基于改进遗传算法的挠性卫星姿态模糊神经网络控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天技术的发展,人造卫星的挠性问题越来越突出,人们对卫星的姿态控制要求越来越高。为探索用于挠性卫星姿态控制的新方法,本文针对挠性卫星姿态稳定控制进行了基于改进遗传算法的优化模糊神经网络辨识器和控制器的设计研究。
     建立了带有太阳帆板的三轴稳定卫星姿态运动动力学模型。分析实值编码较二进制编码的优势和特点,提出对标准实值编码遗传算法的改进方法,使之优化性能大大提高。将改进GA应用于模糊神经网络的结构参数优化,加快了模糊神经网络的拟合速度与精度。研究了挠性卫星姿态基于遗传算法的模糊神经网络控制器的设计方法,用改进GA对Takagi-Sugeno型模糊神经网络辨识器均值、方差和权值及控制器的权值同时进行优化设计,离线训练时应用模糊C-均值聚类对输入角度进行聚类,确定控制器的均值和方差。优化后模糊神经网络辨识器和控制器的性能较纯模糊神经网络辨识器和控制器更加突出。
     MATLAB仿真结果证明所设计的辨识器和控制器均能满足挠性卫星姿态控制性能要求。
The satellites more and more play a major role in national economy and military affairs. A lot of business can not get away man-made satellites, for instance, correspondence, navigation, weather, and so on. With the development of the aerospace technology, the man-made satellites construction is increasingly complexity, so the flexibility problem of satellites impacting on attitude of satellite increasingly stands out, and the requirements for the flexible satellite attitude control are getting more and more complex. The flexibility structure of the satellite result in a few accidents of the control performance descend or astaticism, which indicates both classical control and modern control havn't completely solved these issues, but intelligent control basically independent of model of controlled object. The study on this line not only has certain help for design of vehicle control systems of current type satellites, but also momentous sense on control system design of large-scale space structures such as manned vehicles and space stations.
     In order to study new methods used in satellite attitude control, this thesis presents the identification and controller of T-S type fuzzy neural network based on genetic algorithm. Then this thesis makes simulation study on the attitude stabilization control of flexible satellite and analyses control outcome.
     Firstly, the models of the three-axis stabilized attitude control systems of a rigid satellite and a flexible satellite with a pair of solar arrays are set up. The model is composed of kinematics equation and dynamics equation. The model of the attitude control of the three-axis satellite is decoupled under assumer and predigestion, that is to say, the model is used in simulation.
     Secondly, the simple genetic arithmetic (SGA) is improved. Genetic algorithms are search algorithms based on the mechanics of natural selection and natural genetics. In general, a solution of an objective function is represented as a chromosome in a string structure, and each element represents a parameter in the solution. Through a search process such as selectness, crossover and mutation operators, the choice individuals in the string structure increase with series, and finally the chromosomes will approach the global optimum. The solutions are commonly encoded as binary strings, algorism strings and Gray Code, but in dimensions and high precision continuum problem, the second is better than the first, so in this thesis, genetic algorithms uses algorism coding. Genetic operations of simple genetic algorithms (SGA) easily decrease diversity of genetic population, reduce competition of individuals and result in premature, so genetic algorithms can't find global optimum. Aimed at these problems, the bettered genetic algorithms (BGA) is put forward. It changes the roulette wheel selection into the selection based on the fitness of individuals in population in order to preserve the individuals with the high fitness. The selected individuals will be put into the second process. Used changing P_c and P_m to adapt the changing situation. It can increase diversity of the population and avoid premature. In the end, BGA is tested by De Jong function. The result shows the feasibility and effectiveness of BGA in overcoming premature and improving convergence speed and accuracy.
