biol,2004,55:687-700
    134.Oka H I.Analysis of genes controlling F1 sterility in rice by the use of isogenic lines.Jpn J Genet,1974,77:521-534
    135.Oka H I.Genetic analysis for the sterility of hybrids between distantly related varieties of cultivated rice.J Genet,1957,55:397-409
    136.Oka H I.Origin of cultivated rice.Scientific Societies Press,Tokyo,Japan,1988.181-209
    137.Ortega D,Raynal M,Laudie M,Llauro C,Cooke R,Devic M,Genestier S,Picard G,Abad P,Contard P,Sarrobert C,Nussaume L,Bechtold N,Horlow C,Pelletier G,Delseny M.Flanking sequence tags in Arabidopsis thaliana T-DNA insertion lines:a pilot study.C R Biol,2002,325:773-780
    138.Osborne,B I,Baker,B.Movers and shakers:maize transposons as tools for analyzing other plant genomes.Curr Opin Cell Biol,1995,7:406-413
    139.Pryciak P M,Sil A,Varmus H E.Retroviral integration into minichromosomes in vitro.EMBO J,1992,11:291-303
    140.Qiao H,Wang H,Zhao L,Zhou J,Huang J,Zhang Y,Xue Y.The F-box protein AhSLF-S2physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum.Plant Cell,2004,16:582-595
    141.Ramanathan V,Veluthambi K.Transfer of non-T-DNA portions of the Agrobacterium-tumefaciens Ti plasmid pTiA6 from the left terminus of T-L-DNA.Plant Mol Biol,1995,28:1149-1154
    142.Rashid H,Komari T.Transgenic plant production mediated by Agrobacterium in Indica rice.Plant Cell Rep,1996,15:727-730
    143.Rice Chromosome 10 Sequencing Consortium.In-depth view of structure,activity and evolution of rice chromosome 10.Science,2003,300:1566-1569.
    144.Rice P,Longden I,Bleasby A.EMBOSS:the European Molecular Biology Open Software Suite.Trends Genet.2000,16:276-277
    145.Ryu C H,You J H,Kang H G,Hut J,Kim Y H,Han M J,An K,Chung B C,Lee C H,An G.Generation of T-DNA tagging lines with a bidirectional gene trap vector and the establishment of an insertion-site database.Plant Mol Biol,2004,54:489-502
    146.Sallaud C,Gay C,Larmande P,Bes M,Piffanelli P,Piegu B,Droc G,Regad F,Bourgeois E,Meynard D,Perin C,Sabau X,Ghesquiere A,Glaszmann J C,Delseny M,Guiderdoni E.High throughput T-DNA insertion mutagenesis in rice:a first step towards in silico reverse genetics.Plant J,2004,39:450-464
    147.Samach A,Klenz J E,Kohalmi S E,Risseeuw E,Haughn G W,Crosby W L.The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem.Plant J,1999,20:433-445
    148.Sasaki A,Itoh H,Gomi K,Ueguchi-Tanaka M,Ishiyama K,Kobayashi M,Jeong D H,An G,Kitano H,Ashikari M,Matsuoka M.Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant.Science,2003,299:1896-1898
    149.Sasaki T,Burr B.International rice genome sequencing project:the effort to completely sequence the rice genome.Curr Opin Plant Biol,2000,3:138-141
    150.Sasaki T,Matsumoto T,Yamamoto K,Sakata K,Baba T,Katayose Y,Wu J,Niimura Y,Cheng Z,Nagamura Y,Antonio BA,Kanamori H,Hosokawa S,Masukawa M,Arikawa K,Chiden Y,Hayashi M,Okamoto M,Ando T,Aoki H,et al.The genome sequence and structure of rice chromosome 1.Nature,2002,420:312-316
    151.Sasaki T.The rice genome project in japan.Proc Natl Acad Sci USA,1998,95:2027-2028
