许氏平鲉(Sebastes schlegelii)微卫星标记筛选及遗传连锁图谱构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许氏平鲉(Sebastes schlegelii)——黑鲪是一种沿海地区炙手可热的养殖鱼类。许氏平鲉属于卵胎生鱼种,每年11月中旬左右开始交尾,交尾后精子留在雌鱼体内,次年5月左右产子。本研究利用富集文库-菌落原位杂交法构建了微卫星富集文库,共获得1073个阳性克隆,成功测序为809个克隆,其中770个(95%)的克隆中有微卫星座位982个。选取的581个微卫星座位设计引物,利用6个野生个体进行了多态性筛选,其中共有307对引物具有多态性,能扩增出稳定而且目的片段清晰的条带,占52.84%。选取了38个微卫星位点对许氏平鲉青岛野生群体的30个个体进行了遗传多样性分析,经过统计发现等位基因数目在2-8个不等,平均等位基因数目是5个,观测杂合度(Ho)和期望杂合度(He)的范围各自为0.2414-0.7931和0.2250-0.8185,多态信息含量(PIC)的范围是0.1760-0.8143,平均值是0.5704,表明青岛海区的许氏平鲉野生群体的遗传多样性所处的水平仍在较高位置,拥有一定的遗传变异度。
     利用微卫星来鉴定水产动物的亲缘关系已经广泛的应用于研究中。本研究利用17对微卫星标记对4个许氏平鲉雌亲本所生家系进行初步鉴别,结果表明,17个位点在家系#1中可以获得的雄亲等位基因数为1-2个,家系#2扩增的雄亲等位基因数为2-5个,另外2个家系中扩增的雄亲等位基因数为2-4个,未出现6个以上等位基因的情况,初步断定,家系#1为一雌一雄交尾的全同胞家系,家系#3和#4是一雌二雄交尾的半同胞家系,而家系#2为一雌三雄交尾的半同胞家系。这一结果,为今后建立以家系为基础的许氏平鲉遗传图谱构建提供了一定的理论基础和技术支撑。
     利用鉴定的家系#1位作图群体,构建了许氏平鲉遗传连锁图谱。雌性连锁图谱的分析中,共有159个微卫星标记可用于图谱构建,有144个标记被定位为到图谱中,其中有27个偏分离标记也被定位到框架图谱中,占全部被定位的标记总数18.75%。这144个微卫星标记被分为25个连锁群,总长度为1130.7cM,平均图距为10.8cM。雄性连锁图谱的分析中,共有176个微卫星标记可用于图谱构建,有162个标记被定为到图谱中,其中有29个偏分离标记也被定位到框架图谱中,占全部被定位的标记总数17.9%。这162个微卫星标记被分为26个连锁群,总长度为1137.0cM,平均图距为9.6cM。整合连锁图谱的分析中,两个亲本共有202个微卫星标记可用于图谱构建,在构建的整合图谱中,有183个标记被成功定位,其中有32个偏分离标记也被定位到框架图谱中,占全部被定位的标记总数17.49%。这183个微卫星标记被分为26个连锁群,总长度为1200.3cM,平均图距为8.5cM。根据数据计算,许氏平鲉雌雄两个图谱的预期长度分别为1668.1cM、1627.2cM,因此,本研究构建的许氏平鲉雌雄遗传连锁图谱覆盖率分别为67.8%、69.9%。将所有的标记整合用于作图,其预期长度为1636.5cM,覆盖率为73.7%。许氏平鲉家系鉴定方法的建立及遗传连锁图谱的构建,为今后生产性状的遗传力估算、QTL定位及分子标记辅助育种等,提供了重要的方法基础和技术支撑。
The black rockfish, Sebastes schlegelii, is a valuable marine fish in China. It isovoviviparous fish which mate in the autumn and give rise to fry in the following May.In this study, the microsatellite markers were isolated for the rock fish (S. schlegeli)through construction of microsatellite enrichment libraries and colony hybridization.A total of1073positive clones were screened and sequenced. Of the809successfullysequenced clones,982microsatellite sequences were identified in770positive clones,which accounted for95%clones sequenced. A total of518microsatellite loci wereselected for primer design and for detection of polymorphisms, of which307pairs ofprimers provided clear amplification of polymorphic products in6randomly selectedwild individuals. The polymorphic loci accounted for52.84%of all microsatellitesequences detected. From polymorphic loci38were characterized in30wildindividuals. The number of alleles ranged from2to8, averaged5per locus. Theobserved heterozygosity (HO) and expected heterozygosity (HE) ranged from0.2414to0.7931and0.2250to0.8185, respectively. The polymorphism information contents(PIC) ranged from0.1760to0.8143, and averaged0.5704. The result showed that thewild rock fish (S. schlegeli) still has relatively high population genetic diversity.
     The microsatellite has been used in individual and parentage identification ofaquatic animals. In this study we analyzed4maternal families using17highlypolymorphic microsatellite loci. The result showed that in family#1the number ofpaternally derived alleles amplified by each locus was1to2, in family#2the numberpaternal alleles was2to5, while in family#3and#4the number paternal alleles was2to4. Locus had generated more than6paternal alleles was not found. From theseresults we conclude that family#1was full-sib family derived from one male, family #3and#4were half-sib family produced by the mother mating with two males, whilefamily#2was maternal family that contributed by at least three males. These resultscan provide important support for the construction of genetic map.
