代乳品酸度及调控对哺乳期犊牛生长性能、血气指标和胃肠道发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以早期断奶犊牛为研究对象,通过4部分试验系统地研究了代乳品酸度及代乳品中酸度调节剂(Acidity regulator)对早期断奶犊牛生长性能、营养物质表观消化率、血液生化指标及部分免疫指标、血气指标、肠道微生物菌群、瘤胃及小肠黏膜形态的影响。
     试验一、代乳品原料系酸力和pH值对代乳品相应指标的影响
     选用代乳品专利ZL 02 128844.5中标明的10类原料,以正交试验方法配制成代乳品原料混合物,测定原料、混合物的系酸力和pH值,并采用多元回归方法进行统计分析。结果表明,在本试验设计范围内,仅以系酸力和pH值为指标时,代乳品原料混合物中各原料的适宜添加比例为:特制大豆35%~60%,乳清粉≥30%,蛋氨酸盐酸盐≤0.5%,赖氨酸盐酸盐≤0.5%,碳酸钙比例尽可能降低,磷酸氢钙1%,维生素预混料0~0.02%,食盐1.0%。结果表明,犊牛代乳品系酸力或pH值分别与所用原料的配比和系酸力或pH值之间存在显著的多元线性回归关系。
     试验二、代乳品酸度对哺乳期犊牛生长性能、营养物质消化代谢、血液指标及胃肠道发育的影响
     采用双因子试验设计,2个因子为:代乳品乳液的pH值(6.2、5.5、5.0、4.5)和代乳品中植物源性蛋白占总蛋白的比例(50%和80%),共分8个处理。选用48头新生中国荷斯坦公犊牛,随机分成8组,分别饲喂上述8种日粮。试验期内第25至27 d、53至55 d进行两期消化试验。63 d试验结束时每组选取3头犊牛进行屠宰试验。结果表明,适当降低代乳品乳液pH值可通过改善犊牛血液指标、胃肠道黏膜形态和发育情况,提高犊牛对日粮部分营养物质的消化率,降低腹泻的发生,从而改善哺乳期犊牛生长性能。根据本试验各项指标的测定结果及实际饲用效果,哺乳期犊牛代乳品乳液的pH值以调整到5.0为宜。试验三、代乳品中复合酸度调节剂配方的筛选
     采用1%酸溶液pH值及其缓冲性能、降低代乳品pH值至5.0所需的酸的体积、加酸后代乳
     品缓冲性能、大肠杆菌体外抑菌率5个参数作为体外试验指标。试验分为两个部分。其一是单体酸的体外试验,分别测定甲酸、乙酸、柠檬酸、富马酸、乳酸、盐酸的各项指标。每种酸为一个处理,每个处理5个重复。其二是复合酸配方筛选试验,采用配方均匀设计方法,以甲酸、乙酸、柠檬酸、富马酸、乳酸、盐酸作为酸度调节剂最佳配伍主料,按照均匀设计表中U20*(206)有约束配方设计、以6因素安排均匀设计试验,把6种酸组合成20个处理,每个处理5个重复。对多个指标进行逐步回归分析,求综合因变量最优解。结果表明,盐酸和甲酸的效果最佳。以配方均匀设计方法筛选出的复合酸度调节剂最佳实验室理论配方为,甲酸40.74%、盐酸50.62%、柠檬酸8.64%。本试验中设定的评价指标皆与参试酸在复合酸度调节剂中比例具有显著的二次回归关系,这5个参数可作为体外评价犊牛代乳品酸度调控的指标。
     试验四、酸度调节剂对哺乳期犊牛生长性能、营养物质消化率及血气指标的影响
     选取24头新生中国荷斯坦公犊,分为对照组和3个试验组。对照组犊牛饲喂常规代乳品乳液,其pH值为6.2,试验组代乳品乳液中分别添加甲酸、复合酸,使其pH值降低到5.0。每个处理6个重复,每个重复1头牛。试验期内进行两期消化试验。结果表明,在本试验条件下,酸度调节剂对于饲喂后28 d前的犊牛作用较大,主要表现在改善犊牛血气指标,降低腹泻发生率,提高生长性能,其中复合酸对犊牛ADG、F/G的作用最优,而甲酸对肠道微生物的调节作用更加显著。在饲喂植物蛋白占总蛋白80%、添加酸度调节剂使乳液pH值降低到5.0的代乳品时,犊牛的ADG可达到饲喂植物蛋白占总蛋白50%未酸化代乳品的犊牛的水平。
     本文得出以下结论:⑴将代乳品乳液pH值降低到适宜范围,可通过改善犊牛、特别是饲喂28 d之前犊牛的血液指标、胃肠道黏膜形态和发育情况,提高犊牛对日粮某些营养物质的消化率,降低腹泻的发生,从而改善哺乳期犊牛生长性能;⑵对于我国的犊牛品种和用植物蛋白制备的代乳品,代乳品乳液的pH值以调整到5.0为宜;⑶提出了体外筛选复合酸配方的5个指标参数,即1%酸溶液pH值及其缓冲性能、降低代乳品pH值至5.0所需的酸的体积、加酸后代乳品缓冲性能、大肠杆菌体外抑菌率,建立了体外评价犊牛代乳品复合酸的方法。
Four trials were conducted with pre-ruminant calves as animal models to study the effect of acidity acidity regulators in a milk replacer on the calves’growth performance, digestibility of nutrients, blood biochemical parameters and gastrointestinal characteristics.