    152.Satchwell S C,Drew H R,Travers A A.Sequence periodicities in chicken nucleosome core DNA.J Mol Biol,1986,191:659-675
    153.Schager W,Gorz A,Kahl G.T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium.Nature,1987,327:529-532
    154.Schneeberger R G,Zhang K,Tatarinova T,Troukhan M,Kwok S F,Drais J,Klinger K,Orejudos F,Macy K,Bhakta A,Burns J,Subramanian G,Donson J,Flavell R,Feldmann,K A.Agrobacterium T-DNA integration in Arabidopsis is correlated with DNA sequence compositions that occur frequently in gene promoter regions.Funct Integr Genomics,2005,5:240-253
    155.Sessions A,Burke E,Presting G,Aux G,McElver J,Patton D,Dietrich B,He P,Bacwaden J,Ko C,Clarke J D,Cotton D,Bullis D,Snell J,Miguel T,Hutchison D,Kimmerly B,Mitzel T,Katagiri F,Glazebrook J,et al.A high-throughput Arabidopsis reverse genetics system.Plant Cell,2002,14:2985-2994
    156.Sha Y,Li S,Pei Z,Luo L,Tian Y,He C.Generation and flanking sequence analysis of a rice T-DNA tagged population.Theor Appl Genet,2004,108:306-314
    157.Sheng J,Citovsky V.Agrobacterium-plant cell DNA transport:have virulence proteins,will travel.Plant Cell,1996,8:1699-1710
    158.Shi Z,Wang J,Wan X,Shen G,Wang X,and Zhang J.Over-expression of rice OsAGO7gene induces upward curling of the leaf blade that enhanced erect-leaf habit.Planta,2007,226:99-108
    159.Siebert P D,Chenchik A,Kellogg D E,Lukyanov K A,Lukyanov S A.An improved PCR method for walking in uncloned genomic DNA.Nucleic Acids Res,1995,23:1087-1088
    160.Somers D E,Sehultz T F,Milnamow M,Kay S A.ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis.Cell,2000,101:319-329
    161.Song X,Qiu S Q,Xu C G,Li X H,Zhang Q.Genetic dissection of embryo-sac fertility,pollen fertility and their contributions to spikelet fertility of an indica-japonica rice hybrid.Theor Appl Genet,2005,110:205-211
    162.Springer P S.Gene traps:tools for plant development and genomies.Plant Cell,2000,12:1007-1020
    163.Stahl R,Horvath H,Van Fleet J,Voetz M,yon Wettstein D,Wolf N.T-DNA integration into the barley genome from single and double cassette vectors.Proc Natl Acad Sci USA,2002,99:2146-2151
    164.Steel,R G D,Torrie J E.Principles and procedures of statistics.A biometric approach 2nd ed.McGraw-Bill Book Co.Toronto,Gruario,1980
    165.Sun T,Goodman H M,Ausubel F M.Cloning the Arabidopsis GAl Locus by Genomic Subtraction.Plant Cell,1992,4:119-128
    166.Sundaresan V,Springer P,Volpe T,Haward S,Jones J D,Dean C,Ma H,Martienssen R.Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements.Genes Dev,1995,9:1797-1810
    167.Szabados L,Kovacs I,Oberschall A,Abraham E,Kerekes I,Zsigmond L,Nagy R,Alvarado M,Krasovskaja I,Gal M,Berente A,Redei G P,Haim A B,Koncz C.Distribution of 1000sequenced T-DNA tags in the Arahidopsis genome.Plant J,2002,32:233-242
    168.Tinland B,Schoumacher F,Gloeckler V,Bravo-Angel A M,Holm B.The Agrobacterium tumefaciens virulence D2 protein is responsible for precise integration of T-DNA into the plant genome.EMBO J,1995,14:3585-3595
    169.Tinland B.The integration of T-DNA into plant genomes.Trends Plant Sci.1996,1:178-184.