     Using family#1identified above as mapping population, the genetic linkage mapof the black rock fish was constructed with221polymorphic markers. Of the159markers used in female,144markers were successfully mapped to the female linkagemap including27(18.75%) markers showing significant segregation distortion. Thefinal female linkage map consisted of25linkage groups spanning1130.7cM, with anaverage distance of10.8cM. For male map,176markers were used and162markerswere assigned to26linkage groups including29(17.9%) markers showingsignificant segregation distortion. The total length of the male map was1137.0cM,with an average distance of9.6cM. The integrated genetic linkage map wasconstructed using202markers, among of which183markers were assigned to26linkage groups. Totally32(17.49%) markers showing significant distortion wereincluded. The whole linkage map was1200.3cM, with an average distance of8.5cM.The estimated genome length was1668.1cM for female and1627.2cM for male.Therefore coverage of the linkage maps constructed for female and male was67.8%and69.9%respectively. The average estimate length of integrated genetic linkagemap was1636.5cM, so the coverage of the present map was73.7%.
     The method of family identification and first genetic linkage map of the rock fish(S. schlegelii) constructed in this work would be very useful for improving molecularmarker-assisted selection, estimation of heritabilities of economic traits based onfamily construction.
引文
成庆泰、郑葆珊.中国鱼类系统检索.科学出版社,1987
    陈大刚.黄渤海渔业生态学.海洋出版社,1991
    陈蒙,常亚青,张婧,等.虾夷扇贝(Patinopecten yessoensis)遗传连锁图谱的初步构建.水生动物及其他,2009
    杜长斌,楼允东,沈俊宝,等.微卫星分子标记技术在鱼类遗传连锁图谱构建中的应用.上海水产大学学报,2000,9:254~258
    董世瑞.形态标记与微卫星标记在中国对虾遗传选育中的应用研究:[博士学位论文].中国海洋大学,2008
    方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.科学出版社,2002
    冯东岳,张美昭.黑鲪人工育苗的实验研究.海洋湖沼通报,1995,4:47~52
    高焕,孔杰,于飞,等.人工控制自然交尾条件下中国对虾父本的微卫星识别.海洋水产研究,2007,1:1~5
    景润春,黄青阳,朱国英.图位克隆技术在分离植物基因中的应用.遗传,2000,22:180~185
    李莉.长牡蛎的分子标记筛选和遗传图谱构建:[博士学位论文].中国科学院,2003
    李莉,郭希明.遗传图谱及其在主要水产动物的研究进展.海洋科学,2003,11:14~19
    李健,刘萍,王清印,等.中国对虾遗传连锁图谱的构建.水产学报,2008,32(2):161~173
    刘贤德.皱纹盘鲍遗传图谱构建及生长相关性状的QTL定位:[博士学位论文].中国科学院,2005
    刘祖洞.遗传性(第二版).北京:高等教育出版社,1990
    刘卫东,鲍相渤,宋文涛,等.虾夷扇贝遗传连锁图谱的初步构建.遗传,2009,31(6):629~637
    刘丽娟,任利华,姜向阳,等.黑鲳(Sebastes schtegeli)遗传多样性的等位酶研究.海洋与湖沼,2009,40(4):479~483
    刘振辉,孔杰,刘萍,等. RPAD技术在中国对虾群体鉴别上的应用.海洋学报,2003,24:67~71
    刘云国,孙修勤.水产动物遗传连锁图谱的构建策略.海洋科学进展,2008,26(3):381~385
    刘静霞,赵振山,周莉,等.锦鲤4个人工雌核发育家系的微卫星标记研究.动物学研究,2002,23(2):97~105
    罗云.三疣梭子蟹(Portunus trituberculatus)F2代家系形态性状和AFLP分析及遗传连锁图谱的初步构建:[硕士学位论文].上海海洋大学,2009
    李霞,王霞.许氏平鲉消化管上皮细胞及消化腺组织学和组织化学.大连水产学院学,2003,18(4):241~245
    李小宁.合浦珠母贝微卫星DNA标记的筛选与养殖群体的遗传多样性分析:[硕士学位论文].上海海洋大学,2009
    林能锋,苏永全,丁少雄,等.大黄鱼微卫星标记引物在石首鱼科几个近缘种中的通用性研究.中国水产科学,2008,2:237~243
    毛瑞鑫.鲤鱼遗传图谱构建及其相关性状的QTL检测:[硕士学位论文].上海海洋大学,2009