     Thirdly, There were three input/ three output Neuro-Fuzzy network for identification. And there were three Fuzzy congregation of gauess function. Used BGA to optimize the typical value, variance and weighting of Neuro-Fuzzy network. The Neuro-fuzzy network combined the structural knowlage of Fuzzy reasoning and learning capability of neural nerwork. It combined the two field perfectly. It can solve the problems without the precise model, only use the user and the perfeson's experience. But because of the experience and the parameter of network were limited, it is hard to make the network model. So we used the beterred genetic algorithms to optimize the structure of neural network. We verify the feasibility and validity by using BGA to optimize the Neuro-fuzzy network to simulate the identification of a three-axis-stabilized Flexible satellite.
     Therefore, this paper presents the T-S type Neuro-Fuzzy control system of a three-axis-stabilized Flexible satellite. From the identification to get the change rate of angle, It will help us to amend the learning rate and parameter of the controller. It was made five subfunction for the three axes angle and it's rate of the Flexible satellite. And the subfunction is gauss function. The control moment of the flywheel is between [-0.2,0.2]. I got the center of the clustering with fuzzy C-mean clustering, and got the typical value of the Neuro-fuzzy controller. By the back structure, we can got the weighting of the Neuro-fuzzy contoller. After the clustering, a few parameter will be optimized, It will be faster. And the adaptation function is J(ITAE). It will accurate to use the parameter K to adjust the learning rate. This paper simulate the three axis angle of the flexible satellite, when the inertia matrixes rise from 70% to 100%. The result showd that the perturbation and the vibration of subassembly can be keep down, and the control is precise, after the Neuro-fuzzy to be optimized.
     At last, we sum the achievement up and pointed out the deficiency in this paper.
引文
[1]周军,航天器控制原理,西北工业大学出版社,2001
    [2]Kristin L.Makovec,A Nonlinear Magnetic Controllor for Three-Axis Stability of Nanosatellites,thesis,July23,2001
    [3]李勇,吴宏鑫,一类挠性航天器的变结构控制,宇航学报,1998,13-20
    [4]吴宏鑫,余四详,航天器智能控制的研究和设计,航天控制,1992,63-70
    [5]解永春,牟小刚,吴宏鑫,李季苏,挠性航天器大角度机动的全系数自适应控制,宇航学报,1999,2-5
    [6]罗均,谢少荣等,智能控制工程及其应用实例,化学工业出版社,2004
    [7]Suriya Thongchet,Suwat Kuntanapreeda,A fuzzy-neural bang-bang contronller for satellite attitude control,The Journal of KMITNB,2001,11,11-17
    [8]王华,刘向东,基于再励模糊神经网络的三轴稳定卫星姿态智能控制,航天控制,2005,21-26
    [9]乔溪荣,李宝绶,模糊神经网络控制器及其在航天器姿态控制系统中的应用研究,航天控制,1998,16,13-18
    [10]管萍,陈家斌,戈新声,挠性卫星姿态的模糊神经控制,火力与指挥控制,2005,36-40
    [11]李广兴,周军,周凤歧,挠性卫星高精度智能控制及物理仿真实验研究,中国空间科学技术,2007,1-14。
    [12]李广兴,周军,周凤歧,多体卫星高精度智能控制方案研究,空间科学学报,2007,27,151-156
    [13]Mun-Taek Choi,Henryk Flashner,Neural-network-based spacecraft attitude control,In:AIAA Guidance,Navigation and Control Conference and Exhibit,2000
