广亲和品种Dular的f5、f6及02428的S5等位基因的广亲和性、基因效应及f5-Du的精细定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广亲和品种是一类与籼稻和粳稻杂交杂种F_1代均表现正常可育的一类特殊种质资源。以前的研究表明,Dualr和02428是广亲和品种,并已鉴定出许多位点对籼粳杂种育性有显著效应。在本研究中分别以Dualr和02428作供体,珍汕97为受体,通过连续回交及分子标记辅助选择,构建了含有f5-Du、f6-Du和S5-08的5套近等基因系,即ZS(f5-Du/f5-ZS),ZS(f6-Du/f6-ZS),ZS(S5-08/S5-ZS),ZS(f5-Du/f5-ZS,f6-Du/f6-ZS)和ZS(f5-Du/f5-ZS,S5-08/S5-ZS)。以这些近等基因系为材料,分别与籼稻测验种南京11和粳稻测验种Balilla配组,分析了f5-Du、f6-Du和S5-08的广亲和性和基因效应:并对f5-Du进行了精细定位。获得的主要研究结果如下:
     1.构建的近等基因系ZS(f5-Du/f5-ZS),ZS(f6-Du/f6-ZS),ZS(S5-08/S5-ZS),ZS(f5-Du/f5-ZS,f6-Du/f6-ZS)和ZS(f5-Du/f5-ZS,S5-08/S5-ZS)的轮回亲本珍汕97的遗传背景回复率分别为98.75%,98.75%,97.92%,96.67%和96.67%;并且这些近等基因系在以前研究中检测到的其它籼粳杂种育性位点上均是轮回亲本珍汕97的纯合基因型。
     2.近等基因系与籼稻测验种南京11杂交,所有杂交组合均与对照组合珍汕97×南京11一样表现为正常可育。各近等基因系自交产生的三种基因型植株均表现为正常可育,且三种基因型之间没有偏分离现象发生。因此来自广亲和品种的3个等位基因与典型籼稻对应的等位基因是完全亲和的。
     3.在与粳稻Balilla杂交的亲和性测验中,对单个位点两类基因型之间的比较表明f5位点两类基因型间花粉和小穗育性均存在巨大差异,f5-Du等位基因可以将花粉育性(碘染)平均提高50%以上,小穗育性提高20%以上。由于研究组合中花粉育性太低,f6和S5位点两类基因型间小穗育性均没有显著差异。
     4.含两位点的近等基因系与粳稻Balilla测交结果也表明,f5是唯一引起花粉育性差异的位点,携带f5-Du基因型的植株花粉育性极显著地高于f5-ZS基因型的植株。此外含两位点的近等基因系与粳稻Balilla测交结果也检测到f6和S5位点对小穗育性的极显著效应。在2003年的研究中f6和S5位点对小穗育性仅在f5-Du存在时有极显著效应;而在2004年的研究中不管f5-Du存在与否,均表现出对小穗育性的极显著效应,但当f5-Du存在时f6和S5位点对小穗育性的效应要大得多。同时发现f6和S5位点遗传行为完全相似。
Wide-compatibility varieties (WCVs) are a special class of rice germplasm that is able to produce fertile hybrids when crossed to both indica and japonica subspecies. Previous studies determined Dular and 02428 as two WCVs, and identified a number of QTLs as having large effects on fertility of inter-subspecific hybrids. In this study, we developed five near isogenic lines (NILs) for three of the QTLs, f5, f6, and S5, by backcrossing and marker-assisted selection, using Dular and 02428 as the donors and Zhenshan 97 as the recipient. Three of the NILs each carried one introgressed allele, and 2 NILs each carried two introgressed alleles in combinations. The NILs were test-crossed to an indica tester Nanjing 11 and a japonica tester Balilla. The main results are as follows:
    1. The selected NILs, designated ZS(f5-Du/f5-ZS), ZS(f6-Du/f6-ZS), ZS(S5-08/S5-ZS), ZS(f5-Du/f5-ZS, f6-Du/f6-ZS) and ZS(f5-Du/f5-ZS, 55-08/S5-ZS), were respectively with 98.75%, 98.75%, 97.92%, 96.67%, and 96.67% recovery of the recurrent parent genome. In particular, these NILs were homozygous for the Zhenshan 97 alleles for markers representing all the regions known to harbor loci (or QTLs) for indica/japonica hybrid sterility, as reported in previous studies.
    2. When the NILs were test-crossed to indica tester Nanjing 11, all the crosses produced normal fertile hybrids as the control cross, Zhenshan 97×Nanjing 11. And all the three genotypes of the self-pollinated progenies from each of the NILs also showed normal fertility. In addition, no distorted segregations of the three genotypes were observed. Thus, all three alleles that were transferred to Zhenshan 97 from the WCVs had complete compatibility with the indica alleles.
    3. In the compatibility tests to japonica variety, comparison between the two genotypes for each of the three loci showed that the two genotypes at the f5 locus had the largest differences in both pollen and spikelet fertility; the f5-Du allele could increase the pollen fertility (I_2-KI stainability) by more than 50% and the spikelet fertility by over 20%. While differences between the two genotypes at the other two loci (f6 and S5) were not significant.