    潘建林,牟大凯,郝莎,等.中华绒螯蟹Eriocheir sinensis两个地理种群的微卫星DNA多态性分析.南京大学学报(自然科学),2006,42(5):457~462
    彭薇.仿刺参(Apostichopus japonicus)微卫生标记的开发与应用:[硕士学位论文].中国海洋大学,2011
    秦艳杰.海湾扇贝遗传图谱构建及壳色基因、生长相关QTL的定位研究[博士学位论文].中国科学院,2006
    阮晓红.大菱鲆(Turbot)微卫星标记的筛选与应用:[博士学位论文].中国海洋大学,2009
    孙耀,张波郭学武,等.黑鲪的生长和生态转换效率及其主要影响因素.应用生态学报,1999,10(5):627~629
    孙昭宁,刘萍,李健,等.微卫星DNA标记用于中国对虾亲子关系的鉴定.海洋水产研究,2007,28(3):8~14
    孙昭宁.中国对虾的系谱认证研究及遗传连锁图谱的构建:[博士学位论文].中国海洋大学,2006
    孙博林,张慧敏,王霞,等.中间球海胆放流群体和养殖群体的遗传学比较.中国农学通报,2011,27(17):67~71
    沈琪,任春华,胡超群.凡纳对虾、细角对虾和斑节对虾的RAPD鉴定标记.热带海洋学报,2002,21(4):45~48
    童金苟,朱嘉壕,吴清江.鱼类和水生动物基因组作图研究的现状及前景.水产学报,2001,3:270~278
    王宣朋.鲤鱼遗传连锁图谱的构建及饲料转化率:[硕士学位论文].上海海洋大学,2011
    王鸿霞,张晓军,李富花,等.应用微卫星标记分析野生中国明对虾的亲权关系.水生生物学报,2008,32(1):42~46
    王心宇,元增军,陈佩度.小麦抗白粉病基因Pm6的RAPD标记.遗传学报,2000,27(12):1072~1079
    王永飞,马三梅,刘翠萍,等.分子标记在植物遗传育种中的应用原理及现状.西北农林科技大学学报(自然科学版)(增刊),2001,29:106~113
    王辉.同工酶及其方法论.生物技术,1992,2(2):1~4
    王佳实.圆斑星鲽(Verasper variegatus)微卫星标记的筛选及应用:[硕士学位论文].中国海洋大学,2009
    王中亿.植物等位酶分析.北京:科学出版社,1996:10~11
    王志林.分子标记技术及其发展.生命的化学,2002,1:39~42
    王玲玲.栉孔扇贝和海湾扇贝遗传连锁图谱的构建研究:[博士学位论文].中国科学院研究生院,2005
    王茜,范小勇,尹绍武,等.鱼类遗传连锁图谱的研究进展.水产科学,2008,27(11):603~605
    万瑞景,陈瑞盛.许氏平鲍的生殖习性及早期形态.海洋水产研究,1988,9:213~217
    余艳,陈海山,葛学军.简单重复序列区间(ISSR)引物反应条件优化与筛选.热带亚热带植物学报,2003,11(1):15~19
    岳志芹,王继伟,孔杰,等.AFLP分子标记构建中国对虾遗传连锁图谱的初步研究.高技术通讯,2004,5:88~93
    岳志芹.中国对虾抗病选育群体的遗传分析及遗传连锁图谱的构建:[博士学位论文].中国海洋大学,2003
    徐莉.微卫星DNA标记及其在遗传多样性研究中的应用.畜禽业,2001,9:36~38
    徐艳虹.皱纹盘鲍遗传多样性的研究及遗传图谱构建:[博士学位论文].中国海洋大学,2007
    徐云碧,朱丽煌.分子数量遗传学.北京:中国农业出版社,1994
    站爱斌.栉孔扇贝(Chlamys farreri)微卫星标记的筛选及应用:[博士学位论文].中国海洋大学,2006
    张国范,李霞,薛真福.我国贝类大规模死亡原因的分析及防治对策.中国水产,1999:34~39
    张全启,徐晓斐,齐洁,等.牙鲆野生群体与养殖群体的遗传多样性分析.中国海洋大学学报:自然科学版,2004,34(5):816~820
    张建勇.中国对虾(Fenneropenaeus chinensis)基因组SNP标记的开发与应用:[博士学位论文].中国海洋大学,2011
    张云武,张亚平, OliverA.微卫星及其应用.动物学研究,2001,22(4):3l5~320
    张亚平,王文,宿兵,等.大熊猫微卫星DNA的筛选及其应用.动物学研究,1995,16(4):301~306
    张于光,李迪强,饶力群,等.东北虎微卫星DNA遗传标记的筛选及在亲子鉴定中的应用.动物学报,2003,49(1):118~123
    张研.鲤鱼(Cyprinus carpio L.)遗传图谱构建及其生长相关性状的QTL分析.[硕士学位论文].上海海洋大学,2008
    张静,薛美岩,姜海滨,等.黑鲪早期发育与摄食的初步观察.渔业科学进展,2010,31(2):8~15
    赵海波.虾夷扇贝(Patinopecten yessoensis)遗传连锁图谱的构建:[硕士学位论文].中国海洋大学,2009
    郑家声,冯晓燕.许氏平鲉消化道中部分消化酶的研究.中国水产科学,2002,9(4):309~314
    朱滨,常剑波,等.湖鲟微卫星DNA引物应用于中华鲟亲子关系分析的初步研究.水生生物学报,1999,23(6):547~553
    朱伟锉,王义权. AFLP分子标记技术及其在动物学研究中的应用.动物学杂志,2003,38(2):101~107
    朱龙,隋风美.许氏平鲍的生物学特征及其人工养殖.现代渔业信息,199914(4):21~25
    Agresti J., Seki J.S., Cnaani A., et al. Breeding new strains of tilapia:development of an artificialcenter of origin and linkage map based on AFLP and microsatellite loci. Aquaculture,2000,185:43~56
    AidaT. On the inheritance of color in a fresh-water fish Aplocheilus latipes Tenuninck andSehlegel,with special references to sex-linked inheritance. Geneties,1921,6:554~573
    Allendorf F.W., Seeb J.E., Kundsen K.L., et al.Gene-centromere mapping of25loci in rainbowtrout. J Hered,1986,77:307~312.