     Experiment 1: Effects of the acid-binding capacity and pH values of ingredients of a calf milk replacer on its relevant characteritics of acidity
     This experiment was conducted to study the effect of the content and acid binding capacity (ABC) or pH value of ingredients of a calf milk replacer on its ABC or pH value. Ten feed ingredients indicated in a Chinese patent for a calf milk replacer were chosen to produce the calf milk replacer according to an L27(313) orthogonal design. The ABC and pH value of both the ingredients and the milk replacer were determined, and then a multiple regression method was used to analyze the data. The results showed that the proper content of each ingredient in the calf milk replacer was as follows: specially treated soybean, 35-60%; whey powder,≥30%; L-methionine hydrochlorate,≤0.5%; L-lysine hydrochlorate,≤0.5%; CaCO3, minimum; CaHPO4, about 1%; vitamin premix, 0-0.02%; NaCl, about 1.0%. There were significantly multiple linear correlations between the ABC or pH of the calf milk replacer and the content, ABC or pH of its ingredients.
     Experiment 2: Effects of the acidity of a milk replacer on growth performance, digestibility of nutrients, blood parameters and gastrointestinal characteristics in pre-ruminant calves The pH values of a milk replacer (6.2, 5.5, 5.0 or 4.5) and the ratio of vegetable protein to total protein in the milk replacer (50 or 80%) were used to form a 4×2 factorial design in this experiment. Forty eight neonatal healthy Holstein male calves were allotted to eight groups and each group was fed with one of the 8 milk replacers. The experiment lasted for 56 d. A digestion trial was conducted in 2 stages of 25-27 d and 53-55 d. Three calves of each group were slaughtered at the end of experiment. The results showed that the calves fed the milk replacer with an appropriate pH value had improved blood parameters and development of the gastrointestinal tract, enhanced nutrient digestibility and growth performance, decreased diarrhea incidence. The optimal pH value of the calf milk replacer was found to be 5.0.
     Experiment 3: Screening of the formula of compound acidity regulators for a calf milk replacer
     An in vitro experiment was conducted with six candidate acidity regulators to measure their antibacterial activity in vitro (Y1), pH value of 1% solution (Y2), buffering capacity of 1% solution (Y3), the volume of acid solutions to reduce the pH value of a milk replacer to 5.0 (Y4), and the buffering capacity of the milk replacer solution with added acids (Y5). There were two parts in the experiment. One was to test the individual acid. The parameters Y1 to Y5 of formic acid,acetic acid, citric acid, fumaric acid, lactic acid and hydrochloric acid were determined respectively with five replicates each. The other part was to screen the formula of compound acidifying agents. Formic acid, acetic acid, citric acid, fumaric acid, lactic acid and hydrochloric acid were used as ingredients according to a formula uniform design table U20*(206). There were twenty treatments with five replicates each. A stepwise multiple regression method was used to analyze the data, and then the optimal compound solution was chosen. The results showed that formic acid and hydrochloric acid were the best acidity regulators, and the optimal formula of compound acidity regulator was 40.74% formic acid, 50.62% hydrochloric acid and 8.64% citric acid. A significantly quadratic relationship existed between five indices (Y1 to Y5) and tested acids.
     Experiment 4: Effects of acidity regulators in a milk replacer on growth performance, digestibility of nutrients and blood biochemical parameters in pre-ruminant calves
     Twenty four neonatal healthy Holstein male calves were allotted to four groups, and one group was fed with a normal milk replacer with a pH value of 6.2 (Group F1), the others were fed with the milk replacer after reducing its pH value to 5.0 by adding formic acid (Group F3) and compound acidity regulator (Group F2 and F4), respectively. The ratios of vegetable protein to total protein in the milk replacer were 50% (Group F1, F2 and F3) or 80% (Group F4). The digestion trial was conducted twice during the trial. The results showed that acidity regulators played an important part in the milk replacer fed to the calves less than 28 d, as exhibited by improved blood biochemical parameters, lowered incidence of diarrhea, and enhanced growth performance of the calves. Adding formic acid in the milk replacer significantly lowered the count of bacteria in the calves’rectum feces when compared with the compound acidity regulator. The ADG of the calves fed with the milk replacer of pH 5.0 and containing 80% vegetable protein was similar to that of those fed with the milk replacer of pH 6.2 and containing 50% vegetable protein.