    4. Test-crosses of two-locus genotypes also showed that f5 was the only locus causing statistically significant difference in pollen fertility. All the two-locus genotypes involving the f5-Du allele had much higher pollen fertility than ones having the f5-ZS allele. In addition, test-crosses of the two-locus genotypes also detected the effects of the other two
引文
1.王才林,张兆兰,汤述羽,施建达.三系法籼粳亚种间杂种优势利用研究ⅰ.籼粳交不育与细胞质雄性不育的区别及其检测.江苏农业学报,1992,8:1-7
    2.王以秀,严菊强,薛庆中,沈圣泉.水稻亚种间杂种一代部分雄性不育的细胞学研究.浙江农业大学学报,1991,17:417-422
    3.王江.水稻品种Dular高广亲和性的遗传基础及广亲和基因S_5~n位点的精确定位研究.[硕士学位论文].武汉:华中农业大学图书馆,1998
    4.王建平,孙传清,李自超,王象坤,朱立煌.两套水稻籼粳交DH群体的亲和性及其遗传分析.作物学报,2000,26:825-832
    5.冯九焕,卢永根,刘向东,徐雪宾.水稻花粉发育过程及其分期.中国水稻科学,2001,15:21-28
    6.刘永胜,周开达,阴国大,罗文质.水稻籼粳杂种雌性不育的细胞学初步观察(简报).实验生物学报,1993,26:95-96
    7.刘永胜,孙敬三,周开达.水稻亚种间杂种小穗败育的细胞学基础.实验生物学报,1997a,30:335-341
    8.刘永胜,朱立煌,孙敬三,何平,王玉忠,沈利爽.水稻籼粳杂种生殖障碍的基因定位分析.植物学报,1997b,39:1099-1104
    9.刘向东,徐雪宾,卢永根,徐是雄.水稻胚囊形成过程与分期.中国水稻科学,1997,11:141-150
    10.刘红艳.水稻籼粳亚种间子一代不育机理的探讨.[硕士学位论文].武汉:华中农业大学图书馆,2003
    11.刘克德.水稻广亲和遗传基础的全基因组分析及S_5位点区段部分物理图谱的构建.[博士学位论文].武汉:华中农业大学图书馆,1998
    12.吕川根,王才林,宗寿余,赵凌,邹江石.温度对水稻亚种间杂种育型及结实率的影响.作物学报,2002,28:499-504
    13.孙传清,姜廷波,陈亮.水稻杂种优势与遗传分化关系的研究.作物学报,2000,26:641-649
    14.朱英国,余金洪,杨代常.水稻亚种间杂交亲和性的遗传及广亲和性选育.湖北农业科学[增刊],1996,28-32
    15.朱晓红,曹显祖,朱庆森.水稻籼粳亚种间杂种小穗不孕的细胞学研究.中国水稻科学,1996,10:71-78
    16.庄楚雄,张桂权,梅曼彤,卢永根.栽培稻F1花粉不育基因座S-a的分子标记定位.遗传学报,1999,26:213-218
    17.庄楚雄,梅曼彤,张桂权,卢永根.用RAPD标记对栽培稻F1花粉不育基因座S-b定位.遗传学报,2002,29:700-705
    18.祁祖白,蔡业统,李宝健.影响籼粳杂种诸要素的研究.广东农业科学,1993,2:4-6
    19.严长杰,梁国华.朱立煌,顾铭洪.秋稻品种Dular广亲和基因的RFLP分析.遗传学报,2000,27:409-417
    20.严长杰,梁国华,顾世梁,裔传灯,陆驹飞,李欣,顾铭洪.典型籼粳杂种不育性的分子标记分析及其遗传基础.遗传学报,2003,30:267-276
    21.宋翔.水稻籼、粳亚种间杂种不育机理的研究.[博士学位论文].武汉:华中农业大学图书馆,2005
    22.何光华,郑家奎,阴国大,杨正林.水稻亚种间杂种配子育性的研究.中国水稻科学,1994,8:177-180
    23.张桂权,卢永根.栽培稻杂种不育性的遗传研究ⅰ.等基因F1不育系杂种不育性的双列分析.中国水稻科学,1989,3:97-101
    24.张桂权,卢永根.栽培稻杂种不育性的遗传研究ⅱ.F1花粉不育性的基因模式。遗传学报,1993a,20:222-228
    25.张桂权,卢永根,刘桂富.杨进昌,张华.栽培稻杂种不育性的遗传研究ⅲ.不同类型品种F1花粉不育性的等位基因分化.遗传学报,1993b,20:541-551
    26.张桂权,卢永根,张华.杨进昌,刘桂富.栽培稻杂种不育性的遗传研究ⅳ.F1花粉不育性的基因型.遗传学报,1994,21:34-41
    27.李宝健.“863”计划生物技术领域1990年会论文摘要汇编.国家科委,1990
    28.李林,张更生.温度对亚优2号结实率的影响.江苏农业科学,1993,1:18-20
    29.李新奇.利用广亲和基因提高籼粳杂种育性研究.杂交水稻,1988,3:31-33
    30.杨振玉,刘万友.籼粳亚种的分类及其与杂种优势关系的研究.中国水稻科学,1991,5:151-156
    31.闵绍楷,熊振民,程式华,曹立勇,徐云碧.水稻亚种间广亲和性鉴定标准的研究.浙江农业学报,1990,2:1-6
    32.凌定厚,马镇荣,陈梅芳,梁承邺,何炳森.籼稻体细胞无性系雄性不育突变的类型.遗传学报,1991,18:132-139
    33.徐才国.水稻亚种内及亚种间杂交花粉在柱头上附着和萌发状态的观察.华中农业大学学报,1995,14:421-424
    34.袁隆平.杂交水稻的育种战略设想.杂交水稻,1987,1:1-3
    35.顾铭洪,潘学彪,陈宗祥.我国现用水稻广亲和性测验品种的亲和性分析.中国农业科学,1991,6:27-32
    36.顾铭洪,游艾青,潘学彪.水稻品种广亲和基因等位性的遗传分析.两系法杂交水稻研究论文集.北京:农业出版社,1992,259-268
    37.顾铭洪.对亚种间杂交水稻广亲和系选育中的一些问题的讨论.杂交水稻,1994,4:34-37
    38.梁国华,严长杰,裔传灯,朱立煌,顾铭洪.水稻广亲和性遗传的再研究.遗传学报,2001,28:447-457
    39.程侃声,周季维,卢义宣,罗军,黄乃威,刘光荣.云南稻种资源的综合研究与利用ⅱ亚洲栽培稻分类的再认识.作物学报,1984,10:271-280
    40.程侃声,王象坤,卢义宣,罗军,黄乃威,刘光荣.云南稻种资源的综合研究与利用Ⅸ论亚洲栽培稻的籼粳分类.作物品种资源,1988,1:1-5
    41.曾世雄,杨秀清,卢庄文.栽培稻籼粳亚种间杂种一代优势的研究.作物学报,1980,6:193-202
    42.褚启人.栽培稻生态型杂交F1不孕性的遗传机理.上海农业科技,1983,4:5-7
    43.谢卡斌,张建伟,向勇,冯旗,韩斌,王石平,张启发,熊立仲.10828条籼稻全长cDNA的分离和注释.中国科学C辑:生命科学,2005,35:6-12
    44.滕俊琳,薛庆中,王以秀.水稻亚种间杂种F1花粉和花药壁发育超微结构观察.浙江农业大学学报,1996,22:467-473
    45.潘学彪,顾铭洪,陈宗祥,顾兴友.我国主要水稻广亲和品种亲和性比较研究.两系法杂交水稻研究论文集.北京:农业出版社,1992,236-245
    46. Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA, 1996, 93:15503-15507
    47. An S, Park S, Jeong D H, Lee D Y, Kang H G, Yu J H, Kim S R, Kim Y H, Lee M, Han S, Kim S J, Yang J, Kim E, Wi S J, Chung H S, Hong J P, Choe V, Lee H K, Choi J H, Nam J, Kim S R, Park P B, Park K Y, Kim W T, Choe S, Lee C B, An G. Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol, 2003, 133:2040-2047
    48. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309:741-745
    49. Augourg S, Rouze P. Genome annotation. Plant Physiol Biochem, 2001, 39:181-193
    50. Bernacchi D, Beckbunn T, Eshed Y. Advanced backcross QTL analysis in tomato. 1. identification of QTL for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet, 1998, 97:381-397
    51. Berloo RV. Computer note. GGT: software for the display of graphical genotypes. J Hered, 1999, 90:328-329
    52. Birnbaum K, Shasha D, Wang J, Jung J, Lambert G, Galbraith D, Benfey P. A gene expression map of the Arabidopsis root. Science, 2003, 302:1956-1960
    53. Botstein D, White R, Skolnick M, Davis R. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980, 32:314-331