    Aliah R.S., Takagi M., Dong S. Isolation and Inheritance of Microsatellite Markers in theCommon Carp Cyprinus carpion. Fisheries Science,1999,65:235~239
    An H.S., Park J.Y., Kim M.J., et al. Isolation and characterization of microsatellite markers for theheavily exploited rockfish Sebastes schlegeli, and cross-species amplification in four relatedSebastes spp. Conserv Genet,2009,19February
    Babrazuk W.B., Kadavi C., Heyen J., et al. The synthetic relationship of the zebrafish and humangenomes. Genome Res,2000,10:1351~1358
    Baeck G.W., Kim J.W., Park C.I., et al. Identification and expression analysis of an interferonstimulated gene15(ISG15) from black rockfish, Sebastes schlegeli. Fish and ShellfishImmunology,2008,25:679~681
    Bostein B., White R.L., Skolnick M. Construction of a genetic linkage map in man usingrestriction fragment length polymorphisms. Am. J. hum. Genet,1980,32:314~331
    Genet.52:922–927Castiglioni P., Pozzi C., Heun M., et al. An AFLP-based procedure for theefficient mapping of mutations and DNA probes in barley. Genetics,1998,149:2039~2056
    Causse M.A., Fulton T.M., Cho G., et al. Saturated molecular map of the rice genome based on aninterspecific backcross population. Genetics,1994,138:1251~1274
    Cho Y., Blair M.W., Panaud O. Cloning and mapping of variety specific rice genomic DNAsequences amplified length fragment polymorphisms(AFLP) from silver-stainedpolyacrylamide gels. Genome,1995,39:373~378
    Coimbra M.R.M., Kobayashi K., Koretsugu S., et al. A genetic linkage map of the Japaneseflounder, Paralichthys olivaceus. Aquaculture.2003,220:203~218
    Cordeiro G.M., Casu R., McIntyre C.L., Manners J.M., Henry R.J. Microsatellite markers fromsugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Science,2001,160(6):1115~1123
    Cnaani A., Hallerman M., Ron E.M., et al. Detection of a chromosomal region with twoquantitative trait loci, affecting cold tolerance and fish size, in an F2tilapiahybrid. Aquaculture,2003,223:117~128
    Crooijmans R.P.M.A., Beirbooms N.A.F., Komen J., et al. Microsatellite markers in common carp.Animal Genetics,1997,28:129~132
    Dena R.J., Nigel P.P., Peter J. Parentage determination of Kuruma shrimp Penaeus(Marsupenaeus) japonicus using microsatellite markers (Bate). Aquaculture,2004.235:237~247
    Donald A.B., Seltzer J.D., Xie C.Q., Wright D.L., Smith J.S. Assessing probability of ancestryusing simple sequence repeat profiles: applications to maize hybrids and inbreds. Genetics,2002,161:813~824
    Donis-Keller H., Green P., Helms C., et al. A genetic linkage map of the human genome. Cell,1987,51(2):319~337
    Dunham I., Hunt A.R., Collins J.E., et al. The DNA sequence of human chromosome22. Nature,1999,402:489~495
    Ede A.M., Crawford A.M. Mutations in the sequence flanking the microsatellite at the KAP8locusprevent the amplification of some alleles.Anim.Genet,1995,26:43~44
    Ellegren H. Microsatellite evolution: a battle between replication slippage and point mutation.Trends Genet,2002,18:70
    Felip A., Young W.P., Wheeler P.A., et al. An AFLP-based approach for the identification ofsex-linked markers in rainbow trout(Oncorhynchus mykiss). Aquaculture,2005,247:35~43
    Fisher R.A. The detection of linkage with dominant abnormalities. Ann Eugen,1935,6:187~201
    Forbes S.H., Hogg J.T., Buchanan F.C., et al. Forties microsatellite evolution congenetic mammals:domestic and bighorn. Molecular Biology Evolution,1995
    Ganal M.W., Young N.D., Tanksley S.D. Pulsedfield gel electrophoresis and physical mapping oflarge DNA fragments in the Tm-2a region of9chromosome of tomato. Mol Gen Genet,1989,215:395~400
    Gates M.A., Kim L., Egan E.S., et al. A genetic linkage map for zebrafish comparative analysisand localization of genes and expressed sequences. Genome Res,1997,9:334~347
    Garcia-Mas J., Oliver M., Gomez-Paniagua H., et al. Comparing AFLP, RAPD and RFLP markersfor measuring genetic dversity in melon. Theor Appl Genet,2000,101:860~864
    Goldstein D.B.,et al. Launching microsatellite: a review of mutational processes and methods ofphylogenetie inference. J Hered,1997,88:335~342
    Haldane J.B.S., Smith C.A.B. A new estimate of the linkage between the genes forcolour-blindness and haemophilia in man. Ann Eugen,1947,14:10~13
    Haldane J.B.S. The combination of linkage values and the calculation of distances between theloci of linkage factors. J Genet,1919,8:299~309