     In conclusion, pre-ruminant calves fed with a milk replacer with a properly lowered pH value showed improved blood parameter and development of the gastrointestinal tract, improved nutrient digestibility, lowered diarrhea incidence, and enhanced growth performance. The optimal pH value of the calf milk replacer containing vegetable protein was found to be 5.0. The in vitro method used in this study was capable of evaluating compound acidity regulators.
引文
1.陈代文,张克英,余冰,等.仔猪饲粮添加酸化剂及黄霉素对生产性能、消化道pH和微生物数量的影响.中国畜牧杂志,2004,40(4):16-19.
    2.陈代文,张克英,王万祥,丁雪梅.酸化剂、益生素和寡糖对断奶仔猪粪中微生物茵群和免疫功能的影响及其互作效应研究.动物营养学报,2006,18(3):172-178
    3.刁其玉.奶牛规模养殖技术.北京:中国农业科学技术出版社,2003:21.
    4.刁其玉,屠焰.中国农业科学院饲料研究所.一种犊牛羔羊用代乳品[P].中国,国家发明专利,ZL02 8844.5,2006.
    5.丁洪涛,张宏福,丁保森,张莉,杨富林.断奶仔猪日粮系酸力模型的研究.中国畜牧杂志,2005,41,(6):18-20.
    6.方开泰.均匀设计—数论方法在试验设计的应用.应用数学学报,1980,3(4):363-372.
    7.方开泰.均匀设计与均匀设计表.[北京]:科学出版社,1994:53-61.
    8.冯望宝,王安,艾涛.不同锌水平对笼养育成蛋鸭生长性能及总抗氧化能力的影响.东北农业大学学报,2007, 38(5): 654-659.
    9.冯仰廉.反刍动物营养学.[北京]:科学出版社,2004:131-132.
    10.傅启高,姚录昆,锥秋江,李国庆,李慧全.补饲大豆粉代乳品和血清对新生羔羊消化和生长的影响.新疆农业大学学报,1997,3:39-42.
    11.耿素霞,李扬.胸腺功能及其测定方法的研究进展.免疫学杂志,2005,21(5):427-430.
    12.郭雪峰,边连全,付亮亮,孙昊.酸化剂对早期断奶仔猪胃肠道pH和肠黏膜形态结构的影响.养猪,2006,(5):4-6.
    13.何昭阳,徐凤宇,管清华,付蕾.犊牛腹泻与肠道菌群的变化.中国预防兽医学报,2000,22 (5) :345-346.
    14.侯永清.饲料酸结合力的测定方法及其应用的研究.饲料研究,2001(3):1-3.
    15.胡良平.现代统计学与SAS应用.[北京]:军事医学科学出版社,2000.
    16.寇占英,李启鹏,莫放,张晓明,王运亨,白士祥.犊牛主要消化器官的发育规律.中国畜牧兽医学会动物营养学分会第六届全国会员代表大会暨第八届学术研讨会论文集.[黑龙江]:黑龙江人民出版社, 2000,533-537.
    17.冷向军,王康宁,杨凤,端木道,周安国.盐酸对早期断奶仔猪生长性能和体内酸碱平衡的影响.饲料博览,2000,(9):10-14.
    18.冷向军,王康宁,杨凤,端木道,周安国.酸化剂对早期断奶仔猪胃酸分泌、消化酶活性和肠道微生物的影响.动物营养学报.2002,Vol.14,(4):44-48.
    19.冷向军,王康宁,杨凤,周安国,端木道.酸化剂对仔猪生长和体内酸碱平衡的影响.动物营养学报,2003,15(2):49-53.
    20.冷向军,李小勤,王康宁,等.盐酸和碳酸氢钠对早期断奶仔猪胃酸分泌、消化酶活性和肠道微生物的影响.浙江大学学报(农业与生命科学版),2005,31(6):788- 792.
    21.李长忠,魏登邦.仔猪消化道酸度和酶活性变化研究方法概述.青海大学学报(自然科学版).2001,19,(6):10-13.
    22.李宏军,任健,张宗岩.牛乳的pH值和酸度.中国乳品工业,1998,26(4):18-20.
    23.李辉,刁其玉.哺乳犊牛的消化特点与蛋白质需要.中国饲料,2005,21:22-24.
    24.李辉.蛋白水平与来源对早期断奶犊牛消化代谢及胃肠道结构的影响.[博士学位论文].北京:中国农业科学院,2008.
    25.李辉,刁其玉,张乃锋,屠焰.不同蛋白质来源对早期断奶犊牛消化及血清生化指标的影响(一).动物营养学报,2009,21(1):47-52.
    26.李建平,单安山,李焕江.酸化剂在断奶仔猪饲料中的作用机理及其影响因素.饲料工业, 2005,26(1):13-16.
    27.李凯年.酸碱平衡失调对犊牛围产期死亡的影响.畜牧兽医科技信息,2004,(2):6-9.
    28.李鹏,武书庚,张海军,等.利用均匀设计方法研制复合酸化剂的配方.动物营养学报, 2009,21(4):513-518.
    29.李秋凤,高艳霞,李建国,等.日粮阴阳离子平衡(DCAB)对泌乳中后期牛血气指标的影响.中国奶牛,2007(10):20-23.