    54. Causse M, Fulton T, Cho Y, et al. Saturated molecular map of the rice genome based on an interspecific backcross population.Genetics,1994, 138:1251-1274
    55. Chen S, Jin W, Wang M, Zhang F, Zhou J, Jia Q, Wu Y, Liu F, Wu P. Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J, 2003, 36:105-113
    56. Cong B, Liu J, Tanksley S D. Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc Natl Acad Sci USA, 2002, 99:13606-13611
    57. Darvasi A, Weinreb A, Minke V, Weiler Jl, Seller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics, 1993, 134:943-951
    58. Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature, 1997, 386:485-488
    59. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehdl, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hdl. Genes Dev, 2004, 18:926-936
    60. EI-Din EI-Assal S, Alonso-Blanco C, Peeters A J, Raz V, Koornneef M. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet, 2001, 29:435-440
    61. Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141:1147-1162
    62. Falconer R. Introduction to Quantitative Genetics. New York: Ronald Press, 1960
    63. Feng Q, Zhang Y J, Hao P, Wang S Y, Fu G. Huang Y C, Li Y, Zhu J J, Liu Y L, Hu X, Jia P X, Zhang Y, Zhao Q, Ying K, Yu S L, Tang Y S, Weng Q w, Zhang L, Lu Y, Mu J, et al. Sequence and analysis of rice chromosome 4. Nature, 2002, 420:316-320
    64. Fowler S, Thomashow M. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 2002, 14:1675-1690
    65. Frary A, Nesbitt TC, Grandiilo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley S D.fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289:85-88
    66. Fridman E, Pleban T, Zamir D. Recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA, 2000, 97:4718-4723
    67. Fridman E, Liu Y S, CarmeI-Goren L, Gur A, Shoresh M, Pleban T, Eshed Y, Zamir D. Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Mol Gen Genomics, 2002, 266:821-826
    68. Fridman E, Carrari F, Liu Y S, Fernie A R, Zamir D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science, 2004, 305:1786-1789
    69. Gavrilets S. Rapid evolution of reproductive barriers driven by sexual conflict. Nature, 2000, 403:886-889
    70. Glaszmann J. Isozymes and classification of Asian rice varietie. Theor Appl Genet, 1987, 74:21-30
    71. GoffS A, Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange B M, Moughamer T, Xia Y, Budworth P, Zhong J P, Miguel T et al. A draft sequence of the rice genome (Oryza sativa L.ssp. Japonica). Science, 2002, 296:92-100
    72. Greco R, Ouwerkerk P B F, de Kam R J, Sallaud C, Favalli Colombo L, Guiderdoni E, Meijer A H, Hoge J H C, Pereira A. Transpositional behaviour of an Ac/Ds system for reverse genetics in rice. Theor Appl Genet, 2003, 108:10-24
    73. Harushima Y, Kurata N, Yano M, Nagamura Y, Sasaki T, Minobe Y, Nakagahra M. Detection of segregation distortions in an indica-japonica rice cross using a high-resolution molecular map. Theor Appl Genet, 1996, 92:145-150
    74. Harushina Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin S Y, Antonio B A, Pareo A, Kajiya H, Huang N, Khush G S, Sasaki T. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics, 1998, 148:479-494
    75. Harushima Y, Nakagahra M, Yano M, Sasaki T, Kurata N. A genome-wide survey of reproductive barriers in an intraspecific hybrid. Genetics, 2001, 159:883-892
    76. Harushima Y, Nakagahra M, Yano M, Sasaki.T, Kurata N. Diverse variation of reproductive barriers in three intraspecific dee crosses. Genetics, 2002, 160:313-322
    77. Henderson M T. Cytogenetic studies at the Louisiana Agricultural Experiment Station on the nature of intervarietal hybrid sterility in Oryza sativa L. Rice genetics and cytogenetics, Elsevier, Amsterdam, 1964,147-153
    78. Hieter P, Boguski M. Functional Genomics: it's all how you read it. Science, 1997, 278:601-602
    79. Hirel B, Bertin P, Quillere I. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol, 2001, I25:1258-127
    80. Hirochika H. Contribution of the Tos17 retrotransposon to dee functional genomics. Curr. Opin. Plant Biol, 2001, 4:118-122
    81. Hospital F, Charcosset A. Marker-assisted introgression of quantitative trait loci. Genetics, 1997, 147:1469-1485
    82. Howell P M, Marshall D F, Lydiate D J. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome, 1996, 39:348-358