    Hamada H., Kakunage T. Potential Z-DNA forming sequences are highly dispersed in the genomehuman. Nature,1982,298:396~398
    Hara M., Sekino M. Efficient detection of parentage in a cultured Japanese flounder Paralichthysolivaceus using microsatellite DNA marker. Aquaculture,2003,217:107-114
    Hattori M., Fujiyama A., Taylor T.D., et al. The DNA sequence of human chromosome21. Nature,2000,405:311~319
    Hawthorne D.J. AFLP-based genetic linkage map of the Colorado potato beetle Leptinotarsadecemlineata:sex chromosomes and a pyreth-roidresistance candidate gene. Genetics,2001,158:695~700
    Herbinger C.M., Doyle R.W., Taggart C.T., et al. Family relationships and effective populationsize in a natural cohort of Atlantic cod(Gadus morhua) larvae. Can J Fish Aquat Sci,1996,54:11~18
    Herbinger C.M., Doyle R.W., Pitman E.R., et al. DNA fingerprint based analysis of parental andmaternal effects on offspring growth and survival in communally reared rainbow trout.Aquaculture,1996,137:245~256
    Hubert S., Hedgecock D. Linkage maps of microsatellite DNA markers for the Pacific oysterCrassostrea giga. Genetics,2004,168:351~362
    Husstain M.G., Mcandrew B.J., Penman D.J., et al. Estimating gene-centromere recombinationfrequencies in gynogenetic diploids of Orechromis niloticus L., using allozymes, skin colourand a putative sex-determing locus(SDS-2). London: Chapman and Hall,1994
    Jackson T.R., Ferguson M.M., Danzmann R.G., et al. Identification of two QTL influencing uppertemperature tolerance in three ranbow trout(Oncorhynchus mykiss) half-sib families. Heredity,1998,80:143~151
    Jackson T.R., Martin-Robichaud D.J., Reith M.E. Application of DNA markers to the managementof Atlantic halibut(Hippoglossus hippoglossus) broodstock. Aquaculture,2003,220:245~259
    Johnson S.L., Gates M.A., Johnson M., et al. Centromere-linkage analysis and consolidation thezebrafish genetic map. Genetics,1996,142:1277~1288
    Jeflleys A.J., Royle N.J., Wilson V., et al. Spontaneous mutation rates to new length alleles attandem-repetitive hypervariable loci in human DNA. Nature,1988,332(6161):278~281
    Jerry D. R., Preston N. P., Crocos P. J. Parentage determination of Kuruma shrimp Penaeus(Marsupenaeus) japonicus using microsatellite markers (Bate).Aquaculture,2004,235:237~247
    Jones C.J. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network ofEuropean laboratories. Mol Breed,1997,3:381~390
    Kelley P.D., Chu F., Woods L.G., et al. Genetic linkage mapping of zebrafish genes and ESTs.Genome Research,2000,10:338~567
    Kim W.J., Kim K.K., Lee J.H., Park D.W., Park J.Y., Lee J.Y. Isolation and characterization ofpolymorphic microsatellite loci in the Japanese floundr(Paralichthys olivaceus). MolecularEcology Notes,2003,3:491~493
    Knapik E.W., Goodman A., Ekker M., et al. A microsatellite genetic linkage map forzebrafish(Danio rerio). Genes Dev,1998,18:338~342
    Knapik E.W., Goodman A., Atkinson O.S., et al. A reference cross DNA panel for zebrafish(Daniorerio) anchored with simple sequence length polymorphisms. Development,1996,123:451~460
    Kocher T.D., Lee W.J., Sobolewska H., et al. A genetic Linkage Map of Cichid Fish, the Tilapia(Oreochromis niloticus). Genetics,1998,148:1225~1232
    Kojima T., Nagaoka T., Noda K. Genetic link age of ISSR and RAPD markers in Einkom wheat inrelation to that of RFLP markers. Theor Appl Genet,1998,96:37~45
    Kellogg K.A. Microsatellite variation demonstrates multiple paternity in lekking cichlid fish fromLake Malawi. Africa Proc R Soc Lond,1995,260B:79~84
    Kosambi D.D. The estimation of map distances from recombination values. Ann Eugen,1944,12:172~175
    Lander E.S., Green P. Construction of multilocus genetic maps in Humans. Proc Nat Acad SciUSA,1987,84:2363~2367
    Landegren U., Nilsson M., Kwok P.Y. Reading Bits of Genetic Information: Methods forSingle-Nucleotide Polymorphism Analysis. Genome Research,1987,8:769~776
    Lee W.J., Kocher T.D. Microsatellite mapping of the prolactin locus in the tilapia genome. AnimalGenetics,1998,29:698~699
    Lee W.J., Kocher T.D. Microsatellite DNA markers for genetic mapping in Oreochromis niloticus.Journal of Fish Biology,1996,49:169~171
    Levinson G. Slipped-strand mispairing: a major mechanism for DNAsequence evolution. Mol BiolEvol,1987,4:203~210