    30.李生芳,杨雪梅,李莉.不同海拔地区牦牛肌组织线粒体T-AOC的测定.安徽农业科学, 2008, 36(16):6828 ,6832.
    31.林映才,陈建新,蒋宗勇,等.复合酸化剂对早期断奶仔猪生产性能、血清生化指标、肠道形态和微生物区系的影响.养猪,2001,(1):13-16.
    32.刘庚寿,龚德林,张敏贤,周莉莉.不同系酸力饲粮对断奶仔猪生产性能和腹泻的影响.饲料工业,2006,27(1):33-34.
    33.刘敏雄.反刍动物消化生理学. [北京]:北京农业大学出版社.1991.
    34.卢宁,王永军.羔羊补饲料中添加酸化剂的效果研究.安徽农业科学,2008,36(23):9977 -9979.
    35.宁康健,吕锦芳,彭光明,应如海.柠檬酸对肉鸡生产性能及免疫功能影响的研究.饲料工业,1995,16(1):39-40.
    36.马红艳.两种复合酸化剂对肉仔鸡作用效果的研究.[陕西]:西北农林科技大学硕士学位研究生毕业论文,2006:18.
    37.马书宇.柠檬酸对肉仔鸡生产性能和血气指标的影响.粮食与饲料工业, 2002,(8):31-33.
    38.莫放.养牛生产学.[北京]:中国农业大学出版社,2010.
    39.南京农学院主编.家畜病理生理学.北京:农业出版社, 1984 :137.
    40.秦圣涛,王永军.复合酸化剂在断奶仔猪日粮中应用的研究进展.饲料与畜牧(新饲料), 2006,(3):22-25.
    41.秦圣涛,张宏福,唐湘方,等.体外评定酸度调节剂作用效果的方法探讨.中国饲料, 2007a, (4):37-39.
    42.秦圣涛,王永军,张宏福,等.应用均匀设计法研究不同酸组合的抗菌效应.中国饲料, 2007b,(8):11-14.
    43.唐湘方,张宏福,夏中生.我国常见典型仔猪日粮系酸力和电解质平衡水平的调查研究.动物营养学报,2007,19(2):163-165.
    44.陶常义,李瑾瑜.影响酸化剂使用效果的因素分析.饲料博览,2004,(3):44-45.
    45.佟莉蓉.0-6周龄犊牛胰腺和小肠主要消化酶发育规律的研究.山西农业大学硕士研究生毕业论文.2001.
    46.屠焰,孟书元,刁其玉,齐东,周怿,云强.复合酸度调节剂对犊牛生长性能、血气指标的影响.饲料工业,2010年《反刍动物营养与饲料》增刊,2010a:42-46.
    47.屠焰,刁其玉,冯珊珊,周怿,云强.哺乳期犊牛开食料中原料对其系酸力和pH的影响[J].动物营养学报,2010b, 22(1):63-69.
    48.王力生,李全,黄金虎,樊阳明,张献礼.不同年龄的中国荷斯坦牛血液形状比较研究.安徽农业科学,1996增刊,103:106-107,105.
    49.王济川,谢海义,姜宝法.多层统计分析模型——方法与应用(Multilevel models: Methods and applications).北京:高等教育出版社,2008,10-126.
    50.王艳明.日粮脂肪和能量水平对奶牛氧化应激、生产性能的影响及抗氧化剂添加效果研究.[博士学位论文].杭州:浙江大学,2010.
    51.王元.均匀设计——一种试验设计方法.科技导刊,1994,(5):20-22.
    52.魏锁成,何丽.高寒地区腹泻犊牛的血气与血液细胞分析.西北民族大学学报(自然科学版) , 2007, 28(2):52-54.
    53.谢敏康译.犊牛消化不良的酸碱平衡调节.畜牧业,1999,107(3):53
    54.谢欣梅,张海龙.酸化剂对肉仔鸡肠道微生物区系的影响.黑龙江畜牧兽医,2005,(12):32-33.
    55.杨富林,杨琳,张宏福,顾宪红.仔猪消化道内酸度的发育.饲料博览.2000,(4):10-13.
    56.杨汉春.动物免疫学(第二版).[北京]:中国农业大学出版社,2003:44-49.
    57.杨琳,张宏福,李长忠,顾宪红,方路,马永喜,龚利敏,冯广明.不同断奶日龄仔猪消化道酸度和胃蛋白酶活性的动态变化.畜牧兽医学报.2001,32(4):299-305.
    58.岳宏.血气分析的临床意义.医疗装备,2011,(1):86.
    59.张德成,吴润培,陈思义,葛建华,张勤民,顾六观,闵惠元,曹李军,朱洪良,李建中.哺乳仔猪内酸度的变化对红细胞免疫功能的影响.饲料工业.1994,15,(7):28-29
    60.张宏福,卢庆萍,杨琳,杨富林.日粮系酸力对断奶仔猪生长性能的影响.中国饲料,2001, (18): 9-11.