    83. Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang Q. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics, 2002, 162:1885-1895
    84. Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. USA, 2003, 100:2574-2579
    85. Hunter R, Market C. Histochemical demonstration of enzymea separated by zone electrophoresis in starch gels. Science, 1957, 125:1294-1295
    86. Ikeda. Research on hybrid rice in Japan, progress and future directions (in Japanese). J Agric Sci, 1994, 49:478-492
    87. Ikehashi H, Araki H. Variety screening of compatibility types revealed in F1 fertility of distant cross in rice. Jpn J Breed, 1984, 34:304-313
    88. Ikehashi H, Araki H. Genetics of F1 sterility in remote crosses of rice. In: Rice genetics, Proc Int Rice Genetics Syrup. 1986, IRRI, Los banos, Philippines, 119-130
    89. Ikehashi H. Araki H. Multiple alleles controlling F1 sterility in remote crosses of rice (Oryza sativa), Jpn d Breed, 1988, 38:283-291
    90. Jansen R C, Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics, 1994, 136:1447-1455
    91. Jansen R C, Ooijen J W, Stam P, Lister C, Dean C. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet, 1995, 91:33-37
    92. Jeon J S, Lee S, Jung K H, Jun S H, Jeong D H, Lee J, Kim C, Jang S, Yang K, Nam J. T-DNA insertional mutagenesis for functional genomics in rice. Plant J, 2000, 22:561-570
    93. Jeong D H, An S, Kang H G, Moon S, Han J, Park S, Lee H S, An K, An G. T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol, 2002, 130:1636-1644
    94. Ji Q, Lu J, Chao Q, Gu M, Xu M. Delimiting a rice wide-compatibility gene S_5~n to a 50 kb region. Theor Appl Genet, 2005, 111:1495-1503
    95. Kao C H, Zeng Z B, Teasdale R D. Multiple interval mapping for quantitative trait loci. Genetics, 1999, 152:i203-1216
    96. Kato S, Kosaka H, Hara S. On the affinity office varieties as shown by fertility of hybrid plants. Bull Sci Fac Agric Kyushu Univ, 1928, 3:132-147
    97. Khush G S. Origin, dispersal, cultivation and variation of rice. Plant Mol Biol, 1997, 35:25-34
    98. Kinoshila T. Report of the committee on gene symbolization. Rice Genetics Newsletter, 1995, 12:94-125
    99. Kitamura E. Genetic studies on sterility observed in hybrids between distantly related varieties of rice, Oryza sativa. Rep Chugoku Exp Sta, 1962, 8:141-205
    100. Klok E, Wilson I, Wilson D, Chapman S, Ewing R, Somerville S, Peacock W, Dennis E. Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell, 2002, 14:2481-2494
    101. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day conditions. Plant Cell Physiol, 2002, 43: 1096-1105
    102. Kolesnik T, Szeverenyi I, Bachmann D, Kumar C S, Jiang S, Ramamoorthy R, Cai M, Ma Z G, Sundaresan V, Ramachandran S. Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J, 2004, 37:301-314
    103. Koudande O D, IraQi F, Thomson P C, Teal A J, Arendonk J A. Strategies to optimize marker-assisted introgression of multiple unlinked QTL. Mammalian Genome, 2000, 11:145-150
    104. Kroymann J, Donnerhacke S, Schnabelraueh D, Mitchell-Olds T. Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. Proc Natl Acad Sci USA, 2003, Suppl. 2:14587-14592
    105. Kubo T, Nakamura K, Yoshimura A. Development of a series of Indica chromosome substitution lines in Japonica background of rice. Rice Genet Newsl, 1999, 16:104-106
    106. Kubo T, Yoshimura A. Epistasis underlying female sterility detected in hybrid breakdown in a japonica-indica cross of rice (Oryza sativa L.). Theor Appl Genet, 2005, 110:346-355
    107. Kurata N A, Shimizu T, Lin S Y, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna, L, Zhong H S, Tamura Y, Wang Z X, Momma T, Umehara Y, Yano M, Sasaki T et al.. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nat Genet, 1994, 8:365-372
    108. Lande R, Thompson R. Efficiency of marker-assisted selection in improvement of quantitative traits. Genetics, 1990, 124:743-756
    109. Lander E S, Bosstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121:185-199
    110. Law CN. The location of genetic factors affecting a quantitative character in wheat. Genetics, 1996, 53:487-498
    111. Li H B, Zhang Q, Liu A M, Zou J S, Chen Z M. A genetic analysis of low-temperature-sensitive sterility in indica-japonica hybrids. Plant Breed, 1996, 115:305-309