    Levine R.P. Chromosome structure and the mechanism of crossing over. Proc Natl Acad Sci, USA1955,41:727~730
    Li Z. Zebrafish: A New Model for Human Disease. Genome Res,1999,9(2):99~100
    Li Y.T., Byrne K., Miggiano E., et al. Genetic mapping of the kuruma prawn Penaens japonicasusing AFLP markers. Aquaculture,2003,219:143~156
    Liao X., Ma H., Xu G., et al. Construction of a genetic linkage map and maping of afemale-specific DNA marker in half-smooth tongue sole(Cynoglossus semilaevis). MarineBioteehoology,2008,11(6):699~709
    Lie O., Slettan A., Lingaas F. Haploid gynogenesis: a powerful strategy for linkage analysis in fish.Animal Biotech,1994,5:33~45
    Liu X.D., Liu X., Guo X.M., et al. A preliminary genetic linkage map of the pacific abalonehaliotis discus hannai Ino. Marine Biotechnology,2006,8:386~397
    Liu Z.J., Tan G., Li P., et al.Transcribed dinucleotide microsatellites and their associated genesfrom channel catfish Ictalurus punctatus. Biochem Biophys Res Commun,1999,259:190~194
    May B., Johnson K.P. Composition linkage map of salmonid fishes, in Genetic Maps, edited byS.J.O.’Brien. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY,1990,4:151~159
    McGoldrick D.J., Hedgecock D. Fixation, segregation and linkage of allozyme loci in inbredfamilies of the Pacific oyster Crassostrea gigas(Thunberg): implications for the causes ofinbreeding depression. Genetics,1997,146:321~334
    McDonald G. J., Danzmann R.G., Ferguson M.M. Relatedness determination in the absence ofpedigree information in three cultured stains of rainbow trout(Oncorhynchus mykiss).Aquaculture,2004,233:65~78
    Michelmore R.W., Paran I., Kesseli R.V. Identification of markers linked to disease-resistancegenes by bulked segregant analysis: A rapid method to detect markers in specific genomicregions by using segregating populations. P roc Natl Acad Sci USA,1991,88:9828~9832
    Moen T., Agresti J.J., Cnaani A., et al. A genome scan of a four-way tilapia cross supports theexistence of a quantitative trait locus for cold tolerance on linkage group23. AquacultureResearch,2004,35(9):893~904
    Moore S.S., Whan V., Davis G.P., Byrne K., Hetzel D.J., Preston N. The development andapplication of genetic markers for the Kuruma prawn Penaeus japonicus. Aquaculture,1999,173:19~32
    Morton N.E. Sequential test for the detection of linkage. Am J Hum Genet,1955,7:277~318
    Mueller U.G., Wolfenbarger L.L. AFLP genotyping and fingerprinting. Tree,1999,14:389~394
    Nachman M.W. Variation in recombination rate across the genome:evidence and implications.Current Opinion in Genetics&Development,2002,12:657~663
    Naruse K., Fukamachi S., Mitan H., et al. A detailed linkage map of Medaka, Oryzias latipes:comparative genomics and genome evolution. Genetics,2000,154:1773~1784.
    Naruse K., Sakaizumi M., Shima A. Medaka as an experimental animal for biological study. FishBiol J Medaka,1994,6:47~52
    Nichols K.M., Young W.P., Danzmann R.G., et al.A consolidated linkage map for rainbow trout(Oncorhynchus mykiss). Anim Genet,2003,34:102~115
    Norris A. T.,Bradley D. G.,Cunningham E. P. Parentage and relatedness determination in farmedAtlantic salmon (Salmo salar) using microsatellite markers. Aquaculture,2000,182:73~83
    O'Brien S.J., Womack J.E., Lyons L.A., et al. Anchored reference loci for comparative genomemapping in mammals. Nat Genet.1993,3(2):103-112
    Ohno S. The enormous diversity in genome sizes of fish as a reflection ofnatures'ss extensiveexperiments with gene duplication. Tran Amer Fish,1970,99:120~130
    Ohtsuka M., Makino S., Yoda,K., et al. Construction of a linkage map of the medaka(Oryziaslatipes) and mapping of the Damutant locus defective in dorsoventral patterning. GenomeRes,1999,9:1277~1287.
    O’Malley K.G., Sakamoto T., Danzmann R.G.,.Quantitative trait loci for spawning date and bodyweight in rainbow trout: testing for conserved effects across ancestrally duplicatedchromosomes. J Heredity,2003,94(4):273~284
    Ozaki A., Sakamoto T., Khoo S., Nakamura K. Coimbra M.R.M. Akutsu T. Okamoto N.Quantitative trait loci (QTLs) associated with resistance/susceptibility of infectious pancreaticnecrosis (IPN) in rainbow trout (Oncorhynchus mykiss). Mol Genet Genomics,2001,265:23~31
    Pejic I., Ajmone-Marsan P., Morgante M., et al. Comparative analysis of genetic similarity amongmaize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor Appl Genet,1998,97:1248-1255.