    61.张宏福,杨富林,杨琳,卢庆萍.断奶仔猪消化道酸度及其调控研究进展.中国畜牧杂志.2002, 38 (3):51-52.
    62.张丽英.饲料分析及饲料质量检测技术(第3版).[北京]:中国农业大学出版社,2007.
    63.张蓉.能量水平及来源对早期断奶犊牛消化代谢的影响研究.[中国农业科学院研究生院硕士毕业论文]. [北京]:中国农业科学院,2008.
    64.张心如,罗宜熟,杜干英,张正贤,张炜.猪消化道酸度与调控.养猪,2003,(4):51-53.
    65.张心如,罗宜熟,杜干英,张正贤,张炜.鸡消化道酸度与用药.江西畜牧兽医杂志.2005,(1):29.
    66.翟向和,金光明.动物解剖与组织胚胎学.北京:中国农业科学技术出版社,2008:102-142.
    67.赵权,姜秀云,余涛,宋桂茹.肺炎犊牛与肺炎康复犊牛酸碱平衡指标研究.吉林农业大学学报,1999,21(3):92-94.
    68.周怿,刁其玉,屠焰,等.酵母β-葡聚糖对早期断奶犊牛胃肠道发育的影响.动物营养学报,2009, 21(6):846-852.
    69.周怿.酵母β-葡聚糖对早期断奶犊牛生长性能及胃肠道发育的影响.[中国农业科学院博士学位论文]. [北京]:中国农业科学院,2010.
    70. Ahmed AF, Constable PD and Misk NA. Effect of feeding frequency and route of administration on abomasal luminal pH in dairy calves fed milk replacer. J. Dairy Sci. ,2002,85:1502-1508.
    71. Amundsen ?got Lia, Brita Haugum, Henrik Andersson. Changes in serum cholesterol and sterol metabolites after intake of products enriched with an oat bran concentrate within a controlled diet. Food & Nutrition Research. 2003, 47: 1654-6628.
    72. Blank R, Mosenthin R, Sauer WC and Huang S. Effect of fumaric acid and dietary buffering capacity on ileal and fecal amino acid digestibilities in early-weaned pigs. J. Anim. Sci .,1999,77: 2974-2984.
    73. Baldwin RL, VI, and McLeod KR. Effects of diet forage: concentrate ratio and metabolizable energy intake on isolated rumen epithelial cell metabolism in vitro. J. Anim. Sci., 2000, 78: 771- 783.
    74. Bolduan G, Jung H, Schnabel E and Schneider. Recent advances in the nutrition of weaner piglets. Pig News and Information,1988,9(4):381-385.
    75. Bumell TW, Gromwell GL, and Stahly TS. Effects of dried whey and copper sulfate on the growth responses to organic acid in diets for weanling pigs. J. Anim. Sci.,1988,66:1100.
    76. Canibe N, Steien SH, ?verland M, and Jensen BB. Effect of K-diformate in starter diets on acidity, microbiota, and the amount of organic acids in the digestive tract of piglets, and on stomach alterations. J. Anim. Sci., 2001, 79:2123-2133.
    77. Canibe N, H?jberg O, H?jsgaard S and Jensen BB. Feed physical form and formic acid addition to the feed affect the gastrointestinal ecology and growth performance of growing pigs. J. Anim. Sci., 2005, 83:1287-1302.
    78. Canibe N, Virtanen E, Jensen B B. Effect of acid addition to pig liquid feed on its microbial and nutritional characteristics. Livestock Science, 2007,108: 202-205.
    79. Caugant I, Petit HV, Ivan M, Bard C and Savoip L, Toulle R, Thirouin S and Won M. In vivo and In vitro containing soybean gastric emptying of milk replacers proteins. J.Dairy Sci., 1994,77: 533- 540.
    80. Church DC. The ruminant animal: Digestive physiology and nutrition. Prentice-Hall, Inc. Englewood Cliffs, New Jersey. 1988.
    81. Colvin BM, Lowe RA and Ramsey HA. Passage of digesta from the abomasum of a calf fed soy flour milk replacers and whole milk. J. Dairy Sci., 1969,52:687-688.
    82. Conrad H R, Hibbs JW and Frank N. High roughage system for raising calves based on early development of rumen function. IX. Effect of rumen inoculations and chlortetracycline on rumen function of calves fed high roughage pellets. J. Dairy Sci.,1958,41:1248.
    83. Cranwell PD, Noakes DE, and Hill KJ. Gastric secretion and fermentation in the young suckling pig. Br. J. Nutr.,1976, 36:71.
    84. Davis J J, Sahlu T, Puchala R, Tesfai K. Performance of Angora goat kids fed acidified milk replacer at two levels of intake. Small Ruminant Research ,1998,28:249-255.
    85. Davis CL, Drackley JK. The development, nutrition, and management of the young calf. Iowa State University Press, Ames.1998.