    112. Li H B, Wang J, Liu A M, Liu K D, Zhang Q, Zou J S. Genetic basis of low-temperature-sensitive sterility in indica-japonica hybrids of rice as determined by RFLP analysis. Theor Appl Genet, 1997, 95:1092-1097
    113. Li W T, Zeng R Z, Zhang Z M, Zhang G Q. Mapping of S-b locus for F_1 pollen sterility in cultivated rice using PCR based markers. Acta Bot Sin, 2002, 44:463-467
    114. Li Z K, Pinson R M, Paterson A H, Park W D, Stanset J W. Genetics of hybrid sterility and hybrid breakdown in an intersubspecific rice (Oryza sativa L.) population. Genetics, 1997, 145:1139-1148
    115. Li Z, Pinson S R, Park W D, Paterson A H, Stansel J W. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics, 1997, 145:453-465
    116. Li Z, Pinson S R, Stansel J W, Paterson A H. Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.). Mol Breed, 1998, 4:419-426
    117. Liao C Y, Wu P, Hu B, Yi K K. Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number. Theor Appl Genet, 2001, 103:104-111
    118. Lin H X, Yamamoto T, Sasaki T,Yano M. Characterization and dection of epistatic interactions of 3 QTLs, Hdl, Hd1, and Hd3, controlling heading date in rice using nearly isogenic lines.Theor Appl Genet, 2000, 101:1021-1028
    119. Lin H X, Ashikari M. Yamanouchi U. Sasaki T. Yano M. Identification and characterization of a quantitative trait locus, Hd9, controlling heading date in rice. Breed Sci, 2002, 52:35-41
    120. Lin SY, Ikehashi H, Yanagihara S, Kawashima A. Segregation distortion via male gamete in hybrids between Indica and Japonica or wide-compatibility varieties of rice (Oryza sativa L.). The or Appl Genet, 1992, 84:812-818
    121. Lin SY, lkehashi H. A gamete abortion locus detected by segregation distortion of isozyme locus EST-9 in wide crosses (Oryza sativa L.). Euphytica, 1993, 67:35-40
    122. Lincoln S, Daly M, Lander E. Constructing genetic maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report, 2nd edn. Whitehead Institute, Cambridge, Mass, 1992a
    123. Lincoln S, Daly M, Lander E. Mapping genes controlling quantitative traits with MAPMAKER/QTL 1.1. Whitehead Institute Technical report, 2nd edn. Whitehead Institute, Cambridge, Mass, 1992b
    124. Liu H Y, Xu C G, Zhang Q. Male and female gamete abortions, and reduced affinity between the uniting gametes as the causes for sterility in an indica/japonica hybrid in rice. Sex Plant Reprod, 2004, 17:55-62
    125. Liu J, Van Eck J, Cong B, Tanksley S D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA, 2002, 99:13302-13306
    126. Liu K D, Zhou Z Q, Xu C G, Zhang Q F, Saghai Maroof M A. An analysis of hybrid sterility in rice using a diallel cross of 21 parents involving indica, japonica and wide compatibility varieties. Euphytica, 1996, 90:275-280
    127. Liu K D, Wang J, Li H B, Xu C G, Liu A M, Li X H, Zhang Q E A genome-wide analysis of wide compatibility in rice and the precise location of the S5 locus in the molecular map. Theor Appl Genet, 1997, 95:809-814
    128. Liu N, Shan Y, Wang FP, Xu CG, Peng KM, Li XH, Zhang Qifa. Identification of an 85-kb DNA fragment containing pmsl, a locus for photoperiod-sensitive genie male sterility in rice. Mol Genet Genomics, 2001,266:271-275
    129. Liu Y S, Zhu L H, Sun J S, Chen Y. Mapping QTLs for defective female gametophyte development in an inter-subspecific cross in Oryza sativa L. Theor Appl Genet, 2001, 102:1243-1251
    130. Lu CG, Takabatake K, Ikehashi H. Identification of segregation-distortion-neutral alleles to improve pollen fertility of indica-japonica hybrids in rice (Oryza sativa L.). Euphytica, 2000, 113:101-107
    131. Maeka M, Inuka T, Shinbashi N. Spikelet sterility in F1 hybrids between rice varieties Silewah and Hayakogane. Jpn J Breed, 1991, 41:359-363
    132. Mather K, Jinks J L. Biometrical Genetics. Ithaca, NY: Comell Univ Press, 1971
    133. McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B Y, Maghirang R, Li Z K, Xing Y Z, Zhang Q F, Kono I, Yano M, Fjellstrom R, Declerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA RES, 2002, 6:199-207
    134. Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H. Target site specificity of the Tos17 retrotransposon shows a preference for insertion in retrotransposon-rich regions of the genome. Plant Cell, 2003, 15:1771-1780