    Perry G.M.L., Danzmann R.G., Ferguson M.M., et al. Quantitative trait loci for upper thermaltolerance in outbred strains of rainbow trout(Oncorhynchus mykiss). Heredity2001,86:333~341
    Pèrez F., Erazo C., Zhinaula M., et al. A sex-specific linkage map of the white shrimpPenaeus(Litopenaeus) vannamei based on AFLP makers. Aquaculture,2004,242:105~118
    Perez Enriquez R., Takagi M., Taniguchi N. Genetic variability and pedigree tracing of a hatcheryreared stock of red sea bream(Pagrus major)used for stock enhancement, based onmicrosatellite DNA markers. Aquaculture,1999,173:413~423
    Powell W., Morgante M., Andre C., et al. The comparison of RFLP, RAPD, AFLP and SSRmarkers for germplasm analys, Molecular Breeding,1996,2:225~228.
    Postlethwait J.H., Yan Y.L., Gate M.A., et al. Vertebrate genome evolution and the zebrafish genemap. Nature Genet,1998,18:345~349
    Qi X.et al. Use of locus-specific AFLP markers to construct a high-density molecular map inbarley. Theor Appl Genet,1998,96:376~384.
    Qin Y.J., Liu X., Zhang H.B., Zhang G.F., Guo X.M. Genetic mapping of size-related quantitativetrait loci (QTL) in t he bay scallop (Argopecten irradians) using AFLP and microsatellitemarkers. Aquaculture,2007,272:281~290
    Rodzen, J. A., Famula, T. R., May, B. Estimation of parentage and relatedness in the polyploidwhite sturgeon(Acipenser transmontanus) using a dominant marker approach for duplicatedmicrosatellite loci. Aquaculture,2004,232:165~182
    Sakamoto T., Danzmann R.G., Gharbi K., et al. A microsatellite linkage map of rainbowtrout(Oncorhynchus mykiss)characterized by large sex-specific differences in recombinationrates. Genetics,2000,155:1331~1345
    Schlotterer C., Tautz. Slippage synthesis of simple sequence DNA. Nucleic Acids Res,1992,20:211~215
    Selvamani M.J.P., Degnan S.M, Degnan B.M. Microsatellite genotyping of individual abalonelarvae: Parentage assignment in aquaculture. Marine Biotechnology,2001,3:478~485
    Shimoda N., Knapik E.W., Ziniti J., et al. Zebrafish genetic map with2000microsatellite markers.Genomics,1999,58:219~232
    Shirak A., Seroussi E., Cnaani A., et al. Amh and dmrta2genes map to tilapia (Oreochromis spp.)linkage group23within QTL regions for sex determination. Genetics,2006,174:1573~1581
    Singer A., Perlman H., Yan Y.L., et al. Sex-specific recombination rates in zebrafish(Danio rerio).Genetics,2002,160:649~657
    Silver L.M. Mouse gentetics: Concepts and application. New York: Oxford Univesity Press,1995
    Song W.Y., Wang G.L., Chen L.L., et al. A receptor kinaselike protein encoded by the rice diseaseresistance gene Xa21. Science,1995,270:1804~1806
    Staub J.E., Serquen F.C., Gupta M. Genetic markers,map construction and their application inplant breeding. Hort Science,1996,31(5):729~741
    Sturtevnat A.H. The linear arrangement of six sex-linked factors in Drosophila, as shown by theirmode of association. J Exp Zool,1913,14:43~59
    Stuber C.W., Edwards M.D. Genotypes selection for improvement of quantitative traits in cornusing molecular marker loci. Proc.41stAnnual Corn and Sorghunm Industry Research Conf.,American Seed Trade Assoc,1986,41:70~83
    Sugaya T., Minoru I., Hideshi M. Inheritance mode of microsatellite DNA markers and their usefor kinship estimation in kuruma prawn(Penaeus japonicus). Fisheries Seienee,2002,68:299~305
    Suiter K.A., Wendel J.F., Case J.S. Linkage-1:A pascal computer program for the dection andanalysis of genetic linkage.J Hered,1983,74:203~204
    Sun X.W., Liang L.Q. A genetic linkage map of common carp (Cyprinus carpio L.) and mappingof a locus associated with cold tolerance. Aquaculture,2004,238:165~172
    Tan Y., Wan C., Zhu,Y., et al.An amplified fragment length polymorphism map of the silkworm.Genetics,2001,157:1277~1284
    Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers.Nucleic Acids Res,1989,17:6463~6471
    Taylor A.C. Horsup A.,Johnson C.N., Sunnucks P., Sherwin B. Relatedness structure detected bymicrosatellite analysis and attempted pedigree reconstruction in an endangered marsupial, thenorthern hairy-nosed wombat (Lasiorhinus krefftii). Molecular Ecology,1997,6:9~19
    Toth G., Gaspari Z., Jurka J. Microsatellites in different eukaryotic genomes: survey and analysis.Genome Research,2000,10:967~981
    Van Ooijen J.W., Voorrips R.E. JoinMap(3.0), Software for the calculation of genetic linkage maps.Plant Research International, Wageningen, the Netherlands,2001
    Vos P., Hogers R., Bleeker M. AFLP: a new technique for DNA fingerprinting. Nucleic AcidsResearch,1995,23(21):4490~4414.