    170.Triglia T.Inverse PCR(IPCR) for obtaining promoter sequence.Methods Mol Biol,2000,130:79-83
    171.Tzfira T,Rhee Y,Chert M H et al.Nucleic acid transport in plant-microbe interactions:the molecules that walk through the walls.Annu Rev Microbiol,2000,54:187-219
    172.Varshavsky A.The ubiquitin system.Trends Biochem Sci,1997,22:383-387
    173.Velculescu V E,Zhang L,Vogelstein B,Kinzler K W.Serial analysis of gene expression.Science,1995,270:484-487
    174.Wang H,Zhang H,Gao F,Li J,and Li Z.Comparison of gene expression between upland and lowland rice cultivars under water stress using cDNA microarray.Theor Appl Genet,2007,[Epub ahead of print]
    175.Wang J,Lewis M E,Whallon J H,Sink K C.Chromosomal mapping of T-DNA inserts in transgenicPetunia by in situ hybridization.Transgenic Res,1995,4:241-246
    176.Wang J,Li L,Shi,Z Y,Wan X S,An L S,Zhang J L.T-DNA integration category and mechanism in rice genome.J Integr Plant Bio.2005,47:350-361
    177.Wenck A,Czako M,Kanevski I,Marton L.Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation.Plant Mol Biol,1997,34:913-922
    178.Windels P,De Buck S,Van Bockstaele E,De Loose M,Depicker,A.T-DNA integration in Arabidopsls chromosomes.Presence and origin of filler DNA sequences.Plant Physiol,2003,133:2061-2068
    179.Withers-Ward E S,Kitamura Y,Barnes J P,Coffin J M.Distribution of targets for avian retrovirus DNA integration in vivo.Genes Dev,1994,8:1473-1487
    180.Woo H R,Chung K M,Park J H,Oh S A,Ahn T,Hong S H,Jang S K,Nam H G.ORE9,an F-box protein that regulates leaf senescence in Arabidopsis.Plant Cell,2001,13:1779-1790
    181.Woo Y M,Park H J,Su'udi M,Yang J I,Park J J,Back K,Park Y M,and An G.Constitutively wilted 1,a member of the rice YUCCA gene family,is required for maintaining water homeostasis and an appropriate.root to shoot ratio.Plant Mol Biol,2007,65:125-136
    182.Wu C,Li X,Yuan W,Chen G,Kilian A,Li J,Xu C,Li X,Zhou D X,Wang S,Zhang Q.Development of enhancer trap lines for functional analysis of the rice genome.Plant J,2003,35:418-427
    183.Xie D X,Feys B F,James S,Nieto-Rostro M,Turner J G.COI1:an Arabidopsis gene required for jasmonate-regulated defense and fertility.Science,1998,280:1091-1094
    184.Yang G P,Saghai Maroof M A,Xu C G,Zhang Q,Biyashev R M.Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice.Mol Gen Uenet,1994,245:187-194
    185.Yanofsky M F,Porter S G,Young C,Albright L M,Gordon M P,Nester E W.The virD operon of Agrobacterium tumefaciens encodes a site-specific endonuclease.Cell,1986,47:471-477
    186.Yin Z,Wang G L.Evidence of multiple complex patterns of T-DNA integration into rice genome.Theor Appl Genet,2000,100:461-470
    187.Yokoo M.Female sterility in an indica-japonica cross of rice.Japan J Breed,1984,34:219-227
    188.Yu J,Hu S,Wang J,Wong G K S,Li S,Liu B,Deng Y,Dai L,Zhou Y,Zhang X,Cao M,Liu J,Sun J,Tang J,Cheng Y,Huang X,Lin W,Ye C,Tong W,Cong L,et al.A draft sequence of the rice genome(Oryza sativa L.ssp.indica).Science,2002,296:79-92
    189.Zaenen I,Van Larebeke N,Van Montagu M,Schell J.Supercoiled circular DNA in crown-gall inducing Agrobacterium strains.J Mol Biol,1974,86:109-127
    190.Zhang J,Guo D,Chang Y,You C,Li X,Dai X,Weng Q,Zhang J,Chen G,Li X,Liu H,Han B,Zhang Q,Wu C.Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13 804 T-DNA flanking sequences from an enhancer-trap mutant library.Plant J,2007,49:947-959
    191.Zhang J,Li C,Wu C,Xiong L,Chen G,Zhang Q,Wang S.RMD:a rice mutant database for functional analysis of the rice genome.Nucleic Acids Res,2006,34:D745-748
    192.Zhang Q,Liu K D,Yang G P,Saghai Maroof M A,Xu C G,Zhou Z Q.Molecularmarker diversity and hybrid sterility in indica-japonica rice crosses.Theor Appl Genet,1997,95:112-118
    193.Zhang Q,Saghai Maroof M A,Lu T Y,Shen B Z.Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis.Theor Appl Genet,1992,83:495-499
    194.Zhou H L,He S J,Cao Y R,Chen T,Du B X,Chu C C,Zhang J S,Chen S Y.OsGLU1,a putative membrane-bound endo-1,4-beta-D-glucanase from rice,affects plant internode elongation.Plant Mol Biol,2006,60:137-151
    195.Zhou J,Wang X,Jiao Y,Qin Y,Liu X,He K,Chen C,Ma L,Wang J,Xiong L,Zhang Q,Fan L,and Deng X W.Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot,flag leaf,and panicle.Plant Mol Biol,2007,63:591-608

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700