    135. Monna L, Lin H X, Kojima S, Sasaki T, Yano M. Genetic dissection of a genomic region for quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet, 2002, 104:772-778
    136. Mouchel C F, Briggs G C, Hardtke C S. Natural genetic variation in Arabidopsis identifies BREVIS RADLX, a novel regulator of cell proliferation and elongation in the root. Genes Dev, 2004, 18:700-714
    137. Oka H I, Doida Y. Phylogenetic differentiation of cultivated rice, analysis of the genetic basis of hybrid breakdown in rice. Jpn JGenet, 1962, 37:24-35
    138. Oka. Analysis of genes controlling F1 sterility in rice by the use of isogenic lines. Genetics, 1974, 77:521-534
    139. Oka H I. Origin of cultivated rice. Scientific Societies Press, Tokyo, Japan, 1988. 181-209
    140. Paterson A, Lander E, Hewitt J, Peterson S, Lincoln S,Tanksley S. Resolution of quantitative traits into mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1985, 335:721-726
    141. Qi X, Bakht K, Devos M, Gale, Osbourn A. L-RCA (ligation rolling circle amplification): a general method for genotyping of single nucleotide polymorphisms (SNPs). Nucleic Acids Res, 2001, 29:116-121
    142. Qiu S Q, Liu K D, Jiang J X, Song X, Xu C G, Li X H, Zhang Qifa. Delimitation of the rice wide compatibility gene S_5~n to a 40-kb DNA fragment. Theor Appl Genet, 2005, in press
    143. Rae A M, Howell E C, Kearsey M J. More QTL for flowering time revealed by substitution lines in Brassica oleracea. Heredity, 1999, 83, 586-596
    144. Ramsay L, Jennings D, Bohuon E, Arthur A. The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci. Genome, 1996, 39:558-567
    145. Rieseberg L H, Sinervo B, Linder C R, Ungerer M C, Arias D M. Role of gene interactions in hybrid speciation: evidence from ancient and experimental hybrids. Science, 1996, 272:741-745
    146. Rieseberg L H, Baird S J, Gardner K A. Hybridization, introgression, and linkage evolution. Plant Mol Biol, 2000, 42:205-224
    147. Sallaud C, Gay C, Larmande P, Bes M, Piffanelli P, Piegu B, Droe G, Regard F, Bourgeois E, Meynard D, Perin C, Sabau X, Ghesquiere A, Glaszmann J C, Delseny M, Guiderdoni E. High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics Plant J, 2004, 39:450-464
    148. Sano Y. The genic nature of gamete eliminator in rice. Genetics, 1990, 125:183-191
    149. Sano Y. Is an egg-killer present in rice? Theor Appl Genet, 1993, 86:1038-1042
    150. Sasaki T, Song J, Koga-Ban Matsui E, Fang F, Higo H, Nagasaki H, Hori M, Miya M, Murayama-Kayano E, Takiguchi T, Takasuga A, Niki T, Ishimaru K, Ikeda H, Yamomato Y, Mukai T, Ohta I, Miyadera N, Havukkala I, Minobe Y. Toward catalogueing all rice genes: large scale sequencing of randomly chosen rice cDNAs from a callus cDNA library. Plant J, 1994, 6:615-624
    151. Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu J, Niimura Y, Cheng Z, Nagamura Y, Antonio B, Kanamori H, Hosokawa S, Masukawa M, Arikawa K, Chiden Y, Hayashi M, Okamoto M, Ando T, Aoki H, et al. The genome sequence and structure of rice chromosome 1. Nature, 2002, 420:312-316
    152. Sax K. The association of size differences with seedcoat pattern and pigmentation in Phaseolus vulgaris. Genetics, 1923, 8:552
    153. Schneider K A, Brothers M E, Kelly J D. Marker assisted selection to improve drought resistance in common bean. Crop Sci, 1997, 37:51-60
    154. Scbenk P, Kazan K, Wilson I, Anderson J, Richmond T, Somerville S, Manners J. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl dcad Sci USA, 2000, 97:11655-11660
    155. Sha Y, Li S, Pei Z, Luo L, Tian Y, He C. Generation and flanking sequence analysis of a rice T-DNA tagged population. There Appl Genet, 2004, 108:306-314
    156. Smith H H. The reaction between genes affecting size and color in certain species of Nicotiana. Genetics, 1937, 22:361
    157. Song X, Qiu S Q, Xu C G, Li X H, Zhang Q. Genetic dissection of embryo sac fertility, pollen fertility, and their contributions to spikelet fertility of intersubspecific hybrids in rice. Theor Appl Genet, 2005, 110:205-211
    158. Stuber C, Lincoln S, Wolff D, Helentjaris T, Lander E. Identification of genetic factors contributing to heterosis in a hybrid from elite maize inbred lines using molecular markers. Genetics, 1992, 132:823-839
    159. Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitave trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98:7922-7927