    Wada H., Naurse K., Shimada A., et al. Genetic linkage map of a fish, the Japanese medakaOryziao latipes. Mol Mar Biol Biotech,1995,4:269~274
    Wang D.G., Fan J.B., Siao C.J., et al. Large-scale identification, mapping and genotyping ofingle–nucleotide polymorphisms in the human genome. Science,1998,280:1077~1082
    Wang S., Bao Z., Pan J., Zhang L., et al. AFLP linkage map of an intraspecific cross in Chlamysfarreri. Journal of shell fish Researeh,2004,23:491~499
    Weber J.L., Wong C. Mutation of human short tandem repeats. Hum.Mol.Genet,1993,2:1123~1128
    Welsh J. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research,1990,18(24):7213~7218.
    Woods I.G., Kelley P.D., Chu F., et al. A comparative map of the zebrafish genome. Genom Res,2000,10:1903~1914
    Williams J.G. DNA Polymorphism samplified by arbitrary primers are useful as genetic markers.Nucleic Acids Research,1990,18(22):6531~6535
    Wilson K., Li Y., Whan V., et al. Genetic mapping of the black tiger shrimp Penaeus monodonwith amplified fragment length polymorphism. Aquaculture,2002,204:297~309
    Wright J.M. Bentzen P. Microsatellites: genetic markers for the future. Rev. Fish Bio1.Fish,1994,4:384~388
    Xu Z., Primavera J.H., de la Pena L.D. et al. Genetie diversity of wild and cultured Black TigerShrimp(Penaeus monodon) in the Philippines using microsatellites. Aquaculture,200l,199:13~40
    Xu Z.K, Primavera J.H. Genetic diversity of wild and cultured Black Tiger Shrimp(Penaeusmonodon) in the Philippines using microsatellites. Aquaculture,2000,199:13~40
    Yamada J., Kusakari M. Staging and the time course of embryonic development in kurosoi,Sebastes schlegeli. Environmental Biology of Fishes,1991,30:103~110
    Yoshida K., Nakagawa M., Wada S. Multiplex PCR system applied for analyzing microsatelliteloci of Schlegel’s black rockfish, Sebastes schlegeli. Molecular Ecology Notes2005,5:416~418
    Yoshimura S., Yamanouchi U., Katayose Y., et al. Expression of Xa1, a bacterial blight-resistancegene in rice is induced by bacterial inoculation. Proe Natl Acad Sci USA,1998,95:1663~1668
    Young W.P., Wheeler P.A., Coryell V.H., et al. A detailed linkage map of rainbow trout producedusing doubled haploids. Genetics,1998,148:839~850
    Young O.K., Eun M.P., Bo H.N., et al. Identification and molecular characterization of twohepcidin genes from black rockfish (Sebastes schlegelii). Mol Cell Biochem,2008,315:131~136
    Yin X., Stam E, Dourleign C., et al. AFLP mapping of quantitative trait loci for yield-determiningphysiological character in spring barley. Theor Appl Genet,1999,99:244~253
    Yu Z., Guo X. A basic AFLP linkage map for the eastern oyster, Crassostrea virginica Gmelin.Journal of Shellfish Research,2002,21,(1):382
    Zabeau M., Vos P. Selective restriction fragment amplification a general method for DNAfingerprinting. European Patent Applification,1993.
    Zane L., Bargelloni L., Patarnello T. Strategies for microsatellite isolation:a review. MolecularEcology,2002,11(1):1~16
    Zhan A.B., Bao A.B., Wang X.L., et al. Microsatellite markers derived from bay scallopArgopecten irradians expressed sequence tags. Fisheries Science,2005,71:1334~1339
    Zhan A., Bao Z., Lu W., et al. Development and characterization of45novel microsatellitemarkers for sea cucumber(Apostiehopus japonieus). Molecular Eeology Notes,2007,7(6):1345~1348.
    Zhang L., Yang C., Zhang Y., et al. A genetic linkage map of Pacific white shrimp(Litopenaeusvannamei):sex-linked microsatellite markers and high recombination rates. Genetica,2007,131(1):37~49
    Zhong Q W, Yu Y, Zhang Q Q, et al. Isolation and characterization of twenty novel microsatellitemarkers forhalf-smooth tongue sole (Cynoglossus semilaevis). Conserv Genet,2009,10(5):1617~1620
    Zhou Z.,Bao Z.,Dong Y.,et al. AFLP linkage map of sea urchin52constructed using aninterspecific cross between Strongylocentrotus nudus(♀)and S. intennedius(♂). Aquaeulture,2006,259:56~65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700