    [14]乔溪荣,李宝绥,模糊神经网络控制器及其在航天器姿态控制系统中的应用研究,航天控制,1998,3-18
    [15]Apolloni B,Battini F,Lucisano C,A co-operating neural approach for spacecrafts attitude control,Neurocomputing,1997,16,279-307
    [16]胡燕瑜,桂卫华,胡志坤,基于动态模糊神经网络的淬火炉温度控制系统,鄂州大学学报,2005,3,2-33
    [17]王耀南,基于遗传算法的模糊神经控制及其应用,高科技通讯,1997,1-70
    [18]刘坤,遗传算法自适应模糊神经网络控制,计算机仿真,2005,22(9),3-15
    [19]王德意,罗兴锜,匡伯燕,杨汉如,改进遗传模糊神经网络住舰船组合导航中的应用,舰船电子工程,2006,26(2),2-20
    [20]刘建娟,徐晓苏,改进遗传模糊神经网络住舰船组合导航中的应用,舰船电子工程,2006,26(2),5-90
    [21]常江,景占荣,高田,基于HGA的模糊神经控制器设计及其应用,计算机工程与应用,2006,42(14),2-30
    [22]任成功,挠性卫星姿态基于遗传算法的模糊控制研究,吉林大学硕士学位论文,2007
    [23]章仁为,卫星轨道姿态动力学与控制,北京航天航空大学出版社,1998,10-43
    [24]黄圳圭,航天器动力学工程,国防科技大学出版社,1997
    [25]柏林,三轴稳定卫星姿态确定和姿态控制系统研究,西北工业大学硕士学位论文,2001
    [26]王蜀泉,基于模糊控制的卫星姿态控制方法研究,中国科学院空间科学与应用研究中心硕士论文,2005,7-20
    [27]曲广吉,航天动力学工程,中国科学技术出版社,2000,73-130
    [28]姜雷,基于遗传算法的模糊神经网络控制器设计,哈尔滨理工大学硕士学位论文,2005,7-24
    [29]沐阿华,周绍磊,于晓丽,一种快速自适应遗传算法及其仿真研究,系统与仿真,2004,1,122-125
    [30]Rudolph G.Convergence.Analysis of Canonical Genetic Algorithms.IEEE Transaction On Neural Networks,1994,96-101
    [31]Goldberg D E,Genetic Algorithms in Search,Optimization and Machine Learning.Addison-Wesley Publishing Company,1989,63-93
    [32]毕妍,张庆生,基于遗传算法的模糊控制器设计与仿真,机械工程与自动化,2005,22-24
    [33]Z.米凯利维茨,演化程序-遗传算法利数据编码的结合,周家驹、何险峰译,北京:科学出版社,2000,24-134
    [34]王振雷,顾树生,基于实值遗传算法的模糊神经网络辨识器,东北大学学报,2000,21(4),354-356
    [35]Vose M D.Modeling Simple Genetic Algorithms.Foundations of Genetic Algorithms Ⅱ,Morgan Kaufmann Publishers,1993,63-73
    [36]卢红光,李平,基于遗传算法的模糊控制器设计,自动化与仪器仪表,2000,4,8-15
    [37]董玲娇,基于遗传算法的智能控制器设计方法研究,郑州大学硕士学位论文,2004,24-29
    [38]Tobias Blickle,Lothar Thiele.A Comparison of Selection Schemes Used in GeneticAlgorithms.Swiss Federal Institute of Technology(ETI),1995,45-55
    [39]李国勇,智能控制及其Matlab实现,电子工业出版社,2005,194-285
    [40]P.Guan,X.J.Liu,Lara-Rosano F.and J.B.Chen,Adaptive Fuzzy Control of Satellite based on Linearization,Proceeding of the 2004 American Control Conference,2004,1094-1096
    [41]H.Pomares,I.Rojas,J.Gonzalez.A Two-Stage Approach to Self-Learning Direct Fuzzy Controllers.International Journal of Approximate Reasoning,2002,29,267-289
    [42]Jagannathan S,Vandegrift M W,Lewis F L.,Adaptive fuzzy logic control of discrete-time dynamical systems[J],Automatica,2000,36,229-241
    [43]Wang L X.,Fuzzy systems are universal approximations,Proc.IEEE Int.Fuzzy Sys.,1992,1163-1170
    [44]Zeng X J,Singh M G.,Approximation theory of fuzzy systems-SISO case[J],IEEE Trans.on Fuzzy Systems,1994,2,162-176
    [45]Cao S G,N.W.Rees,G.Feng,Stability Analysis of Fuzzy Control Systems[J],IEEE Trans.on Systems,Man and Cybernetics-Part B:Cybernetics,1996,26,201-205
    [46]Wang Ying-Chung,Chiang-Ju Chien,Ching-Cheng Teng.Takagi-Sugeno Recurrent Fuzzy Neural Networks for Identification and Control of Dynamic Systems[J].IEEE International Fuzzy System Conference(S 7803-5748),2001,537-540