    160. Tanksley S D, Medina Hilho H, Rick C M. Use of naturally occurring enzyme variation to detect and map gene controlling quantitative traits in an interspecific backcross of tomato. Heredity, 1982, 49:11-25
    161. Tanksley S D, Ganai M W, Prince J C, deVicente M C, Bonierbale M W, Brown P, Fulton T M, Giovannoni J J, Grandillo S, Martin G B, Messeguer R, Miller J C, Miller L, Paterson A H, Pinedo O, Roder M S, Wing R A, Wu W, Young N D. High density molecular linkage maps of the tomato and potato genomes: biological inferences and practical applications. Genetics, 1992, 132:1141-1160
    162. Tanksley S D. Mapping polygenes. Annu Rev Genet, 1993, 27:205-233
    163. Tanksley, S D, Nelson J C. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet, 1996, 92:191-203
    164. Temnykh S, Park W D, Ayres N M, Cartinhour S, Hauck N, Lipovich L, Cho Y G, Ishii T, McCouch S R. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet, 2000, 100:697-712
    165. Temnykh S, DeCklerck G, Lukashova A, Lipovich L, Cartinhiur S, McCouch S. Computaional and Experimental Analysis of Microsatellites in Rice (Oryza sativa L): Frequency, Length, Variation, Transpon Associations, and Genetic Marker Potential. Genome Research, 2001,11: 1441-1452
    166. Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S. Efficient gene targeting by homologous recombination in rice. Nat Biotechnol, 2002, 20:1030-1034
    167. Tero H, Mizushima U. Some consideratons on the classification of Oryza sativa L. into subspecies, so-called Japonica and Indica. Jpn J Bot, 1939, 10:213-258
    168. Ting C T, Tsaur S C, Wu M L, Wu C I. A rapidly evolving homebox at the site of a hybrid sterility gene. Science, 1998, 282:1501-1504
    169. The Arabidopsis genome initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408:796-815
    170. Thoday J. Location of polygenes. Nature, 1961, 191:368-370
    171. Thompson J. Quantitative variation and gene number. Nature, 1975, 258:665-668
    172. Thomsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28:286-289
    173. Vacquier V D. Evolution of gamete recognitionproteins. Science, 1998, 281:1995-1998
    174. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 1995, 23: 4407-4414
    175. Wan J, Yanagihara S, Kato H, Ikehashi H. Multiple alleles at a new locus causing hybrid sterility between a Korean indiea variety and a javanica variety in rice (Oryza sativa L.). Jpn J Breed, 1993, 43:507-516
    176. Wan J, Ikehashi H. Identification of a new locus causing hybrid sterility in native rice varieties (Oryza sativa L.) from tai-hu lake region and yunnan province, China. Breeding Sci, 1995, 45:461-470
    177. Wan J, Yamaguchi Y, Kato H, lkehashi H. Two new loci for hybid sterility in cultivated rice (Oryza sativa L. ). Theor Appl Genet, 1996, 92:183-190
    178. Wang D L, Zhu J, Li Z, Paterson. Mapping QTLs with epistatic effects and QTL * environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99:1255-1264
    179. Wang J, Liu K D, Xu C G, Li X H, Zhang Q E The high level of wide-compatibility of variety 'Dular' has a complex genetic basis. Theor Appl Genet, 1998, 97:407-412
    180. Weber J, May P. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet, 1989, 44:388-396
    181. Weller J I. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics, 1986, 42:627-640
    182. Wemer J D, Borevitz J Q, Warthmann N, Trainer G T, Ecker J R, Chory J, Weigel D. Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Proc Natl Acad Sci USA, 2005, 102:2460-2465
    183. Williams J, Kubelik A, Livak K, Rafalski J, Tingey S. Oligonucleotide primers of arbirrary sequence amplify DNA polymorphisms which are useful as genetic markers. Nucleic Acids Res, 1990, 18:6531-6535
    184. Wu K S, Tanksley S D. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet, 1993, 241:225-235
    185. Wu C Y, Li X J, Yuan W Y, Chen G X, Kilian A, Li J, Xu C, Li X, Zhou D X, Wang S P, Zhang Q F. Development of enhancer trap lines for functional analysis of the rice genome. Plant J, 2003, 35:418-427
    186. Wu H K. Rice genetics and cytogenetics, Elsevier, Amsterdam, 1964, 187-188
    187. Wu J Z, Maehara T, Shimokawa T, Yamamoto S, Harada C, Takazaki Y, Ono N, Mukai Y, Koike K, Yazaki J, Fujii F, Shomura A, Ando T, Kono I, Waki K, Yamamoto K, Yano M, Matsumoto T, Sasaki T. A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell, 2002, 14:525-535