    86. Daniels KM, Hill SR, Knowlton KF, James RE, McGilliard ML, and Akers RM. Effects of milk replacer composition on selected blood metabolites and hormones in preweaned Holstein heifers. J. Dairy Sci.,2008,91:2628-2640.
    87. Edmonds MS, Izquierdo OA, and Baker DH. Feed additive studies with newly weaned pigs: Efficacy of supplemental copper, antibiotics and organic acids. J. Anim. Sci.,1985,60:462.
    88. Erickson PS, Schauff DJ, Murphy MR. Diet 1998. Diet digestibility and growth of Holstein calves fed acidified milk replacers containing soy protein concentrate. J. Dairy Sci.,1989, 72: 1528-1533.
    89. Falkowski JF and Aherne FX. Nutrition fumaric and citric acid as feed additives in starter pig. J. Anim. Sci., 1984, 58:935-938.
    90. Fallon RJ, Harte FJ. Effect of normal and acidified milk replacer offered ad libitum on calf performance. Nutr. Abstr. Rev. (Series B)., 1989, 59, 2079.
    91. Gabert VM, Sauer WC, Schmitz M, Ahrens F, and Mosenthin R. The effect of formic acid and buffering capacity on the ileal digestibilities of amino acids and bacterial populations and metabolites in the small intestine of weanling pigs fed semipurified fish meal diets. Can. J. Anim. Sci., 1995, 75:615-623.
    92. Garnot P, Toullec R, Thapon JL, Martin P, Hoang M-T, Mathieu CM, and Ribadeau-Dumas B. Influence of age, dietary protein and weaning on calf abomasal enzymic secretion. J. Dairy Res.,1977, 44:9.
    93. Gerritsen R, Dijk AJ van, Rethy K, Bikker P. The effect of blends of organic acids on apparent faecal digestibility in piglets. Livestock Science, 2010,134: 246-248.
    94. Giesting DW, and Easter RA. Response of starter pigs to supplementation of corn soybean meal diets with organic acids. J. Anim. Sci., 1985,60:1288-1294.
    95. Giesting Donald W, Roos Mark A and Easter Robert A. Evaluation of the effect of fumaric acid and sodium bicarbonate addition on performance of starter pigs fed diets of different types. J.Anim.Sci.,1991,69:2489-2496.
    96. Greenwood RH, Morrill JL, Titgemeyer EC, and Kennedy GA. A new method of measuring diet abrasion and its effect on the development of the forestomach. J. Dairy Sci., 1997,80: 2534-2541.
    97. Güler O, Yanar M, Bayram B and Metin J. Performance and health of dairy calves fed limited amounts of acidified milk replacer. South African Journal of Animal Science,2006, 36 (3): 149- 154.
    98. Harrison HN, Warner RG, Sander EG, and Loosli JK. Changes in the tissue and volume of the stomachs of calves following the removal of dry feed or consumption of inert bulk. J. Dairy Sci., 1960,43:1301-1312.
    99. Heinrichs J. Rumen development in the dairy calf. Advances in Dairy Technology,2005, 17: 179-187.
    100. Henry RW, Pickard DW, and Hughes PE. Citric acid and fumaric acids as food additives for early-weaned piglets. Anim.Prod.,1985,40:505.
    101. Hepola HP, Hanninen LT, Raussi SM, Pursiainen PA. Aarnikoivu A-M, Saloniemi H S. Effects of providing water from a bucket or a nipple on the performance and behavior of calves fed ad libitum volumes of acidified milk replacer. J. Dairy Sci., 2007, 91 :1486-1496.
    102. Hill SR, Knowlton KF, Daniels KM, James RE, Pearson RE, Capuco AV, and Akers RM. Effects of milk replacer composition on growth, body composition, and nutrient excretion in preweaned Holstein heifers. J. Dairy Sci.,2008,91:3145-3155.
    103. Huber JT. Calf nutrition and rearing.Development of the digestive and metabolic apparatus of the calf. J. Dairy Sci.,1969, 52:1303.
    104. Hsiao Ch-P and Siebert KJ. Modeling the inhibitory effects of organic acids on bacteria. International Journal of Food Microbiology,1999, 47(3):189-201.
    105. Jaster EH, McCoy GC, Tomkins T and Davis CL. Feeding acidified or sweet milk replacer to dairy calves. J Dairy Sci.,1990,73:3563-3566.
    106. Kasprowicz-Potocka M, Frankiewicz A , Selwet M, Chilomer K. Effect of salts and organic acids on metabolite production and microbial parameters of piglets' digestive tract. Livestock Science, 2009,126:310-313.
    107. Kern DL, Slyter LL, Leffel EC, Weaver JM and Oltjen RR. Ponies vs. steers: Microbial and chemical characteristics of intestinal ingesta. J. Anita. Sci.,1974,38:559.
    108. Kertz AF, Prewitt LR, and Everett JP, JR. An early weaning calf program: summarization and review. J. Dairy Sci.,1979,62:1835-1843.