    [47]Paris A Mastorocostas,John B Theocharis.A Recurrent Fuzzy-Neural Model for Dynamic System Identification[J].IEEE Transactions on Systems(S 1083-4419),2002,176-190
    [48]Yu Wen,Li Xiaoou,Fuzzy Identification Using Fuzzy Neural Networks With Stable Learning Algorithms[J].IEEE Trans on Fuzzy Systems(S 1063-6706),2004,411-420
    [49]Lee Ching-Hung,Lai Wei-Yu.A TSK-Ttype Fuzzy Neural Network(TFNN)for Dynamic Systems Identification[J].IEEE Processings of Decision and Control(S 7803-7924),2003,12,4002-4007
    [50]Bornholdt A General Asymmetric Neural Networks and Structure Design by Genetic Algorithms.Neu-ralNetworks,1992,5(2),327-334
    [51]Schaffer JD,Whitley D(ed.).Proceedings of the Work shop on Combinations of Genetic Algorithms and Neural Networks,1992,LosAlamitos,CA:TheIEEEComputerSocietyPress,1992
    [52]M.Munir-ul M.Chowdhury,Yun Li.Messy Genetic Algorithm Based New Learing Method for Structurally Optimised Neurofuzzy Controllers.The IEEE International Conference On Industrial Technology,1996,274-278
    [53]欧阳,成卫,韩逢庆,基于遗传算法的模糊C-均值聚类算法,重庆大学学报,2004,89-91
    [54]徐文军,黄道,一种基于遗传算法的模糊C-均值聚类算法,第十二届中国控制会议论文集,1116-1119
    [55]Yie-chien chen,Ching-Cheng Teng,A Modle Reference Control Structure Suing a Fuzzy Neural Network[J],Fuzzy Sers and System,1995,291-312
    [56]Wei-Yen Wang,Tsu-tian Lee,Chen-Chian Hsu,Yi-Hsum Li.GA-Based Learning of BMF Fuzzy-Neural Network.IEEE,2002:1234-1239
    [57]Wei-Yen Wang,Yi-Hsum Li.Evolutionary Learning of BMF Fuzzy-Neural Networks Using A Reduced-Form Genetic Algorithm.IEEE Transactions On Systems,Man and Cybernetics- Part B:Cybernetics,Vol.33,No 6,December 2003-514
    [58]Wei-Yen Wang,Yi-Hsum Li.Networks.Evolutionary Learning of BMF Fuzzy-Neural Using A Reduced-Form Genetic Algorithm.IEEE Transactions On Systems,Man and Cybernetics-Part B:Cybernetics,Vol.33,No 6,December 2003-10
    [59]Dominique Rochefort,A New Satellite Attitude State Estimation Algorithm using Quaternion Neural Networks,AIAA Guidance,Navigation and Control Conference and Exhibit,August 2005,1-11
    [60]Richard Y.,Chiang.,Fuzzy Logic Attitude control for Cassini Spacecraft,IEEE World Congress on Computational Intelligence,June 26-july 2,1994,1532-1537
    [61]M.Munir-ul M.Chowdhury,Yun Li.Messy Genetic Algorithm Based New Learing Method for Structurally Optimised Neurofuzzy Controllers.The IEEE International Conference On Industrial Technology,1999,274-278
    [62]DetlefNauck,Rudolf Kruse.A Fuzzy Neural Network Learning Fuzzy Control Rules and Membership Functions by Fuzzy Error Backpropagation.Department of Computer Science,Technical University of Braunschweig,IEEE Trans,1993,1022-1027
    [63]Detlef Nauck,Rudolf Kruse.A Fuzzy Neural Network Learning Fuzzy Control Rules and Membership Functions by Fuzzy Error Backpropagation.Department of Computer Science,Technical University of Braunschweig,IEEE Trans,1993,1022-1027

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700