    188. Wu P, Zhang G, Huang N, Ladha J K. Non-allelic interaction conditioning spikelet sterility in an F2 population of indica/japonica cross of rice. Theor Appl Genet, 1995, 91:825-829
    189. Xing Y Z, Tan Y F, Hun J P, Sun X L, Xu C G, Zhang Q. Characterization of the main effects, epistafic effects and their environment interactions of QTLs in the genetic basis of yield traits in rice. Theor Appl Genet, 2002, 105:248-257
    190. Xu Y, Zhu L, Xiao J, Huang N, McCouch S R. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Genet Genomics, 1997, 253:535-545
    191. Yamada K, Lim J, Dale J, et al. Empirical analysis of transcriptional activity in the Arabidopsis genome. Science, 2003, 302:842-846
    192. Yamamoto K, Sasaki T, Large scale EST sequencing. Plant Mol Biol, 1997, 35:135-144
    193. Yamamoto T, Lin H X, Sasaki T, Yano M. Identification of heading date quantitative trait locus Hd6, and characterization of its epistatic interaction with Hd2 in rice using advanced backcross progeny. Genetics, 2000, 154:885-891
    194. Yamazaki M, Tsugawa H, Miyao A, Yano M, Wu J, Yamamoto S, Matsumoto T, Sasaki T, Hirochika H. The rice retrotransposon Tos17 prefers low-copy-number sequences as integration targets. Mol Genet Genomics, 2001, 265:336-344
    195. Yanagihara S, Kato H, Ikehashi H. A new locus for multiple alleles causing hybrid sterility between an Aus variety and javanica varieties in rice (Oryza sativa L.). Jpn J.Breed, 1992, 42:793-810
    196. Yanagihara S, McCouch R, ishikawa K, Ogi Y, Maruyama K, Ikehashi H. Molecular analysis of the irtheritance of the S-5 locus, conferring wide compatibility in Indica/Japonica hybrids of rice (O. sativa L.). Theor Appl Genet, 1995, 90:182-188
    197. Yang G P, Saghai Maroof M A, Xu C G, Zhang Q, Biyashev R M. Comparative analysis of microsatetite DNA polymorphism in landraces and cultivars of rice. Mol Gen Genet, 1994, 245:187-194
    198. Yano M, Harushima Y, Lin SY, Kuboki Y, Shomura A, Shimano T, Nagamura BA, Inoue T, Kajiya H, Kawamura Y, Kishida T, Nagamura Y. Strategy for genetic dissection of quantitative traits into single Mendelian factors using DNA markers. Rice Genome, 1994, 3:5
    199. Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol 1997, 35:145-153
    200. Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T. Identification of quantitative trait loci controlling heading date in rice using a high density linkage map. Theor Appl Genet, 1997, 95:1025-1032
    201. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12:2473-2484
    202. Yao S Y, Henderson M T, Jodon N E. Cryptic structural hybridity as a possible cause of sterility in intervariatal hybrids of cultivated rice (Oryza sativa L.). Cytologia, 1958, 23:46-55
    203. Yokoo M. Female sterility in an indica-japonica cross of rice. Jpn J Breed, 1984, 34:219-227
    204. Yu J, Hu S N, Wang J, Wong G K S, Li S G, Liu B, Deng Y J, Dai L, Zh6u Y, Zhang X Q, Cao M L, Liu J, Sun J D, Tang J B, Chen Y J, Huang X B, Lin W, Ye C, Tong W, Cong L J et al. A draft sequence of the rice genome (Oryza sativa L.ssp. Indica). Science, 2002, 296:79-92
    205. Yu S B, Li J X, XU C G, Tan Y F, Gao Y J, Li X H, Zhang Q F. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 1997,94:9226-9231
    206. Zeng Z B. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA, 1993, 90:10972-10976
    207. Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136:1457-1468
    208. Zhang J W, Feng Q, Jin C Q, Qiu D Y, Zhang L D, Xie K B, Yuan D J, Han B, Zhang Q F, Wang S P. Features of the expressed sequences revealed by a large-scale analysis of ESTs from a normalized cDNA library of the elite indica rice cultivar Minghui 63. Plant J, 2005, 42:772-780
    209. Zhang Q, Saghai Maroof M A, Lu T Y, Shen B Z. Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis. Theor Appl Genet, 1992, 83:495-499
    210. Zhang Q, Liu K D, Yang G P, Saghai Maroof M A, Xu C G,Zhou Z Q. Molecular maker diversity and hybrid sterility in indica-japonica rice crosses. Theor Appl Genet, 1997, 95:112-118
    211. Zhuang C X, Fu Y, Zhang G Q, Mei M T, Lu Y G. Molecular mapping of S-c, an F1 pollen sterility gene in cultivated rice. Euphytica, 2002, 127:133-138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700