    109. Kirchgessner M, Gedek B, Wiehler S, Bott A, Eidelsburger U, and Roth FX. Influence of formic acid, calcium formate and sodium hydrogen carbonate on the microflora in different segments of the gastrointestinal tract. 10. Communication. Investigation about the nutritive efficacy of organic acids in the rearing of piglets. J. Anim. Physiol. Anim. Nutr., 1992, 68: 73-81.
    110. Krause D, Harrison PC, and Easter RA. Characterization of the nutritional interactions between organic acids and inorganic bases in the pig and chick. J.Anim. Sci., 1994,72: 1257-1262.
    111. Larson LL, Owen FG, Albright JL, Appleman RD, Lamb RC and Muller LD. Guidelines toward more uniformity in measuring and reporting calf experimental data. J. Dairy Sci.,1977,60:989-991.
    112. Leadley S,P Sojda. Esophageal groove or where does the milk go? Calving ease. www.calfnotes.com/pdffiles/CNCE0396.PDF.1996.
    113. Lesmeister KE, Tozer PR and Heinrichs AJ. Development and analysis of a rumen tissue sampling procedure. J. Dairy Sci., 2004, 87:1336-1344.
    114. Liener IE. 1981. Factors affecting the nutritional quality of soya products. J. Am. Oil Chem. Soc.,1981,58:406.
    115. Longenbach JI, and Heinrichs AJ. A review of the importance and physiological role of curdformation in the abomasum of young calves. Anim. Feed Sci. and Tech.,1998,73:85-97.
    116. Manzanilla EG, Perez JF, Martin M, Kamel C, Baucells F and Gasa J. Effect of plant extracts and formic acid on the intestinal equilibrium of early-weaned. J. Anim. Sci., 2004, 82:3210-3218.
    117. Moran J. Calf rearing: A practical guide.Ⅱ. Landlinks Press.Australia, 2002.
    118. Mroz Z, Jongbloed AW, Partanen JTM van Diepen, Vreman K, and Kogut J. Ileal digestibility of amino acids in pigs fed diets of different buffering capacity and with supplementary organic acids. J. Anim. Feed Sci.,1998, 7(Suppl. 1):191-197.
    119. Nocek JE, Heald CW, and Polan CE. Influence of ration physical form and nitrogen availability on ruminal morphology of growing bull calves. J. Dairy Sci., 1984, 67:334-343.
    120. Nocek J E, Braund D G. Performance, health, and postweaning growth on calves fed cold,acidified milk replacer ad libitum. J. Dairy Sci., 1986,69:1871-1883.
    121. Netke SP, Gardner KE and Kendall KA. Effect of diet pH on fecal consistency of young calves.J.Dairy Sci.,1962,45(1):105-108.
    122. Nugent RA, 3rd, Notter DR and Beal WE. Body measurements of newborn calves and relationship of calf shape to sire breeding values for birth weight and calving ease. J. Anim. Sci.,1991, 69:2413- 2421.
    123. Omogbenigun FO, Nyachoti CM and Slominski BA. The effect of supplementing microbial phytase and organic acids to a corn-soybean based diet fed to early-weaned pigs. J. Anim. Sci., 2003, 81:1806-1813.
    124. Otterby DE and Linn JG. Advances in nutrition and management of calves and heifers. J. Dairy Sci.,1981, 64:1365-1377.
    125. Partanen K, Siljander-Rasi H, Alaviuhkola T, Suomi K, and Fossi M. Performance of growing- finishing pigs fed mediumor high-fibre diets supplemented with avilamycin, formic acid or formic acid-sorbate blend. Livest. Prod. Sci.,2002, 73:139-152.
    126. Pickard JA, Wiseman J, and Varley MA. Influence of diet acid binding capacity on gut morphology and digesta pH in piglets. http://www.bsas.org.uk/downloads/annlproc/Pdf2001/ 163.pdf,2009.
    127. Porter JWG. Digestion in the pre-ruminant animal. Proc. Nutr. Soc., 1969, 28:115-121.
    128. Petit HV, Ivan M, and Brisson GJ. Duodenal flow of digesta in preruminant calves fed clotting or nonclotting milk replacer. J. Dairy Sci.,1987.70:2570.
    129. Quigley J. Calf Note #115–Abomasal pH and milk feeding[EB/OL]. Calf Notes.com,2006. http://www.calfnotes.com/CNliquid.htm.
    130. Quigley JD, III, Drewry JJ, Murray LM and Ivey SJ. Body weight gain, feed efficiency, and fecal scores of dairy calves in response to galactosyl-lactose or antibiotics in milk replacers. J. Dairy Sci., 1997,80:1751-1754.
    131. Radcliffe JS, Zhang Z and Kornegay ET. The effects of microbial phytase, citric acid, and their interaction in a corn-soybean meal-based diet for weanling pigs. J .Anim. Sci., 1998, 76:1880- 1886.
    132. Radecki SV, Juhl MR and Miller ER. Fumaric and citric acids as feed additives in starter pig diets:Effect on performance and nutrient balance. J. Anim. Sci.,1988,66:2598-2605.
    133. Radostits OM, and Bell JM. Nutrition of the preruminant dairy calf with special reference to the digestion and absorption of nutrients: A rereview. Can. J. Anita. Sci.,1970,50:405.
    134. Ravindran V, and Kornegay ET. Acidification of weaner pig diets: A review. J. Sci. Food Agric., 1993, 62:313–322.
    135. Richard AL, Muller LD, and Heinrichs AJ. Ad libitum or twice daily feeding of acidified milk replacer to calves housed individually in warm and cold environments. J. Dairy Sci., 1988a,71: 2193-2202.
    136. Richard AL, Heinrichs AJ, and Muller LD. Feeding acidified milk replacer ad libitum to calves housed in group versus individual Pens. J. Dairy Sci ,1988b,71: 2203-2209.
    137. Risley CR, Kornegay ET, Lindemann MD, Wood CM and Eigel WN. Effect of feeding organic acids on selected intestinal content measurements at varying times postweaning in pigs. J. Anim. Sci., 1992,70:196-206.
    138. Roth FX, and Kirchgessner M. Organic acids as feed additives for young pigs: Nutritional and gastrointestinal effects. J.Anim. Feed Sci., 1998,7:25-33.
    139. Sahlu T, Carneiro H, EL Shaer HM and Fernandeza J M. Production performance and physiological responses of Angora goat kids fed acidified milk replacer. J. Dairy Sci.,1992, 75:1643-1650.
    140. Scanff P, Savalle B, Miranda G, Pklissier JP, Guilloteau P, and Toullec R. In vivo gastric digestion of milk proteins. Effect of technological treatments. J. Agric. Food Chem.,1990, 38:1623.
    141. Sch?ner FJ. Nutritional effects of organic acids. http://ressources.ciheam.org/om/pdf/c54/ 01600011.pdf. ,2009.BASF Aktiengesellschaft, LNF/AT–J550, 67056,Ludwigshafen, Germany.
    142. Scipioni R, Zaghini G, and Biavati A. Acidified diets in early weaning piglets. Zootec. Nutr. Anim., 1978,4:201.
    143. Sedgman CA, Roy JHB, andThomas J. Digestion, absorption and utilization of single-cell protein by the preruminant calf. Abomasal outflow and its composition from calves given milk-substitute diets containing varying amounts of either bacterial or yeast protein. Br. J. Nutr. ,1985,53:673.
    144. Sissons JW, and Smith RH. The effect of different diets including those containing soya-bean products on digesta movement and water and nitrogen absorption in the small intestine of the pre-ruminant calf. Br. J. Nutr.,1976,36:421.
    145. Sissons JW, Smith RH, and Hewitt D. 1979. The effect of giving feeds containing soya-bean meal treated or extracted with ethanol on digestive processes in the preruminant calf. Br. J. Nutr., 1979,42:477.
    146. Smith RH and Sissons JW. The effect of different feeds, including those containing soya-bean products, on the passage of digesta from the abomasums of the preruminant calf. Br. J. Nutr., 1975, 33:329.
    147. Staples GE, Andrews MF, Parsons RM, McIlwain PK and Haugse CN. Young calves: Relation of neonatal health status and sex to some blood components. J. Anim. Sci., 1970. 31:383-388.
    148. Stobo IJF, Roy JHB, and Gaston HJ. Rumen development in the calf. 1. The effect of diets containing different proportions of concentrates to hay on rumen development. Br. J. Nutr., 1966, 20:171-188.
    149. Warner RG, Flatt WP, and Loosli JK. Dietary factors influencing the development of the ruminant stomach. J. Agric. Food Chem., 1956,4:788-792.
    150. Welch AA, Mulligan A, Bingham SA, Khaw KT. Urine pH is an indicator of dietary acid-base load, fruit and vegetables and meat intakes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk population study. Br. J. Nutr., 2008, 99(6):1335-1343.
    151. Wheeler WE. Gastrointestinal tract pH environment and the influence of buffering materials on the performance of ruminants. J. Anim. Sci., 1980, 51:224-235.
    152. Wheeler WE and Noller CH. Gastrointestinal tract pH and starch in feces of ruminants. J. Anim. Sci.,1977, 44:131.
    153. Williams VJ, Roy JHB, and Gillies CM. Milk-substitute diet composition and abomasal secretion in the calf. Br. J. Nutr.,1976,36:317.
    154. Woodford ST,HD Whetstone, Murphy MR and Davis CL. Abomasal pH,nutrient digestibility,and growth of Holstein bull calves fed acidified milk replacer. J. Dairy Sci. 1987,70:888-891.
    155. Yanar M,Güler O, Bayram B,et al. Effects of feeding acidified milk replacer on the growth, health and behavioural characteristics of Holstein Friesian calves. Turk J. Vet. Anim. Sci., 2006, 30:235-241.
    156. Young JW, Tove SB and Ramsey HA. Metabolism of acetate, propionate, and n-butyrate in young milk-fed calves. J. Dairy Sci.,1965,48:1079.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700